
Foundations of Cryptography, Fall 2025
Problem Set 2

Due Friday, Oct 10

Total Number of Points: 100

Collaboration Policy: Collaboration is permitted and encouraged in small groups of at most three stu-
dents. You are free to collaborate in discussing answers, but you must write up solutions on your own, and
must specify in your submission the names of any collaborators. Do not copy any text from your collabora-
tors; the writeup must be entirely your work. Do not write down solutions on a board and copy it verbatim;
again, the writeup must be entirely your own words and your own work and should demonstrate clear un-
derstanding of the solution. Solutions should be typeset in LATEX. You may make use of published
material, provided that you clearly acknowledge all sources/tools used. Of course, scavenging for solutions
from prior years is forbidden.

On the Use of LLMs: You may use AI however you wish to deepen your understanding of the lecture
material. Upload the notes, talk to your AI about them, ask for more explanation or examples; it’s all fine.
You may not use LLMs in any way to work on your homework. You may not upload assignments, ask for
hints, ask how certain concepts from the lectures might be applied to specific homework problems, or upload
your assignments to check for correctness or clarity or anything else. You may not include any AI generated
content whatsoever in your homework submissions. If it becomes clear that you have used an AI tool when
working on your homework (either directly by making edits or to ask for hints/solutions), we may mark your
grade down to reflect that.

Problem 1: One-way Functions and Cryptography (15 points)
In this problem, we will investigate the kinds of assumptions that we need to construct certain cryptographic
primitives, focusing primarily on one-way functions.

1. (5 points) In this problem part, your goal is to show that some complexity-theoretic assumptions are
indeed necessary. Make sure you read the complexity theory handout before you begin this problem.

In particular, show that if NP ⊆ BPP, then one-way functions do not exist.

2. (10 points) In this problem part, your goal is to show that one-way functions are in some sense also a
minimal cryptographic primitive.

In particular, show that if (secret-key) CPA-secure encryption schemes exist, then one-
way functions also exist.

An alternative way to phrase this question is: assume that (Enc,Dec) is a perfectly correct and CPA-
secure encryption scheme, where a key k is sampled randomly at random, Enc(k,m) outputs a cipher-
text c, and Dec(k, c) outputs a message m. Using (Enc,Dec), construct a one-way function.

Hint: Of course, we do not currently know if the existence of the one-time-pad implies the existence
of one-way functions! As such, your OWF and reduction (from the security of your constructed OWF

1

https://mit6875.github.io/FA23HANDOUTS/complexity-updated.pdf

to the CPA-security of the encryption scheme) will need to ask for the encryptions of many messages
(which are always encrypted with the same key sampled once at the beginning of the CPA experiment).

Problem 2: The Leftover Hash Lemma (30 points)
In this problem, we will construct a proof of the Leftover Hash Lemma (first introduced in the seminal
work of Håstad, Impagliazzo, Levin, and Luby), which is a central result in randomness extraction and
cryptography.

1. (10 points) Recall that in lecture we saw a proof of the Goldreich-Levin theorem, which states that any
predictor for the GL hardcore predicate corresponding to a one-way function f gives rise to an inverter
for f . In this part, you will construct an information-theoretic version of Goldreich-Levin. Formally,
you should prove the following statement:

Theorem 1. For each n ∈ N, let Dn be some distribution over {0, 1}n × {0, 1}∗. Suppose there is a
(possibly inefficient) algorithm A such that

Pr
(x,y)←Dn,r←{0,1}n

[A(y, r) = x · r] > 1

2
+ ε

for some function ε := ε(n). Then there exists a (possibly inefficient) algorithm B such that

Pr
(x,y)←Dn

[B(y) = x] >
ε3

32n
.

Note that we have generalized to arbitrary distributions Dn.
Hint: Your proof should closely follow the reduction from class. In fact, (you do not have to prove this)
your reduction should have the property that TB ≤ poly(TA, 1/ε), where TA and TB are the runtimes
of A and B, respectively.

2. (5 points) Fix k, n ∈ N, ε ∈ [0, 1]. Let X be any distribution over {0, 1}n and let M← {0, 1}n×k be a
random matrix. Suppose there is a (possibly inefficient) algorithm A such that∣∣∣∣ Pr

x←X,M
[A(M,M ⋆ x) = 1]− Pr

M,u←{0,1}k
[A(M,u) = 1]

∣∣∣∣ > ε,

where M ⋆ x denotes the vector in {0, 1}k whose i’th entry is formed by taking the dot product of x
and the i’th column of M (denoted by mi) modulo 2.
Prove that there exists a (possibly inefficient) algorithm B and index i ∈ [k] such that∣∣∣∣ Pr

x←X,M
[B(M,x ·m1, . . . ,x ·mi) = 1]− Pr

x←X,M,b←{0,1}
[B(M,x ·m1, . . . ,x ·mi−1, b) = 1]

∣∣∣∣ > ε

k
.

Hint: Think about how to adapt the proof from class to the information-theoretic setting. Your
algorithm B should run in roughly the same amount of time as A.

3. (5 points) Now, suppose there is a (possibly inefficient) algorithm A and index i ∈ [k] such that∣∣∣∣ Pr
x←X,M

[A(M,x ·m1, . . . ,x ·mi) = 1]− Pr
x←X,M,b←{0,1}

[A(M,x ·m1, . . . ,x ·mi−1, b) = 1]

∣∣∣∣ > ε′.

Prove that there exists a (possibly inefficient) algorithm B such that

Pr
x←X,M

[B(M,x ·m1, . . . ,x ·mi−1) = x ·mi] >
1

2
+ ε′.

Hint: As with the previous parts, think about how to adapt the proof from class to the information-
theoretic setting. Your algorithm B should run in roughly the same amount of time as A.

2

4. (10 points) Recall that the min-entropy of a distribution P (as defined in the probability handout),
denoted by H∞(P), is defined by

H∞(P) := − log(max
p∈supp(P)

Pr[P = p]).

We now fix n ∈ N, ε ∈ [0, 1], and let X be a distribution over {0, 1}n. Let M← {0, 1}n×k be a random
matrix for k ≤ H∞(X)− 3 log 1/ε− 4 log n− 8, where H∞(X) is the min-entropy of X. Prove that for
all (even inefficient) algorithms A,∣∣∣∣ Pr

M,x←X
[A(M,M ⋆ x) = 1]− Pr

M,u←{0,1}k
[A(M,u) = 1]

∣∣∣∣ ≤ ε,

where Uk is the uniform distribution over {0, 1}k. That is, show that the joint distributions (M,M⋆X)
and (M, Uk) have statistical/trace distance at most ε.

Hint: How likely is it for a (possibly inefficient) algorithm to guess the value of a sample from X?

Problem 3: Identifying PRFs (20 points)

Let F = {Fλ}λ∈N be a PRF family with Fλ = {Fk : {0, 1}λ → {0, 1}λ}k∈{0,1}λ . Let F ′ = {F ′λ}λ∈N be a
family of functions with F ′λ = {F ′k : {0, 1}λ → {0, 1}λ}k∈Kλ

for some keyspace Kλ. For each of the following
constructions, determine if F ′ is necessarily a family of pseudorandom functions.

1. (5 points) F ′(k1,k2)
(x1||x2) = Fk1(x1)||Fk2(x2), where |x1| = |x2| or |x1| = |x2|+ 1 and Kλ = {0, 1}λ.

2. (10 points) F ′(k1,k2)
(x) = Fk1(Fk2(x)), where |k1| = |k2| and Kλ = {0, 1}2λ.

3. (5 points) F ′k(x) = Fk(x)⊕H(x||x), where H : {0, 1}∗ → {0, 1}∗ is some efficiently computable function
which maps inputs of length 2λ to outputs of length λ, and Kλ = {0, 1}λ.

Problem 4: Fun with PRFs (15 points)
In this problem, we will look at one variant of a PRF, which we call point-rejecting PRFs.

Definition 1. A point-rejecting PRF is a PRF family F = {Fλ}λ∈N with Fλ = {Fk : {0, 1}λ → {0, 1}λ}k∈{0,1}λ ,
along with two additional polynomial-time algorithms PointRejectKey and Eval such that

• PointRejectKey gets as input a key k and a point x∗, and outputs a point-rejecting key k{x∗}.

• Eval gets as input a point-rejecting key k{x∗} and an input x, and outputs a y ∈ {0, 1}λ.

In addition to F being a PRF family, the following two properties should also hold:

• Point-Rejecting Key Correctness: For all input lengths λ ∈ N, and for all keys k ∈ {0, 1}λ, input
points x∗ ∈ {0, 1}λ, and inputs x ∈ {0, 1}λ such that x ̸= x∗,

Eval(PointRejectKey(k, x∗), x) = Fk(x).

• Point-Rejecting Key Security: Any PPT algorithm A wins the following game between an adversary
A and a challenger C with at most 1

2 + negl(λ) probability:

– A gets as input 1λ, then picks x∗ ∈ {0, 1}λ and sends x∗ to the challenger C.

3

https://mit6875.github.io/FA23HANDOUTS/probability.pdf

– The challenger C selects a uniformly random key k ∈ {0, 1}λ for the point-rejecting PRF family
and computes the point-rejecting key k{x∗} = PointRejectKey(k, x∗). C then samples a random
bit b ∈ {0, 1} and random value y ∈ {0, 1}λ. If b = 0, C sends the pair (k{x∗}, Fk(x

∗)) to A,
otherwise it sends the pair (k{x∗}, y) to A.

– A examines the pair that was received from the challenger C, and then outputs a bit b′.

We say that A wins if b = b′ at the end of the game.

Prove that if PRGs exist, then so do point-rejecting PRFs.

To get started, try thinking about the GGM construction. How might one modify the keys to allow an
adversary to evaluate all possible inputs except for one? Keep in mind that the length of point-rejecting
keys can be different from the length of original PRF keys.

Problem 5: Candidate One-Way Functions (20 points)
Candidate one-way functions often rely on a variety of hard problems, from number-theoretic to lattice-
based or code-based assumptions. In this problem, we will see how to build a one-way function based on the
hardness of factoring assumption.

The hardness of factoring assumption is as follows:

Assumption 1. For every λ ∈ N, let Pλ be the set of all primes which are at most 2λ. For every poly-size
adversary A, there exists a negligible function µ such that for all λ ∈ N,

Pr
p,q←Pλ

[A(1λ, N := p ∗ q) ∈ {p, q}] ≤ µ(λ).

We will also use the following two facts about prime numbers (make sure to read the number theory
handout on the class website for more information):

Theorem 2 (Chebyshev, reference). For all x ≥ 2, π(x) ≥ x
2 log x , where π(x) is the number of primes less

than or equal to x.

Theorem 3 (Agrawal, Kayal, Saxena). There is a deterministic polynomial-time algorithm to test if a n-bit
number is prime.

1. (10 points) Our first goal is to build a weak one-way function:

Definition 2. A function f : {0, 1}∗ → {0, 1}∗ is weakly one-way if it satisfies the following two
conditions:

• Easy to compute: There exists a poly-time algorithm B such that for every x ∈ {0, 1}∗, B(x) =
f(x).

• Somewhat hard to invert: There exists a positive polynomial p(λ) such that for sufficiently
large λ ∈ N, the following holds: for any poly-size adversary A,

Pr
x←{0,1}λ

[x′ ← A(1λ, f(x)) : f(x) = f(x′)] ≤ 1− 1

p(λ)
.

In this case, we say that f is (1− 1
p(λ))-hard.

Assuming the hardness of factoring, prove that fmult(x, y) = x ∗ y if x, y ̸= 1 (and ⊥ otherwise), where
|x| = |y|,1 is a weak-one way function, and give a polynomial p such that fmult is (1− 1

p(λ))-hard.

1Here, we are using the standard mapping between n-bit strings and the range [1, 2n]. In other words, fmult takes as input
two n-bit strings, interprets them as integers between 1 and 2n, multiplies them (if neither is 1), and converts the resulting
2n-bit number into a 2n-bit string.

4

https://mit6875.github.io/HANDOUTS/numbertheory.pdf
https://mit6875.github.io/HANDOUTS/numbertheory.pdf
https://web.williams.edu/Mathematics/lg5/Chebyshev.pdf

Note: Technically, we have only defined fmult on even-length inputs. In this problem, you can as-
sume/consider only even-length inputs to fmult. It is not too hard (as we have seen in the previous
problem set) to extend this to a function which works on inputs of odd length (e.g. by ignoring the
first input bit).

2. (10 points) We will now amplify our weak one-way function into a standard one-way function. Con-
cretely, prove that if f : {0, 1}λ → {0, 1}ℓ(λ) is a weak one-way function with hardness 1 − ε where
ε = 1

poly(λ) , then fk : {0, 1}kλ → {0, 1}kℓ(λ) defined as

fk(x1, . . . , xk) = (f(x1), f(x2), . . . , f(xk))

is a one-way function when k = 2λ/ε = poly(λ). As in the first part, to extend fk to all inputs, one
can do a simple padding procedure (or drop the last bits of input until we have something whose length
is a multiple of k). Thus, in this part, you can work with only input lengths which are multiples of k.

5

