Foundations of Cryptography, Fall 2025
Problem Set 4
Due Monday, November 24

Total Number of Points: 100

Collaboration Policy: Collaboration is permitted and encouraged in small groups of at most three stu-
dents. You are free to collaborate in discussing answers, but you must write up solutions on your own,
and must specify in your submission the names of any collaborators. Do not copy any text from your col-
laborators; the writeup must be entirely your work. Do not write down solutions on a board and copy it
verbatim; again, the writeup must be entirely your own words and your own work and should demonstrate
clear understanding of the solution. Solutions should be typeset in ETEX. You may make use of
material referenced on the course website, provided that you clearly acknowledge all sources/tools used. Of
course, scavenging for solutions from prior years is forbidden.

On the Use of LLMs: You may use Al however you wish to deepen your understanding of the lecture
material. Upload the notes, talk to your AI about them, ask for more explanation or examples; it’s all
fine. You may not use AI/LLMs in any way to work on your homework. You may not upload
assignments, ask for hints, ask how certain concepts from the lectures might be applied to specific homework
problems, or upload your assignments to check for correctness or clarity or anything else. You may not include
any Al-generated content whatsoever in your homework submissions. If it becomes clear that you have used
an Al tool when working on your homework (either directly by making edits or to ask for hints/solutions),
we may mark your grade down to reflect that.

1 Perfectly Binding Hash Functions: An Oxymoron? (20 points)

A hash function H : {0,1}" — {0,1}" compresses its n-bit input into an m-bit output for some m < n. A
perfectly binding function H : {0,1}"™ — {0,1}™ is injective, i.e. given H(z), x is uniquely determined. Could
one have a perfectly binding hash function? Clearly not! Nevertheless, in this problem, we will construct
hash functions that achieve a variant of perfect binding.

Definition 1. A bit-wise perfectly binding hash function is a pair of polynomial-time algorithms (Gen,H)
where

e hk < Gen(1%*,i) takes as input an integer i € [n()\)] and outputs a public hashing key hk;

e y = H(hk,z) is a deterministic algorithm that takes an n(\)-bit input x and produces an m(\)-bit
output, where m(X) < n(X) for all sufficiently large .

We additionally require the following two properties:

1. Index Hiding. For every pair of indices ig,i1 € [n(\)], the hash keys hko < Gen(1*,4y) and hk; <+
Gen(1*,i1) are computationally indistinguishable.

2. Bit-wise Perfectly Binding. For any i € [n(\)], hk < Gen(1*,i), and z,2’ € {0,1}"N, if
H(hk,z) = H(hk,2"), then x[i] = «'[d].

1. (10 points) Recall the Quadratic Residuosity Assumption from the third problem set:

Assumption 1 (Quadratic Residuosity Assumption for Blum Integers). For any poly-size algorithm
A, its advantage in solving the Quadratic Residuosity Problem is negligible in the security parameter .
That is, for random p # q of A bits each where p,q = 3 mod 4, and random x € Z3; with (%) =1,

1
Pr[A(N,z) =1 if x is a residue, and 0 otherwise] < 3 + negl(\).

Construct a bit-wise perfectly binding hash function, assuming the hardness of the quadratic residuosity
problem. Prove that your construction is correct.

2. (10 points) Construct a bit-wise perfect binding hash function, assuming the existence of a fully homo-
morphic encryption (FHE) scheme (Gengyg, Encepe, Decepg, Evalpye) with perfect correctness. Prove
that your construction is correct.

You may also assume that (Gengng, Enceue, Decpne, Evalpye) is truly compact. More precisely, this
means there exists some polynomial p(A) such that the following statement holds: for all polynomial-size
circuits C' which output a single bit, all inputs p, ..., u, € {0,1}, and all keys (pk, sk) < Gengug(1?),
|Evalene (pk, C, {Enc(pk, pi) }ioy)| < p(A).

2 Statistically Hiding Commitments (15 points)

In lecture, we have seen a construction of computationally hiding and statistically binding commitments,
which can be used to construct computational zero-knowledge proofs. In this problem, we consider how to
construct statistically hiding and computationally binding commitments, which can be used to construct
statistical zero-knowledge arguments.

We will work with the discrete logarithm assumption over a family of groups {G }xen, where each G, is
a group of prime order qy:

Assumption 2 (DLOG for {Gy}xen). Let gx be a uniformly random generator of Gx.' For every poly-size
adversary A, there exists a negligible function p such that for all X € N,

Pr [A(1Y,g,¢%) = mod ¢ < p(N),

w(—Z;,g

where ¢ = g\ and g = g.

DLOG-Based Commitment Scheme

e Gen(1*): Sample uniformly random generators g = gx and h = hy from Gx. Output pp = (g, h).
e Com(pp,m): Parse pp = (g, h). Sample random r + Z, and output com = g™ - h". The opening is 7.
e Ver(pp,com, m,r): Parse pp = (g, h). Output 1 iff g™ - A" = com.

It is not hard to see that the commitment scheme has perfect correctness: that is, if the committer and
receiver behave as prescribed, the receiver will always accept the committer’s opening. We now take a look
at two other properties of this commitment scheme.

1. (5 points) Show that the commitment scheme is perfectly hiding: for all A € N and any two messages
mop,m1 € qu,

(pp, Com(pp,mo)) = (pp, Com(pp,m1)),
where pp < Gen(1?%).

2. (10 points) Assuming the discrete logarithm is hard in {G}en, show that the commitment scheme is
computationally binding: for all poly-size adversaries A, there exists a negligible function p such that
for all A € N,

mg Zm1 mod gy A
Pr N Ver(pp,com7m0,r0) =1 A (Comam()vr()»mlvrl) — "4(1)\) pp) < ,LL()\)
PPGen(1) | Ver(pp, com, my,71) = 1

INote that since G is of prime order (and hence cyclic), a uniformly random generator is simply a uniformly random
(non-identity) element.

3 Does Zero Knowledge Compose in Parallel? (15 points)

We have seen in class that assuming one-way functions exist, there is a three message zero knowledge proof
system for an NP-complete problem (graph 3-colorability) with soundness ﬁ(n)’ and that the soundness
can be amplified by repeating this proof system many times in sequence to obtain a zero knowledge proof
system with negligible soundness. Unfortunately, this results in a very long protocol. Wouldn’t it be nice
if we could instead repeat the three message protocol many times in parallel? Then maybe we could get
negligible soundness with only three messages!

Unfortunately, the problem is that the resulting proof system (which is actually sound!) may not be
zero knowledge! In this problem, we will see how repeating an interactive proof can ruin zero knowledge.
Consider the following zero knowledge proof II for the discrete logarithm:

e Public input: a string h = ¢ (along with a group G and generator g); prover input: the discrete
logarithm z.

e First message: P chooses a uniformly random r and sends R = g" to V.
e Second message: V chooses a uniformly random bit b.

e Third message: P sends z = r + bz to V. V accepts if g* = R - h®.

P(h,) V(h)
Sample r R
Compute R = g"
b Sample a bit b
z=r+b-z If g* = R - hb, accept.

Figure 2: The Zero Knowledge Proof II for Discrete Log.

The Counterexample We will now consider the following strange modification II of II (see Figure 3):

e Public input: a string h = ¢ (along with a group G and generator g); prover input: the discrete
logarithm .

e First message: V makes a uniformly random guess z* and checks if g*" = h. If this happens, V sets a
variable mode to 1, and otherwise V sets mode to 0. V then sends mode to P.

e If mode = 0, P and V proceed to execute II A times in sequence. If mode = 1, V instead proves to P
(A times) that V knows x, which is equal to z*! That is, V and P execute II (A times) with their roles
reversed. If V' convinces P that V knows x, P then sends x to V in the clear.

mode Sample z* uniformly at random

Compute gz*

If g*° = h, mode = 1, else mode = 0

If mode = 0, sample r R if mode =0, else L

Compute R = g"

S if mode =1, else L If mode = 1, sample s

Compute S = g°

If mode = 1, sample a bit ¢ cif mode =1, else L

b if mode =0, else L If mode = 0, sample a bit b

z=r+b-xif mode=0,else L 1fq0de =0 and g% # R - hY, reject.

If mode = 1 and g** # § - h¢, ABORT # =j3+c " if mode=1, else L

z if mode =1, else L If mode = 1 and = = =*, accept.

If mode = 0, accept.

Figure 3: The Protocol II.

One can show that IT is still a zero knowledge proof for discrete logarithm (we will not ask you to do
this). Instead, prove that if the discrete logarithm problem is hard, then I executed two times
in parallel is not zero knowledge! In particular, show how a cheating verifier can learn the
discrete logarithm x with certainty.

4 But Really, Does Zero Knowledge Compose in Parallel? (25
points)

We saw in the previous problem that zero knowledge is not always preserved when a protocol is executed
many times in parallel. However, the example seems contrived, and we would like to say something about
parallel composition anyway! To do so, we will introduce a new (weaker) notion of security against malicious
verifiers, which we call witness indistinguishability (WI).

Definition 2. A proof system II for a language L € NP is witness indistinguishable if for every (efficient)
malicious verifier V*, every instance x € L, every pair of witnesses wi,ws for x, and every auziliary input
Z}

viewy s (P(w1), V¥ (x, 2)) =, viewy«(P(wz), V*(z, 2)).

In other words, V* cannot tell which witness an honest prover P is using in an execution of the protocol,
even given arbitrary auxiliary information about (x,wq,ws) (possibly including both wy and ws).

As a motivating example, consider the following scenario. Suppose that there is some organization whose
membership is a known list of public keys pky,..., pk,. Each member ¢ of the organization has secret key
sk;. Now, suppose that a member of the organization wants to prove to an outside party (say, a journalist)
that they belong to the organization without revealing which member they are. Witness indistinguishable
proofs allow you to do this: you are trying to prove a statement with n possible witnesses (the secret keys),
and you do not want to reveal which witness you have.

1. (10 points) Zero Knowledge Proofs are Witness Indistinguishable. Prove that every (auxiliary
input) zero knowledge proof system II (for a language L € NP) is also witness indistinguishable.

2. (15 points) Composition of WI Proofs. From part 1, we see that the three-message protocol for
3-colorability from lecture is witness indistinguishable. However, it still has poor soundness. Prove
that (three-message) WI proof systems actually compose under parallel composition!? That is, if IT is a
three-message WI proof system for some language L with soundness p and completeness 1, prove that
IT! (a t-wise parallel repetition of II) is a WI proof system for L with soundness u! and completeness
1.

Remark 1. You may assume that the honest prover is efficient (i.e. runs in polynomial time) given
any NP witness. This is similar to the honest prover efficiency requirement for zero-knowledge proofs
for NP.

2In fact, composition holds for WI proof systems with an arbitrary polynomial number of rounds, but we will restrict to
three-message proofs for simplicity.

5 The Power of Homomorphism (25 points)

In this problem, we will see that homomorphism is quite a powerful tool—often, homomorphic properties
already present enough structure to imply public-key encryption!

5.1 PKE from re-randomizable encryption (10 points)

Recall the definition of re-randomizable encryption, which is a property that most homomorphic encryption
schemes tend to have:

Definition 3 (Re-randomizable secret-key encryption). A randomized secret-key encryption scheme SKE =
(Gen, Enc, Dec) over message space M = {0,1} is re-randomizable if there exists a PPT algorithm ReRand
such that for every key k < Gen(1*), message m € M, and encryption ¢ + Enc(k,m),

ReRand(c) ~ Enc(k,m),?
and Dec(k, ReRand(c)) = Dec(k, c¢) for all ciphertexts c.

Suppose there exists a (CPA-secure) re-randomizable secret key-encryption scheme (Gen, Enc, Dec, ReRand).
Show that there exists a (CPA-secure) public-key encryption scheme (Gen’, Enc’, Dec’).

5.2 PKE from additive homomorphism (15 points)

Let SKE = (Gen, Enc, Dec, Add) be a secret-key encryption scheme for single-bit messages that satisfies the
standard compactness and (CPA) security guarantees, and supports homomorphic addition:

e Additive homomorphism mod 2. Add is a deterministic algorithm such that for any ciphertexts

{Ci}ie[n]v
Dec(k,Add(c1,...,cn)) = @i, Dec(k, ¢;).

Now, define a public-key encryption scheme PKE = (Gen’, Enc’, Dec’) as follows:

e Gen'(1?): Let £ = £()\) be a polynomial to be specified later. Sample k < Gen(1%). For each i € [{],
sample fresh
X, < Enc(k,0), Y; < Enc(k,1).

Output pk = ((X1,...,X¢),(Y1,...,Ys)) and sk = k.

e Enc'(pk,m): Parse pk = ((X1,...,X¢),(Y1,...,Y;)). Sample a uniformly random subset S C [(]
conditioned on |S| = m mod 2. Form the ¢-tuple Z by setting Z; :=Y; if i € S and Z; := X, if i ¢ S.
Output

¢ = Add(Z1, ..., 7Z).

e Dec/(sk,c): Parse sk = k and output Dec(k, c).

Suppose the ciphertexts ¢ < Enc(k,m), k < Gen(1) satisfy |c| < n(\) for some polynomial n. Specify the
polynomial £ such that PKE is CPA-secure, and prove correctness and security. You may take the following
information-theoretic statement for granted.

Theorem 1. Let Xq,...,X, and Y1,...,Y, be i.i.d. over a finite set. Sample a uniformly random bit
o € {0,1} and let S C [¢] be uniformly random subject to |S| mod 2 = o. Define Z; := X; fori ¢ S and
Z;:=Y; forie S. Let X := (X1,...,Xy), Y = Y1,....Y2), and Z := (Z1,...,Z;). For any (possibly
unbounded) adversary that sees X, Y, and any n-bit (possibly randomized) function g(Z) of Z, its advantage
in predicting o = |S| mod 2 is at most 27¢/5tn+1 4

3The ciphertext on the right-hand side is a fresh encryption of m with the key k which is not necessarily equal to c.

4For this theorem to make sense, g(Z) cannot depend on X, Y, and Z together (or else it can simply leak ¢!). Thus, the
function g is restricted to depend only on the bits in Z (and not X, Y, and Z simultaneously). Of course, g can depend on the
distribution of X and Y.

	Perfectly Binding Hash Functions: An Oxymoron? (20 points)
	Statistically Hiding Commitments (15 points)
	Does Zero Knowledge Compose in Parallel? (15 points)
	But Really, Does Zero Knowledge Compose in Parallel? (25 points)
	The Power of Homomorphism (25 points)
	PKE from re-randomizable encryption (10 points)
	PKE from additive homomorphism (15 points)

