MIT 6.5620/6.875/18.425: Cryptography and Cryptanalysis Due: Nov. 20, 2023

Problem Set 5

Total Number of Points: 100.

Collaboration Policy: Collaboration is allowed and encouraged in small groups of at most three
students. You are free to collaborate in discussing answers, but you must write up solutions on your
own and must specify in your submission the names of any collaborators. Do not copy any text
from your collaborators; the writeup must be entirely your work. Do not write down solutions on
a board and copy them verbatim into KTEX; again, the writeup must be entirely your own words
and your own work and should demonstrate a clear understanding of the solution. Additionally, you
may make use of published material, provided that you acknowledge all sources used. Of course,
scavenging for solutions from prior years is forbidden.

Problem 1. Better NIZK Proofs? (40 points)

One of you made a nice suggestion in class, to use pseudorandom generators to shrink the CRS in
NIZK proofs. Let us see if that works! But first let’s set up some notation. Let A denote the security
parameter for this problem. An NIZK proof system for an NP language L is defined by a pair of
algorithms (P, V) where:

e P is the efficient prover algorithm that is given a uniformly random string crs < {0, 1}, an
NP statement € LN{0,1}" and its NP witness w € {0,1}™, and produces an NIZK proof 7.
That is,

< Plcrs, x, w)

e V is the efficient verifier algorithm that is given the crs, x and the NIZK proof w, outputs
“accept” or “reject”. That is,
V(ers,z,m) € {ACC,REJ}

Such a proof system should satisfy three properties: completeness, soundness and zero knowledge.
We restrict ourselves to NIZK proof systems with perfect completeness.

In the Blum-Feldman-Micali NIZK proof system we saw in class, the CRS had length ¢ = n - p(}\)
for some polynomial p. (Convince yourself that this is the case.) One could try to convert any
such NIZK proof system into another one, call it (P’,)’), where the CRS is smaller, i.e., has size
¢ = p'(\) for some polynomial p’ independent of the instance size n, in the following way. Let
G :{0,1}* — {0,1}* be a pseudorandom generator.

e P'(0,z,w) computes crs’ = G(o) and runs P(crs’, z, w).
e V'(0,z,m) computes crs’ = G(o) and runs V(crs', z, 7).
For parts (a) and (b), you can assume only that NIZK proof systems exist and PRGs exist. For part
(c), you are free to make any of the number theoretic assumptions made in class.
(a) (4 points) Does (P’, V') always satisfy completeness? Prove your answer.

(b) (18 points) Does (P’,V’) always satisfy soundness? Prove your answer.

(c) (18 points) Does (P’,V’) always satisfy computational zero knowledge? Prove your
answer. Note that this problem is supposed to be solved for efficient prover protocols.
Partial credit will be awarded for solutions with an inefficient prover protocol.



We will assume SAT is not in BPP, and in all cases, to show a “yes” answer, you have to show that
for every NIZK proof system (P,V), the compiled proof system (P’,V’) is complete/sound/zero-
knowledge. To show a “no” answer, you have to show that there exists some NIZK proof system
(P,V) such that the compiled proof system (P’,V’) is not complete/sound/zero-knowledge.

Problem 2. Secret Sharing, Generalized (30 points)

In class, we saw the notion of threshold secret sharing. Given n users (numbered 1 through n),
define the (t,n)-threshold access structure to be the collection of sets

Athreshold = {S C [n] : |S| > t}

The property of a secret sharing scheme, then, is that when a set T' C [n] of users come together,
they can reconstruct the secret from their shares if and only if T' € Atpreshold-

In this problem, we will generalize secret sharing to other access structures. In general, an access
structure A is a monotone collection of subsets of [n]. Here, monotonicity refers to the condition
that if A contains a set T', it also contains all supersets of T. (Do you see why this has to be the
case?)

e We will associate to a subset T C [n] its characteristic vector zy € {0,1}". For example,
letting n = 4 and T = {1, 3}, we have zp = (1010).

e We will associate to an access structure A a (monotone) Boolean function f4 : {0,1}" — {0,1}
where
T e Aif and only if fa(zr)=1.

For example, in the case of the threshold access structure, f4 is simply the threshold function
which outputs 1 if and only if the input has at least ¢ ones.

(a) (15 points) Let n = 3™ be the number of parties, and let the hierarchical access structure
be defined by the majority-of-majorities function (see Figure 1 for an example with m = 2
and n = 9). Construct a secret sharing scheme for the hierarchical access structure on
n = 3" users for arbitrary depth m. The shares in your scheme should have bit-length
polynomial in n.

(b) (15 points) Let the conjunctive normal form (CNF) access structure be defined by a
monotone CNF formula ¥ with n variables and m clauses (monotone in the sense that
the formula has no negations). Construct a secret sharing scheme for the CNF access
structure. The shares in your scheme should have bit-length polynomial in n and m.

Problem 3. Oblivious Transfer Pro Max (30 points)

Recall that in class, we learned about 1-out-of-2 Oblivious Transfer (OT). In an OT protocol, a sender
has two message bits mg,m; € {0,1}, and a receiver has a choice bit b € {0,1}. The sender wants
to send my to the receiver while satisfying correctness (the receiver obtains my), sender’s privacy
(the receiver gains no knowledge about the message m_;), and receiver’s privacy (the sender gains
no knowledge about the choice bit b).

In this problem, we focus on achieving security against honest-but-curious senders and receivers.

(a) (10 points) Show how you can use any 1-bit OT scheme to build an ¢-bit OT scheme for
transferring ¢-bit messages mg, m1 € {0,1}¢. Here £ = £()) is a (possibly large) polyno-
mial in security parameter A. Your scheme can only invoke the given 1-bit OT scheme
at most A < ¢ times. You can assume the existence of a pseudorandom generator.



Figure 1: The function f representing a hierarchical access structure on 9 users. A set of users
corresponds to a Boolean labeling of the leaves. For example, the labeling of the leaves above
corresponds to the set of users T' = {1,2,3,4,8}. An internal node is labeled 1 if and only if the
majority of its children are labeled 1. A given set is in the access structure if and only if the root is
labeled 1. (In this case, since the root has label 0, T is not in the access structure.)

(b) (20 points) A 1-out-of-n secret sharing scheme is one where the sender has n messages
mo, ..., My_1 € {0,1}¢ and the receiver wants the i*" message m;.
You are given a l-out-of-2 OT scheme with ¢-bit messages. Show how to construct a
l-out-of-n OT scheme for any integer n > 2. You can assume the existence of a PRF
family. For full credit, your scheme must invoke the l-out-of-2 OT scheme at most
O(logn) many times.



