
Foundations of Cryptography, Fall 2025
Problem Set 3

Due Friday, Oct 24

Total Number of Points: 100

Collaboration Policy: Collaboration is permitted and encouraged in small groups of at most three stu-
dents. You are free to collaborate in discussing answers, but you must write up solutions on your own, and
must specify in your submission the names of any collaborators. Do not copy any text from your collabora-
tors; the writeup must be entirely your work. Do not write down solutions on a board and copy it verbatim;
again, the writeup must be entirely your own words and your own work and should demonstrate clear un-
derstanding of the solution. Solutions should be typeset in LATEX. You may make use of published
material, provided that you clearly acknowledge all sources/tools used. Of course, scavenging for solutions
from prior years is forbidden.

On the Use of LLMs: You may use AI however you wish to deepen your understanding of the lecture
material. Upload the notes, talk to your AI about them, ask for more explanation or examples; it’s all fine.
You may not use LLMs in any way to work on your homework. You may not upload assignments, ask for
hints, ask how certain concepts from the lectures might be applied to specific homework problems, or upload
your assignments to check for correctness or clarity or anything else. You may not include any AI generated
content whatsoever in your homework submissions. If it becomes clear that you have used an AI tool when
working on your homework (either directly by making edits or to ask for hints/solutions), we may mark your
grade down to reflect that.

1 Better Digital Signatures (30 points)
In lecture, we saw how to construct digital signatures from collision-resistant hash functions. However, it
turns out that the construction we gave of digital signatures does not need to use the full power of collision-
resistance. Indeed, it suffices to use what is called a family of universal one way hash functions (UOWHFs).1
In this problem, we will show how to build UOWHFs from one-way permutations.2

Definition 1. A hash family (Gen,H = {Hhk : {0, 1}n(λ) → {0, 1}λ}hk∈Kλ
) is a UOWHF family if (a)

given hk, Hhk is computable in polynomial time, (b) λ < n(λ), and (c) for all x ∈ {0, 1}n and all poly-size
adversaries A,

Pr
hk←Gen(1λ)

[x′ ← A(1λ, hk, x) : x ̸= x′ ∧ Hhk(x) = Hhk(x
′)] ≤ negl(λ).

1. (10 points) We would first like to deal with the aspect of compression. Show that if there exists a
UOWHF which compresses its input by a single bit, then there exists a UOWHF which compresses its
output by any polynomial factor. That is, given a UOWHF

Gen(1λ)→ Kλ,H =
{
Hhk : {0, 1}λ+1 → {0, 1}λ

}
hk∈Kλ

,

1These are also known as target-collision-resistant hash functions, for reasons that will be evident from the definition.
2It turns out that UOWHFs (and thus digital signatures) can be constructed from one-way functions.
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construct a UOWHF that compresses an n(λ)-bit input to an λ-bit output. That is, construct

Gen′(1λ)→ K′λ,H′ =
{
H′hk′ : {0, 1}n(λ) → {0, 1}λ

}
hk′∈K′

λ

,

where n(λ) = poly(λ).

Thus, it suffices to construct a UOWHF that compresses its input by a single bit. We now show how to
construct these objects using two tools: (1) one-way permutations, and (2) hash functions.

2. (5 points) Consider the field F := F2λ+1 .3 If we interpret an input in {0, 1}λ+1 as an element of F (and
vice versa)4, we can define the family of hash functions

H =
{
H(a,b) : {0, 1}λ+1 → {0, 1}λ

}
a̸=0,b∈F , H(a,b)(x) := (ax+ b)[1:λ].

Prove that H is a (efficiently computable) family of hash functions that compress their input by a single
bit and are always 2-to-1.

3. (5 points) Show that the function family H defined above has the following property: given x1 ̸= x2 ∈
{0, 1}λ+1, it is possible to sample in polynomial time a random (a, b) ∈ (F \ {0}) × F subject to the
constraint that (ax1 + b)[1:λ] = (ax2 + b)[1:λ], that is, x1 and x2 collide under H(a,b).

4. (10 points) Finally, let f : {0, 1}λ → {0, 1}λ be a one-way permutation. Let H be the functions defined
by

Hhk(x) = Hhk(f(x)).

Show that H is a UOWHF family which compresses its input by a single bit, where Gen(1λ) samples a
random pair hk := (a, b)← (F \ {0})× F.

Remark 1. Note that since our adversaries are non-uniform/poly-size circuits, one can alternatively think
of A (and any other adversaries) as having x ∈ {0, 1}n hardwired into its circuit, as long as the value of x
depends only on n (or λ) and not on the hash key being sampled.

3If you want more information about finite fields, see references here, here, and here.
4We assume that the mapping associates the all zeros string 0λ+1 with the field element 0.
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2 Collision-Resistant Hash Functions (30 points)
A compressing collision-resistant function family is a collection of functions F = {Fλ}λ∈N where Fλ =
{fk}k∈{0,1}poly(λ) together with an efficient key generation algorithm Gen(1λ), such that the following two
properties hold:

1. Compressing: The functions fk : {0, 1}n+m → {0, 1}n maps an input of length n+m bits to an output
of length n bits, thereby “compressing” its input, where m,n = poly(λ). For this problem, we will
always consider m > 1.

2. Collision-resistant: For every polynomial-size adversary A, there is a negligible function µ such that

Pr
k←Gen(1λ)

[fk(x) = fk(x
′) and x ̸= x′ : (x, x′)← A(k)] ≤ µ(λ).

Our goal is build a variable-length collision-resistant hash function family H = {Hλ}λ∈N where Hλ =
{Hk}k∈{0,1}poly(λ)

Hk : {0, 1}∗ → {0, 1}n,

starting from a standard computational assumption from lattice-based cryptography, namely the Short
Integer Solution problem.

2.1 A compressing collision-resistant function (10 points)
Definition 2 (Short Integer Solution (SIS) Assumption). Let N,M, q be integers with q > 1 and M ≫
N log q, and let A ∈ ZN×M

q be a uniformly random matrix. The SIS problem with parameters (N,M, q) asks
to find a nonzero integer vector z ∈ {−1, 0, 1}M such that Az ≡ 0 (mod q). The SIS assumption states that
no poly-size algorithm can solve the SIS problem with non-negligible probability, given matrix A.

Assuming that the SIS assumption holds, give a family of collision-resistant compressing functions F =
{Fλ}λ∈N where Fλ = {fk : {0, 1}M → ZN

q }k∈{0,1}poly(λ) , where M,N = poly(λ).

2.2 Extending to more input lengths (5 points)
Suppose there exists a collision-resistant compressing function family F = {Fλ}λ∈N where Fλ = {fk}k∈{0,1}poly(λ)

and fk : {0, 1}n+m → {0, 1}n. Define a hash function family H′ = {H′λ}λ∈N where H′λ = {H ′k}k∈{0,1}poly(λ)

and
H ′k : {{0, 1}m}∗ → {0, 1}n.

That is, it takes as input strings of length any multiple of m and works follows:

• Divide the input x into t blocks of m bits each: x = x1∥x2∥ . . . ∥xt, where xi ∈ {0, 1}m.

• Let IV ∈ {0, 1}n be an arbitrary fixed public string.

• Compute y0 := IV, and yi := fk(yi−1∥xi) for i = 1, 2, . . . , t.

• Finally, set H ′k(x) = yt.

Prove that this hash function family is “collision-resistant” in the following sense: no polynomial-size ad-
versary is able to produce with non-negligible probability x ̸= x′ such that |x| = |x′| ∈ mZ such that
H ′k(x) = H ′k(x

′).
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2.3 Insecure padding (5 points)
Now define the hash function family H′′ = {H′′λ}λ∈N where H′′λ = {H ′′k }k∈{0,1}poly(λ)

H ′′k : {0, 1}∗ → {0, 1}n,

that takes as input strings of arbitrary length and outputs

H ′′k (x) = H ′k(x∥0ℓ),

where ℓ ∈ {0, 1, . . . ,m − 1} such that x∥0ℓ has length that is a multiple of m. Give an attack on this hash
function—that is, give an efficient algorithm that produces (with probability 1) two inputs x, x′ such that
H ′′k (x) = H ′′k (x

′).

2.4 Collision-resistant hash functions, finally (10 points)
Suppose there exists a collision-resistant compressing function family F = {Fλ}λ∈N where Fλ = {fk}k∈{0,1}poly(λ)

and fk : {0, 1}n+m → {0, 1}n. Define a hash function family H = {Hλ}λ∈N where Hλ = {Hk}k∈{0,1}poly(λ) ,

Hk : {0, 1}∗ → {0, 1}n

that takes as input strings of arbitrary length and does the following to compute its output:

• Divide the input x as x1∥x2∥ . . . ∥xt, where |x1| = |x2| = . . . = |xt−1| = m− 1 and |xt| = m− 1− ℓ for
some 0 ≤ ℓ ≤ m− 2. That is, |x| = t · (m− 1)− ℓ.

• Let IV ∈ {0, 1}n be a fixed public string.

• For 1 ≤ i ≤ t− 1, let yi = xi, let yt = xt∥0ℓ and let yt+1 be the (m− 1)-bit binary representation of ℓ.

• Define z1 = fk(IV∥0∥y1) and for 2 ≤ i ≤ t+ 1, define zi := fk(zi−1∥1∥yi).

• Finally, set Hk(x) := zt+1.

Prove that this hash function family is collision-resistant.
Note: A previous version of this question had a typo and incorrectly defined the type of Hk as Hk :

{{0, 1}m}∗ → {0, 1}n. However in this part, we want the hash function to take as input strings of arbitrary
length.
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3 Lossy Encryption (20 points)
In this problem, we will explore an alternate notion of encryption called lossy encryption. It turns out that
this notion is stronger than the usual notion of semantic security for public key encryption and also implies
other cryptographic primitives, like oblivious transfer, that we will encounter later on.

A lossy encryption scheme (Gen,Enc,Dec) has the following syntax:

• Gen(1λ,mode): The Gen algorithm takes as input the security parameter and a mode which can be
either real or lossy. In the real mode, it outputs a pair of keys (pk, sk). In the lossy mode, it output a
lossy public key p̃k.

• Enc(pk, b): The Enc algorithm takes a public key (either a real or a lossy public key) and a bit b and
outputs a ciphertext ct.

• Dec(sk, ct): The Dec algorithm takes as input a secret key (which must be a real secret key) and outputs
a decrypted bit b.

Furthermore, it has the following properties:

• Correctness: The encryption scheme is correct in the real mode. That is, for every bit b,

Pr[(pk, sk)← Gen(1λ, real) : b = Dec(sk,Enc(pk, b))] = 1,

where the probability is over the randomness of Gen, Enc, and Dec.

• Key Indistinguishability: Real public keys are computationally indistinguishable from lossy public
keys. That is, for any λ ∈ N,

{pk : (pk, sk)← Gen(1λ, real)} ≈c {p̃k : p̃k← Gen(1λ, lossy)}.

• Lossy encryption: Encryption using the lossy key completely loses information about the message
encrypted. That is, output distributions of encryptions of 0 and 1, under lossy keys, are statistically
indistinguishable. For every p̃k← Gen(1λ, lossy),

Enc(p̃k, 0) ≡negl(λ) Enc(p̃k, 1).

3.1 Semantic security is for free (10 points)
Show that every lossy encryption scheme (when operating in the real mode) is also semantically secure: that
is,

{(pk,Enc(pk, 0)) : (pk, sk)← Gen(1λ, real)} ≈c {(pk,Enc(pk, 1)) : (pk, sk)← Gen(1λ, real)}.

3.2 DDH tuples (5 points)
We will now see how to construct a lossy encryption scheme assuming the Decisional Diffie-Hellman assump-
tion (DDH). Consider a cyclic group G of prime order p on which DDH assumption holds. That is, suppose
that for any generator g ∈ G,

{(g, gx, gy, gxy) : x, y ← Zp} ≈c {(g, gx, gy, gz) : x, y, z ← Zp}.

We say that a tuple (g, h, g′, h′) is a DDH tuple if there exists an x such that gx = g′ and hx = h′. Let
DLOGG(x) = {h ∈ G : (h, hx)} (h does not have to be a generator).

Algorithm 1: Rand(g, h, g′, h′)

s, t
R← Zp;

u← gsht and v ← (g′)s(h′)t;
return (u, v)
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Suppose that g and h are generators. Show that a) if (g, g′), (h, h′) ∈ DLOGG(x), then (u, v) ←
Rand(g, h, g′, h′) is a uniformly random element of DLOGG(x) and b) if (g, g′) ∈ DLOG(x) and
(h, h′) ∈ DLOG(y) for x ̸= y, then (u, v)← Rand(g, h, g′, h′) is uniformly random in G2.

3.3 Lossy encryption from DDH (5 points)
Modify the following encryption scheme by designing a lossy key generation algorithm and proving that the
resulting scheme satisfies all three properties of a lossy encryption scheme (assuming DDH). Note that in
the encryption scheme, v ·m refers to the group operation in G.

DDH-Based Encryption Scheme

• Gen(1λ): Sample x, y ← Zp. Compute pk = (g, gx, gy, gxy) and sk = y before outputting (pk, sk).

• Enc(pk,m): Parse pk := (g, h, g′, h′). Compute (u, v)← Rand(g, h, g′, h′) and output c = (u, v ·m).

• Dec(sk, c): Parse c := (c0, c1) and sk := y. Output c1/c
y
0 .
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4 The QR Assumption (20 points)
For any prime p, define the Legendre symbol

(
a

p

)
:=


0 if a ≡ 0 mod p,

1 if a ̸= 0 mod p ∧ ∃x : a ≡ x2 mod p,

−1 otherwise.

In other words, (ap ) (roughly) indicates whether a is a square modulo p. For any integer a and odd integer
N > 0 with factorization N = pe11 . . . pekk , define the Jacobi symbol

( a

N

)
:=

k∏
i=1

(
a

pi

)ei

.

For any odd integer N > 0, let J 1
N = {a ∈ Z∗N :

(
a
N

)
= 1} be the set of elements in Z∗N with Jacobi symbol

equal to 1. Let QRN = {x2 : x ∈ Z∗N} be the set of quadratic residues modulo N . Let QNRN = Z∗N \ QRN

be the set of quadratic non-residues modulo N .

Definition 3 (Quadratic Residuosity Problem). Let N = pq be a product of two distinct odd primes, and
let

Z∗N = {x ∈ ZN : gcd(x,N) = 1 }

denote the multiplicative group of invertible residues modulo N . An element x ∈ Z∗N is called a quadratic
residue modulo N if there exists some y ∈ Z∗N such that

x ≡ y2 (mod N).

Otherwise, x is called a quadratic nonresidue modulo N .
The Quadratic Residuosity Problem (QRP) is the following computational task: given an integer N = pq,

which is a product of two primes p, q, and an element x ∈ Z∗N such that the Jacobi symbol
(

x
N

)
= 1, decide

whether x is a quadratic residue modulo N .

We can now define the Quadratic Residuosity Assumption:

Assumption 1 (Quadratic Residuosity Assumption for Blum Integers5). For any poly-size algorithm A, its
advantage in solving the Quadratic Residuosity Problem is negligible in the security parameter λ. That is,
for random p ̸= q of λ bits each where p, q ≡ 3 mod 4, and random x ∈ Z∗N with

(
x
N

)
= 1,

Pr[A(N, x) = 1 if x is a residue, and 0 otherwise] ≤ 1

2
+ negl(λ).

Using the QR assumption, we can design a public-key encryption scheme as follows:

QR-Based Encryption Scheme GM := (GM.Gen,GM.Enc,GM.Dec)

• GM.Gen(1λ): Sample distinct λ-bit primes p, q ≡ 3 (mod 4) uniformly from the set

{a ∈ Primes ∩ [1, 2λ] : a ≡ 3 mod 4}.

Set N = pq, output public key pk = N and secret key sk = (p, q).
• GM.Enc(pk,m): On input pk = N and m ∈ {0, 1}, choose a uniformly random r ∈ Z∗

N , and output the
ciphertext c = (−1)m · r2. (Note that c ∈ J 1

N , regardless of the values of m and r.)

5One can also consider QRP for general primes (not just those which are equivalent to 3 modulo 4), but these two assumptions
are known to be equivalent.
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• GM.Dec(sk, c): On input secret key sk = (p, q) and ciphertext c, output 0 if c ∈ QRN , and output 1 if
c ∈ QNRN .

4.1 A computationally easy problem? (10 points)
Show that if the factors p, q are known, there is a polynomial-time algorithm that solves QRP.

Hint: Prove that for odd primes p, one can equivalently define (ap ) ≡ a(p−1)/2 mod p. When is a number
a quadratic residue modulo N = pq?

4.2 GM is additively homomorphic (5 points)
Show that GM is additively homomorphic. That is, given the public key pk and ciphertexts c = GM.Enc(pk,m)
and c′ = GM.Enc(pk,m′), show how to compute an encryption of m+m′ mod 2.

4.3 GM is re-randomizable (5 points)
Show that GM is re-randomizable. That is, provide a randomized algorithm GM.Rerand that takes as input
pk and c = GM.Enc(pk,m) and outputs a “fresh encryption” of m, in the following sense:

∀pk ∈ Supp(Gen(1n)), ∀m ∈ {0, 1}, ∀c ∈ Supp(Enc(pk,m))

GM.Rerand(pk, c) ≡ GM.Enc(pk,m) (1)

where ≡ denotes equality of probability distributions, and Supp denotes the set of all possible outputs.
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5 RSA and Håstad’s Broadcast Attack (Bonus: 15 points)
The key generation and encryption algorithms of the RSA scheme work as follows:

RSA Key Generation and Encryption

• Gen(1λ):

1. Choose two λ-bit distinct odd primes p and q, and compute the modulus N = pq, and Euler’s
totient function φ(N) = (p− 1)(q − 1).

2. Choose a public exponent e satisfying gcd(e, φ(N)) = 1. Compute the multiplicative inverse
d ≡ e−1 mod ϕ(N).

3. Output the public key and secret key as pk = (N, e), sk = d.

• Enc(pk,m): To encrypt a message m ∈ {0, 1}, sample random r ∈ Z∗
N . Using the public key (N, e),

compute the ciphertext
c = (re mod N, lsb(r)⊕m),

where lsb is the least significant bit of r.

• Dec(sk, c):

1. Parse c = (s, b) and sk = d.

2. Compute r′ ≡ sd mod N and output lsb(r)⊕ b.

5.1 RSA decryption (5 points)
Show that the RSA encryption scheme satisfies correctness.

5.2 Broadcast attack (10 points)
To make encryption efficient, sometimes the same small public exponent e is used (e.g. e = 3) across multiple
users. Now suppose a sender transmits encryptions with the same randomness r to k recipients whose public
keys are (N1, e), . . . , (Nk, e), where each Ni = piqi is pairwise coprime. For each recipient, the ciphertext is

ci = (re mod Ni, lsb(r)⊕mi) for i = 1, . . . , k.

Suppose e = 3. Given an attack that efficiently recover m given three messages (Ni, ci)
3
i=1.
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