
MIT 6.5620/6.875/18.425: Cryptography and Cryptanalysis Due: Sept. 20, 2023

Problem Set 1

Total Number of Points: 40.

Collaboration Policy: Collaboration is permitted and encouraged in small groups of at most
three students. You are free to collaborate in discussing answers, but you must write up solutions
on your own, and must specify in your submission the names of any collaborators. Do not copy any
text from your collaborators; the writeup must be entirely your work. Do not write down solutions
on a board and copy it verbatim into LATEX; again, the writeup must be entirely your own words
and your own work and should demonstrate clear understanding of the solution. Additionally, you
may make use of published material, provided that you acknowledge all sources used. Of course,
scavenging for solutions from prior years is forbidden.

Problem 1. Negligible or not? For each of the following functions below, either prove or
disprove that it is negligible.

(a) (2 points) µ(n) := 1/2100 logn. (Note: Here, and throughout the course, all logarithms
are in base 2 unless otherwise specified.)

(b) (2 points) µ(n) := 1/(log n)logn.

(c) (2 points) µ(n) := µ′(n) · p(n), for some negligible function µ′(n) and some polynomial
function p(n). Is such a µ(n) always negligible?

Problem 2. PRG or not? Let G : {0, 1}2n → {0, 1}2n+1 be a pseudorandom generator (PRG).
For each part below, either prove or disprove that G′ : {0, 1}2n → {0, 1}2n+1 is necessarily a PRG
no matter which PRG G is used.

(a) (3 points) G′(x) := G(π(x)) for, where π : {0, 1}2n → {0, 1}2n is any poly(n)-time com-
putable bijective function. (You may not assume that π−1 is poly(n)-time computable.)

(b) (3 points) G′(x||y) := G(x||x ⊕ y), where |x| = |y| = n. (Note: Here, and throughout
the course, x||y refers to the concatenation of two strings x and y.)

(c) (3 points) G′(x||y) := G(x||0n) ⊕ G(0n||y), where |x| = |y| = n. (Note: Here, and
throughout the course, 0n and 1n denote the string of 0s and 1s, respectively, of length
n.)

(d) (3 points) G′(x||y) := G(x||y)⊕ (x||0n+1), where |x| = |y| = n.

Problem 3. Mixing PRGs.

(a) (5 points) The cryptography community is debating between two different PRG candi-
dates, G1 and G2. Everyone agrees that at least one of them is secure, but they disagree
on which it is. Can you make everyone happy by constructing a PRG out of G1 and G2

that is guaranteed to be secure assuming only that at least one of G1 or G2 is a PRG?
Explicitly, you may assume that the candidates G1 and G2 are polynomial-time com-
putable functions expanding by one bit, and your goal is to come up with a PRG from
G1 and G2 that has any non-trivial stretch (even one bit is fine).

1

(b) (5 points) More chaos in the cryptography community ensues, and hundreds of other
candidates are proposed. The only thing that everyone can agree on is that there exists
a one-bit expanding PRG G, computable by a C-sized Turing machine for some constant
C = O(1). Moreover, you may assume that this PRG is computable in time n2 for inputs
of length n. Just having the knowledge of the existence of such a PRG, can you come
up with a PRG construction that is computable in poly(n) time? Any non-trivial stretch
is fine. For simplicity, you may assume knowledge of C. (Note: By a C-sized Turing
machine, we mean that the full description of the Turing machine can be written in C
bits. There is a universal Turing machine that can take (a) this description of the Turing
machine, and (b) an input to this Turing machine, and simulate running the Turing
machine for a fixed poly(n) steps on the input to compute the output, with only a fixed
poly(n) multiplicative overhead in simulation time, where n is the size of the input. If
all this talk of Turing machines is confusing, you can substitute “Turing machine” with
“Python program” everywhere above. The point is that the description of the program
can be written in C = O(1) bits.)

Problem 4. Hiding Promises. We define a cryptographic protocol called a promise hiding
scheme between two parties, Alice and Bob. Alice wants to promise something to Bob (for now,
let’s say one bit σ ∈ {0, 1}), but Alice wants this promise to be hidden from Bob until Alice decides
the time is right to reveal σ.

(a) (3 points) Suppose Alice samples r ← {0, 1} and sends the message A(σ; r) := σ ⊕ r to
Bob to promise σ ∈ {0, 1}. Later, when Alice decides the time is right, to reveal σ, Alice
sends (σ, r) to Bob, and Bob can compute A(σ; r) to verify that it is consistent with the
message he received from Alice. We would like two properties to hold:

• (Statistically) Hiding: The distributions A(0; r) and A(1; r) are identical for
random r.

• (Statistically) Promising: There does not exist r0, r1 ∈ {0, 1} such that A(0; r0) =
A(1; r1).

Prove or disprove that this scheme is hiding, and prove or disprove that this scheme is
promising.

(b) (3 points) Let G be any length-tripling PRG. Suppose Alice samples r ← {0, 1}n and
sends the message

A(σ; r) =

{
G(r) if σ = 0,
G(r)⊕ 13n if σ = 1.

We would like similar properties to hold:

• (Computationally) Hiding: The distributions A(0; r) and A(1; r) are computa-
tionally indistinguishable for random r.

• (Statistically) Promising: There does not exist r0, r1 ∈ {0, 1}n such that A(0; r0) =
A(1; r1).

Prove or disprove that this scheme is hiding, and prove or disprove that this scheme is
necessarily promising.

(c) (2 points) Let G be any length-tripling function. Show that

Pr
b←{0,1}3n

[∃r0, r1 ∈ {0, 1}n : b = G(r0)⊕G(r1)] ≤
1

2n
.

(d) (4 points) Let’s change things up a bit. Now, suppose that Bob is allowed to send a
uniformly random string b ← {0, 1}3n before Alice sends her message. Then, Alice’s

2

message can be described as a function A(b, σ; r), so that it can depend on b as well.
Construct a promise hiding scheme for Alice and Bob, and prove that it satisfies the two
properties below:

• (Computationally) Hiding: For all b ∈ {0, 1}3n, the distributions A(b, 0; r) and
A(b, 1; r) are computationally indistinguishable for random r.

• (Statistically) Promising:

Pr
b←{0,1}3n

[∃r0, r1 ∈ {0, 1}n : A(b, 0; r0) = A(b, 1; r1)] ≤ negl(n).

You may assume the existence of length-tripling PRGs.

(e) Optional (no extra credit): You may be concerned that Bob could be so powerful that
Bob isn’t even computationally bounded. That is, you may ideally want the distributions
A(b, 0; r) and A(b, 1; r) to be statistically indistinguishable, i.e., indistinguishable even to
computationally unbounded adversaries. Show that such a promise hiding scheme (that
is still statistically promising) is impossible.

(f) Optional (no extra credit): Requiring Bob to send b is a little cumbersome as it requires
Alice and Bob to interact. Can Alice and Bob instead agree on some way to choose b
deterministically resulting in a one-message promise hiding scheme?

3

