
MIT 6.5620/6.875/18.425: Cryptography and Cryptanalysis Due: Nov. 8, 2023

Problem Set 4

Total Number of Points: 40.

Collaboration Policy: Collaboration is allowed and encouraged in small groups of at most three
students. You are free to collaborate in discussing answers, but you must write up solutions on your
own and must specify in your submission the names of any collaborators. Do not copy any text
from your collaborators; the writeup must be entirely your work. Do not write down solutions on
a board and copy them verbatim into LATEX; again, the writeup must be entirely your own words
and your own work and should demonstrate a clear understanding of the solution. Additionally, you
may make use of published material, provided that you acknowledge all sources used. Of course,
scavenging for solutions from prior years is forbidden.

Problem 1. Hash It Out. (14 points)

In this problem, we will explore four different definitions of hash functions. We say that a family
of functions H = {Hk : {0, 1}2n → {0, 1}n}k∈{0,1}m is a X hash function, for X ∈ {“universal”,
“weak collision resistant”, “universal one-way”1, “collision resistant”}, if it has the following proper-
ties:

• Efficiency: Given k ∈ {0, 1}m (where m = poly(n)) and x ∈ {0, 1}2n, Hk(x) ∈ {0, 1}n can be
computed in poly(n) time.

• Security:
– If X = “universal”: There exists a negligible function negl such that for all x1 ̸= x2 ∈
{0, 1}2n,

Pr [k ← {0, 1}m : Hk(x1) = Hk(x2) ∧ x1 ̸= x2] ≤ negl(n).

– If X = “weak collision resistant”: For all PPT adversaries A, there exists a negligible
function negl such that the following holds:

Pr
[
(k, x1)← {0, 1}m × {0, 1}2n;A(k, x1)→ x2 : Hk(x1) = Hk(x2) ∧ x1 ̸= x2

]
≤ negl(n).

– If X = “universal one-way”: For all x1 ∈ {0, 1}2n and for all PPT adversaries A, there
exists a negligible function negl such that the following holds:

Pr [k ← {0, 1}m;A(k, x1)→ x2 : Hk(x1) = Hk(x2) ∧ x1 ̸= x2] ≤ negl(n).

– If X = “collision resistant”: For all PPT adversaries A, there exists a negligible function
negl such that the following holds:

Pr [k ← {0, 1}m;A(k)→ (x1, x2) : Hk(x1) = Hk(x2) ∧ x1 ̸= x2] ≤ negl(n).

(a) (2 points) Construct a family of universal hash functions without using any assumptions.
Hint: Consider a random matrix A← {0, 1}n×2n.

(b) (3 points) Show how to build a universal one-way hash function family from any weak
collision resistant hash function family.

(c) (4 points) Show that there exists a hash family that is universal one-way but not collision
resistant. (You may assume the existence of universal one-way hash functions.)

1also called “targeted collision resistant”
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(d) (2 points) Show that for all of these definitions, for all k ∈ {0, 1}m,

Pr
x←{0,1}2n

[∣∣H−1k (Hk(x))
∣∣ ≤ 1

]
≤ 1

2n
.

(e) (3 points) Suppose H is a weak collision resistant hash function family. Show that
the function F : {0, 1}m+2n → {0, 1}m+n given by F (k, x) = (k,Hk(x)) is a one-way
function.

It turns out that the existence of one-way functions also implies the existence of weak collision
resistant hash functions and universal one-way hash functions, even though it is an open question
for collision resistant hash functions! You may assume these facts throughout the problem set.

Problem 2. Upgrading Lamport Signatures. (8 points)

Recall Lamport’s signature scheme from class, based on a OWF f : {0, 1}n → {0, 1}ℓ, that produces
an n2-bit signature for an n-bit message:

Gen(1n)

1 : x1,0, . . . , xn,0 ← {0, 1}n

2 : x1,1, . . . , xn,1 ← {0, 1}n

3 : sk := (x1,0, . . . , xn,0, x1,1, . . . , xn,1)

4 : vk := (y1,0, . . . , yn,0, y1,1, . . . , yn,1), where yi,c = f(xi,c)

5 : return (sk, vk)

Sign(sk,m ∈ {0, 1}n)
1 : parse sk = (x1,0, . . . , xn,0, x1,1, . . . , xn,1)

2 : return σ := (x1,m1 , . . . , xn,mn)

Ver(vk,m ∈ {0, 1}n, σ)
1 : parse σ := (σ1, . . . , σn)

2 : if ∀i ∈ [n], f(σi)
?
= yi,mi : return 1

3 : else : return 0

In this problem, we will look at a stronger definition of one-time unforgeability known as one-time
strong unforgeability which states that not only is the adversary unable to produce a signature on
a different message, but also that she is unable to produce a different signature σ∗ on the same
message it requested a signature on.

Definition 1 (One-time strong unforgeability)
Let (Gen,Sign,Ver) be a digital signature scheme with message spaceM and key space K with security
parameter n. This scheme is one-time strongly unforgeable if for all pair of PPT algorithms (A1,A2),
there exists a negligible function negl such that for all n,

Pr


(sk, vk)← Gen(1n);
(m, state)← A1(vk);
σ ← Sign(sk,m);
(m∗, σ∗)← A2(σ, state)

:
(m∗, σ∗) ̸= (m,σ) ∧
Ver(vk,m∗, σ∗) = 1

 ≤ negl(n).

(a) (3 points) Show an attack on the one-time strong unforgeability of Lamport’s scheme.
That is, assuming the existence of length-preserving one-way functions, construct a one-
way function f such that the Lamport signature scheme using f is not one-time strongly
unforgeable.
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(b) (2 points) Prove that if f is an injective one-way function, then Lamport’s scheme is
one-time strongly unforgeable.

(c) (3 points) Show that if one-way functions exist, then there exists a one-way function such
that Lamport’s scheme is one-time strongly unforgeable. Note that building injective
one-way functions from arbitrary one-way functions is an open question. (You may use
statements from class or earlier in this problem set.)

Problem 3. Lossy Encryption. (10 points)
In this problem, we will explore an alternate notion of security for public key encryption schemes
called lossy encryption. This definition of security is more powerful than IND-CPA security, and
allows us to construct other primitives like oblivious transfer and encryption schemes secure against
chosen ciphertext attacks.
Lossy encryption schemes have two modes of operation: real and lossy. In real mode, a lossy
encryption scheme behaves like a public key encryption scheme. In lossy mode, the ciphertexts
produced by the encryption algorithm contain no information about the message that was encrypted.
Formally, a lossy encryption scheme (Gen,Enc,Dec) has the following syntax:

• Gen(1n,mode): The Gen algorithm takes the security parameter as input (as usual). It also
takes as input a mode which can be either real or lossy. In the real mode, it outputs a pair of
keys (pk, sk). In the lossy mode, it outputs a lossy public key p̃k.

• Enc(pk, b): The Enc algorithm takes a public key (either a real or a lossy public key) and a bit
b and outputs a ciphertext ct.

• Dec(sk, ct): The Dec algorithm takes as input a secret key (has to be real) and outputs a
decrypted bit b.

Furthermore, it has the following properties:

• Correctness: The encryption scheme is correct in the real mode. That is, for every bit b,

Pr[(pk, sk)← Gen(1n, real) : b = Dec(sk,Enc(pk, b))] = 1

where the probability is over the randomness of Gen, Enc and Dec algorithms.
• Key Indistinguishability: Real public keys are indistinguishable from lossy public keys.
That is, for any n ∈ N,

{pk : (pk, sk)← Gen(1n, real)} ≈c {p̃k : p̃k ← Gen(1n, lossy)},

where ≈c means that the two distributions on the left- and the right-hand sides (the distribution
of pk and the distribution of p̃k, in this case) are computationally indistinguishable.

• Lossy encryption: Encryption using the lossy key completely loses information about the
message encrypted. That is, output distributions of encryptions of 0 and 1, under lossy keys,
are statistically indistinguishable. Formally, for every n ∈ N, and every p̃k in the support of
Gen(1n, lossy),

Enc
(
p̃k, 0

)
≈s Enc

(
p̃k, 1

)
where the randomness is the coins of the Enc algorithm, and ≈s means that the two distributions
on the left- and right-hand sides are negligibly close (in n) in statistical distance.

(a) (2 points) Show that every lossy encryption scheme also satisfies(
p̃k,Enc

(
p̃k, 0

))
≈s

(
p̃k,Enc

(
p̃k, 1

))
,

where p̃k ← Gen(1n, lossy), i.e., where p̃k is generated randomly according to Gen(1n, lossy).
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(b) (4 points) Show that every lossy encryption scheme is also IND-CPA secure (operating
in the real mode).

(c) (4 points) Define a lossy key generation algorithm for the Goldwasser-Micali encryption
scheme. Prove the three properties above (correctness, key indistinguishability and lossy
encryption) for the Goldwasser-Micali scheme with your lossy key generation algorithm,
assuming the Quadratic Residuosity assumption.

Problem 4. Zero Knowledge Proof for Knight’s Move Sudoku (8 points)

Knight’s Move Sudoku is a variant on the popular logic puzzle Sudoku. For a Knight’s Move
Sudoku puzzle for positive integer n, you are given as input an n2 × n2 grid of cells, where the cells
are partitioned into n2 disjoint n×n subgrids. Some of the cells begin filled with integers from 1 to
n2.

A solution is a way to assign an integer from 1 to n2 to each cell which hasn’t already been filled in
a way that:

1. Each row contains each of the integers from 1 to n2 exactly once.

2. Each column contains each of the integers from 1 to n2 exactly once.

3. Each of the n2 different n×n subgrids contains each of the integers from 1 to n2 exactly once.

4. For all cells that are a “knight’s move” away from each other, the entries are distinct. Two cells
(i1, j1) ∈ [n2] × [n2], (i2, j2) ∈ [n2] × [n2] are a “knight’s move” away if either (a) |i1 − i2| = 1
and |j1 − j2| = 2 or (b) |i1 − i2| = 2 and |j1 − j2| = 1.

Figure 1: An example demonstrating what a “knight’s move” is, for n = 3, from https:
//masteringsudoku.com/chess-sudoku/.

Design a zero-knowledge protocol for Knight’s Move Sudoku. Your protocol should be computation-
ally zero knowledge, have perfect completeness, and have soundness error 1−p(n) for a non-negligible
function p. You must prove that your construction satisfies all of the above properties. You may
assume the existence of one-way functions.
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