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1 I n t r o d u c t i o n  

Much research in theoretical cryptography has been cen- 
tered around finding the weakest possible cryptographic 
assumptions required to implement major primitives. 
Ever since Diffie and Hellman first suggested that mod- 
ern cryptography be based on one-way functions (which 
are easy to compute, but hard to invert) and trapdoor 
functions (one-way functions which are, however, easy 
to invert given an associated secret), researchers have 
been busy trying to construct schemes that  only require 
one of these general assumptions. For example, pseudo- 
random generators at first could only be constructed 
from a specific hard problem, such as discrete log IBM2]. 
Later it was shown how to construct pseudo-random 
generators given any one-way permutation [Y], and from 
other weak forms of one-way functions [Le, GKL]. Fi- 
nally JILL] proved that the existence of any one-way 
function was a necessary and sufficient condition for the 
existence of pseudo-random generators. Similarly, the 
existence of t rapdoor permutations can be shown to be 
necessary and sufficient for secure encryption schemes. 

However, progress on characterizing the requirements 
for secure digital signatures has been slower in coming. 
We will be interested in signature schemes which are 
secure agMnst existential forgery under adaptive cho- 
sen message attacks. This notion of security, as well as 
the first construction of digital signatures secure in this 
sense was provided by [GMR]. Their scheme was based 
on factoring, or more generally, the existence of claw- 
free pairs. More recently, signatures based on any trap- 
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door permutation [BM1] and any one-way permutation 
[NY] have been constructed. In this paper, we present a 
method for constructing secure digital signatures given 
any one-way function. This is the best possible result, 
since a one-way function can be constructed from any 
secure signature scheme. 

Our method follows [NY] in basing signatures on one- 
way hash functions: functions which compress their in- 
put, but have the property that even given one preim- 
age, it is hard to find a different one. This in itself 
provides a weak form of signature; they show how to 
build secure signatures from this primitive. To com- 
plete their construction, they provide a simple method 
for constructing a one-way hash function from any one- 
way permutation. 

However, arbitrary one-way functions must be man- 
aged much more carefully. The bulk of this paper is con- 
cerned with building a one-way hash function given any 
one-way function. First we show how to build a func- 
tion which has the property that given one preimage, 
although most other preimages may be trivial to find, a 
small fraction must be hard. Then we show how to am- 
plify this into a full one-way hash function. Our proof 
makes heavy usage of universal hash functions [CW]. 

2 P r e l i m i n a r i e s  

2 .1  S i g n a t u r e  S c h e m e s  

A signature scheme has the following components: 

• A security parameter k, determining the security, 
running time, and lengths of messages. 

• A message space, which we will assume to be strings 
in E L, where E = {0,1}. 

• A polynomial SB called the signature bound 
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• A probabilistic poly-time key generation algorithm 
KG, which on input 1 k, outputs a public key PK, 
and a matching secret key SK. 

• A probabilistic poly-time signing algorithm SP, 
which given a message m and a matching pair of 
keys <P K, S K>,  outputs  a signature of m with re- 
spect to PK. 

* A poly-time verification algorithm V, which given 
S, m, and PK, tests whether or not S is a valid 
signature of m with respect to PK. 

The notion of security we are interested in is security 
against existential forgery under adaptive chosen mes- 
sage attack. This means we will allow our adversary, 
the forger, to adaptively choose messages, and be sup- 
plied with signatures. We will consider him successful 
if, on his own, he is able to produce a valid signature for 
any message that  we did not sign for him. We will be 
interested in signature schemes for which no polynomial- 
sized forger has a 1/p(k)  chance of producing a forged 
message, for any polynomial p and for sufficiently large 
k. This is the strongest natural notion of security. 

L e m m a  1 The existence of a secure signature scheme 
implies the existence of a one-way function. 

P r o o f :  Let f (1  k, x) run the KG algorithm on input 1 k 
and using random tape x, and output  PK. Then f is 
a one-way function. Why? Assume we could invert f .  
Then given the public key PK, we would be able to ob- 
tain a secret key SW with the property that  SK' could 
generate signatures valid for PK. But this implies that  
the signature scheme is insecure, which is a contradic- 
tion. D 

The [BM1] and [NY] signature schemes both use the 
notion of a window, due to Lamport  [La]. In this limited 
signature scheme, the public file contains some one-way 

0 1 0 1 To sign a bit function f and some a x , a l , . . . , a m , a m .  
bi, the signer reveals f - l ( a ~ ' ) .  The limitation is that 
only m bits can be signed. The scheme used by [BM1] is 
to have f be a trapdoor permutation,  and at each stage 
sign a message and a new f .  In this way, the same a 's  
could be used over and over. The [NY] scheme modifies 
this slightly by, at each stage, signing the hash value of a 
new set of a 's.  They define a uniform family of one-way 
hash functions to to be such that  no poly-time circuit 
exists which, first outputs an x, then, for a randomly 
selected function f from the family, can output  a sibling 
of x - - a n  x' ~ x such that  f ( x ' )  = f ( x ) .  Using this type 
of hash function, they are assured that  signing the hash 
value of the a 's  is sufficient for security. 

Their  construction of a one-way hash function is as 
follows: Given f : ~ - - - * ~ "  a one-way permutation,  pick 

a random h : E ~ ~ E n - 1  from a 2-universal family of 
hash functions. Their one-way hash function is h o f .  

2.2 Universal  Hash Funct ions  

A k-universal family of hash functions [CW] from m-bit 
strings t o / -b i t  strings is a collection {hi} of poly-time 
computable functions from ~'~ to E l such that  

1. Pr[h i (x l )  = Yl A . . .  A hi(x~) = y~] = 2 -kt for any 
X l , . . . , x k  E E,n and Yl , . . . ,Yk E E s, and 

2. Given j < k and any x l , . . . , x  I E E m and 
Yl , . . . ,Yj  E Et, it is possible in probabilistic 
polynomial-time to uniformly sample from the hi 
such that  hi(x1) = Yl A . . . A  h i (x j )  = yj .  

Note that  the first condition is equivalent to saying that 
the random variables {hi (x) lx  E ~m}  are uniform and 
k-wise independent. In light of this equivalence, the fol- 
lowing lemma will prove useful in calculations involving 
hash functions: 

L e m m a  2 Let random variables X1, . . . ,  X N  be 2k-wise 
independent and have Pr[Xi = 1] = p and Pr[Xi = 0] = 
1 - p. Furthermore, let X - ~N=I X, .  I f  k = o(pN),  
then 

Pr [ lX  - p i [  > a] < O ( ( ~ ) k ) .  
a "  

P r o o f  Ske tch :  Let Z = ( X  - p N )  2k. Then, 

Pr[IX-pN I > a ]  = Pr[Z>a ~] 
< E[Z]/a  2k. 

Note that ,  since Z is a degree 2k polynomial in the 
Xi's, E[Z] has the same value in any distribution with 
at least 2k-wise independence. In particular, assuming 
full independence of the Xi ' s  and using that  k = o(pN), 
we can compute a bound of (2kpN)  k on E[Z]. The 
lemma follows from plugging in this bound for E[Z]. {3 

Finally, we give the standard construction of a k- 
universal family of hash functions from m-bit strings to 
m-bit strings. Let F = GF(2m). For a 0 , . . . , a k - 1  E F,  
we let 

hao ..... ak_,(x) = ao + a lx  + . . .  + ak_ l x  k-1 

The fact that this is a k-universal hash function follows 
from a simple interpolation argument. Finally note that 
the case m < I can be handled by padding out the 
argument to the hash function; the case m > l can be 
handled by stripping bits from the result of the hash 
function. 
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2 . 3  N o t a t i o n  

Function f : E k -~ Era is one-way in the non-uniform 
(uniform) model if f is poly-time computable,  but there 
is not poly-sized family of circuits A (probabilistic poly- 
time algorithm A) such that  

Pr[ f (A ( f ( x ) ,  lk)) = / ( x ) ]  > k -~ 

for infinitely many  k, where the probabil i ty is as x is 
chosen uniformly from E k. In this paper, we will use the 

non-uniform model of security unless stated otherwise. 

For a function f ,  we define the following: 

The siblings of x under f ,  S I ( x  ) = {x' : f ( x ' )  = f (x)} .  
Di(f) = i x :  2 i _< [S. t (z) [  < 2i+1}. 
R (f) = -- { v :  2 < If- (v)l < 

We will denote the concatenation of strings x and y 
by x • y. We will denote the composition of functions f 
~nd g by f o g, i.e. ( f  o g)(x)  = f (g(x) ) .  

3 C o n s t r u c t i n g  a O n e - w a y  H a s h  

F u n c t i o n  

.3.1 O v e r v i e w  

[n this section we will show how to, given any one- 
¢¢ay function, create a family of one-way hash functions. 
t h i s  will imply tha t  we can construct, given any one- 
'~ay function, a signature scheme secure against exis- 
~;ential forgery under adaptive chosen message attacks. 

Start ing with our original one-way function f ,  we con- 
,~truct a series of functions, each one closer to our goal of 
~ one-way hash function. In Section 3.2, we construct 
7~ function f l  with the proper ty  that ,  although most 
:-;ihlings under f l  may be easy to find, a non-negligible 
fraction are provably hard to find. Next, in Section 3.3, 
,re construct a function f2 such that  most siblings under 
f2 are provably hard to find. Then,  in Section 3.4, we 
construct a function f3 with the proper ty  that  almost 
all the time, it is hard to find any sibling. This func- 
~.ion is length-increasing, so in Section 3.5 we construct 
from it a function f4 which is sibling-hard and length- 
decreasing. Finally, in Section 3.6, we give a family of 
,me-way hash functions. 

3 . 2  M a k i n g  S o m e  S i b l i n g s  H a r d  

'Fhe big cryptographic property of a one-way hash func- 
lion is that  it is hard to find a sibling of any domain 
(dement. Naor and Yung star t  with a one-way permu- 
l ation, which trivially has this property, and thus only 
had to show how to make the function compress as well. 

We are not so fortunate. Consider, for example, the 
function f ( <  x, y >)  = <  g(x),  1 k >,  where x and y are 
k-bit strings, and g is some one-way permutat ion.  It  it 
easy to show that  f is one-way, but that  each element 
of the domain has an exponential number of siblings, 
all of which are trivial to find. Nevertheless, in this 
section, we will show how to take any one-way function 
and convert it into one for which we can prove that  at 
least some (a non-negligible fraction) of the siblings are 
hard to find. 

We begin by putt ing our one-way function into a nor- 
mal form. Assume we are given a function f : E m --~ E ra 
which is one way. Let l (m) = [log m] and k(m)  = 2 z(ra). 
Let n = m + 4 k ( m ) + l ( m ) + 2 .  We construct the function 
/to : E n --~ En such that  for x E Era, y E E 4k(ra), and 
i E Z '°g4k(m), fo(x " v ' i )  = f ( x ) .  (vA (1 i" 04k(m)-i) "i, 
where the A is bitwise AND. The reason for constructing 
f0 is that  its preimage structure is largely known. 

L e m m a  3 Im (fo)l, a function of j ,  is increasing 
in the range 0 to m, flat and equal to 2n /4k(m)  in the 
range m to 4k(m),  and decreasing in the range 4k(m) 
to m + 4k(m).  

P r o o f i  

4k(ra)-I 

IDj(.fo)l = 
i=0 

min(ra,j) 
= 24k(m) E 

i=max(O,j -4k(rn)+l) 
Di( f ) .  

From this form, one can easily observe the monotone 
nature of IDj(fo)l for small and large j .  For m < j < 
4k(m),  we note that  

IDj(fo)l  = 24k( r a ) £ l D i ( f ) l  
i=O 

_w. 24k (  ra )+ m 

= 2n/4k(m).U 

Now we can construct a function f l  such that  a non- 
negligible fraction of the siblings are hard to find. Let 
hi be randomly chosen from an n-universal family of 
hash functions mapping ( n / 2 + l o g  n)-bit  strings to n-bit 
strings. Let h2 be randomly chosen from an n-universal 
family of hash functions mapping n-bit  strings to ( n / 2 -  
21ogn)-bit  strings. Then we let f l  = h~ o f0 o hi (fl  
maps E n[2Wl°gn to En/2-21°g ' ) .  

Next we must  define what we mean by a hard sibling. 
For any hi,  h2, and for any x E E n/2-21°gn, we define 
the hard sibling set Hhx,hz(X) to be the set of y's in 
E'*/2-21og,, such that  
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1. f i ( y )  = f l ( x )  

2. fo (h l (y ) )  # fo (h l (x ) )  

3. hi(y)  E D,,/2(fo). 

The first condition states that  y is a sibling of z. We 
will not be able to prove any hardness results about  
elements which collide with x on hi or f0, so we will 
simply declare them to be easy siblings. The second 
condition states that  y is a sibling of x due to a collision 
on h2, not on f0 (or hi).  Finally, we give for technical 
reasons which will be apparent  below the third condition 
on a sibling being hard. For convenience, wg also define 
the set of easy siblings, Eht,h~(X ) = St, (X) -  Hh,,h2(X). 

Now we can give two lemmas which make precise the 
hardness of f l .  The first is that  hard siblings are actu- 
ally hard. 

L e m m a  4 I f  there exists a poly-sized family of circuits 
{A,} such that for an infinite number of n of the form 
m + 4k(m) + l (m) + 2, there exists an x of length n /2  + 
logn, such that the probability over hi and h2 that A 
outputs an element of Hhl,h2(X) is at least n -~, then 
there is a poly-sized family of circuits which invert fo 
with non-negligible probability. 

P r o o f :  Let n = m + 4 k ( m ) + l ( m ) + 2  and x E y]n/2+logn 
be such that  A~ outputs  a hard sibling of x with prob- 
ability at least n -e .  We will show that  there is a circuit 
B such that  Pr[fo(B( fo(w)))  = f0(w)] >_ n - ` - 2  where 
the probabil i ty is taken over w picked uniformly from 
E'*. Algorithm B, given z = fo(w),  picks hi at ran- 
dom, picks r E E n/2-21°gn at random, then picks h2 at 
random subject  to the constraint  that  h2( fo(hl (x) ) )  = 
h2(z) = r. It  then lets y be the output  of An given hi, 
h2, and x. Finally, if fo (h t (y ) )  = z, it outputs  hi(y) ,  
otherwise it outputs  "failure." 

We will, in fact, only try to invert strings in R,~/2(fo). 
So, for now, let us assume that  w is picked uniformly 
from D,~/2(fo). Under this assumption, let us first con- 
sider the probabil i ty that  A ,  outputs  an element of 
Hh~,h=(X). This probabil i ty can be written as 

E P r [ A n  outputs  yEHh:,h~(x)]hl,h2] Pr[B picks hi,h2]. 
hi,h2 

The above summat ion  would be at least n -~ if the prob- 
ability that  B selected hi and h2 was exactly equal to 
the probabil i ty of picking hi and h2 uniformly at ran- 
dom. What  we will in fact show is that ,  for almost all 
hi and h2, these two probabilities differ by at most a 
(1 + 2 - '~/s) factor. This implies that  the summat ion  
above is at least n-C(1 - 2-~/8).  

Fix any hi and r. Let G(h2) contain the elements of 
D,~/2(fo) which h2 o f0 map to r, i.e. 

G(h2) = f o l ( h 2 1 ( r ) )  f) Dn/2(fo).  

The expected size of G(h~) is n22'~/2/4k(m). Using a 
slight variant of Lemma 2 we can show that  for all but 
an exponentially vanishing fraction of the h2's, 

n22n/2 n22n/2 
(1 -- 2 - " / s )  < IG(h2)l < 4 k - - ~ ( 1  + 2-n /s ) .  

4k(m) 

This holds even if we first restrict to those h2 which 
map fo(hl(X))  to r. Since for every w, the fraction of 
the h2's for which h2(fo(w))  = h2(f0(hl(x)))  = r is ex- 
actly 2 - '~-4 logn, we can think of B as uniformly picking 
a pair < w, h2 > from the set {< w, h2 > Ih2(fo(w)) = 
h2(fo(hx(z)))  = r).  So clearly, the probabil i ty of pick- 
ing h2 is exactly proportional to the size of IG(h2)l, and 
is thus within a (1 + 2  - " /8 )  factor of uniform for almost 
all h2. 

Now let us assume that  A,~ does in fact output  a 
hard sibling y. Then in particular,  hi(y)  E G ( h 2 ) -  
S]o(hl(X)). But given the information g, ,  sees (i.e. 
hi,  h2, r, and x), w is just a random element of 
G(h~) - Sfo(h~(x)).  So 

Pr[fo(hl(y))  = fo(w)  = z] 

> ISlo(W)l 
- IC(h2)l 

4k(m) (1 - 2 -n / s )  
>- n 2 
> Un. 

So if w is picked uniformly from D~/2(fo ) then the 
probabili ty B outputs  "failure" is at most  1 - 1 / n .  Since 
Dn/2(fo) accounts for more than a 1/n fraction of E '*, 
this implies that  the probabil i ty the B outputs  failure 
is at most 1 - 1/n 2. [] 

Lemma 4 says that  we cannot find hard siblings in 
polynomial time. The next l emma says that  these hard 
siblings form a non-negligible fraction of the possible 
siblings. 

L e m m a  5 Fix x E En/2+logn and let X be a random 
variable (dependent on the random choice of hi and h2) 
such that 

X = log I S  t , ( ~ ) l  

i.e. X is the logarithm of the ratio between the number 
of siblings and the number of easy siblings. Then the 
X takes on values in the range 0 to n and has ezpected 
value at least ~(1 /n ) .  

P r o o f :  Consider some w E y]n/2+|ogn, We will show 
that  with constant probability, w has at most n 3 sib- 
lings, and at least n 2 of them are hard. Pick x E E'~ and 
z E E '*/2-21°g'~ at random, and let y = f0(x). We will 
restrict our at tent ion to hash functions hi which map 
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w t o x  and h2 which map y to z. Note that  p ick ingx  
at random and then hi at random subject to hi(w)  = x 
is the same as just picking hi at random, and we are 
similarly picking h~ at random. 

Consider any sibling w' and let x '  = hx(w') and 
y' = fo(x~). To show that  the number of siblings is 
small, we consider 4 cases: First we count the number 
o fw '  such that  x' E Ui<_n/2Di(fo). Using standard hash 
function arguments,  we can show that  with overwhelm- 
ing probability, the number  of such x '  mapped to z is 

2n22n/2 at most ~ , and thus with overwhelming proba- 
bility, the number of w ~ mapped to such x ~ is at most 
3n3/4. The second case is x j E Di(fo) for some i in 

3 the range n/2 < i <  n /2+-~ logn .  For each s u c h i ,  a 
similar argument  shows that ,  with overwhelming prob- 
ability, there are at most n 11/4 to t mapped to such x' .  
The third case is x '  E Di(fo) for some i > n/2 + ~ log n. 
In this case, with probabil i ty at least 1 - 1/V/'ff, there 
are no such w' at all mapping to z, other than ones for 
which y' = y. Finally, we consider the case when y' = y. 
With probabil i ty at least 3/8, Ifo~(y)l  < 2 ~12, in which 
case it is very unlikely that  more than n such w ~ exist. 
Putt ing this all together, with probabili ty at least 1/3, 
the number of siblings is at most 4n3/5. 

Now consider the number of hard siblings. With 
overwhelming probability, at least 1.1n2 'q2 elements of 
Dn/2(fo) - Slo(y) map to z, and thus with overwhelm- 
ing probability, at least n 2 siblings of w map through 
Dn/2(fo) - Slo(y ). These are exactly the hard siblings 
Df W. 

Therefore, with probabili ty at least 1/3, X is at least 
l /n ,  so E[X] > 1/3n. [] 

More details of the hash function arguments in the 
~bove lemmas will appear  in the full version of this pa- 
per. 

3 . 3  M a k i n g  M o s t  S i b l i n g s  H a r d  

:n the previous section, we showed how to, given any 
one-way function, construct one for which some of the 
Ablings are hard to find. In this section we will con- 
struct a function for which almost all siblings are hard 
I,o find. 

Let f2 : Y]n6T2nSl°gn -'-# Y]n6-4nSl°gn be constructed 
i!)e the function which runs 2n s copies of f l  in parallel 
each with independently chosen hi and h2. More pre- 
(:isely, we pick h l , . . .  , h~ '*s and h ~ , . . . ,  h~ "~ at random, 
~:md let 

" . . . "  1 1 h ~ , n , h ~ , *  "~ 
f2( xl  x 2 n ~ )  : f h l ' h 2  " ' ' '  " f l  

where f([,h~ is f l  using hash functions h~ and h/2. To 
define our set of hard siblings, we let Eh-: ,K~(x 1 . . . . . x  2"~) 

be 

{yl . . . . .  y2nS[yi E Ehl,h ~ for 1 < i < 2n5}, 

and let Hh- ' h-(X) = SI~(X ) -- E~I,~:(x), i.e. a sibling is 
easy if and only if it is easy in each component.  

Again, we must show two facts, first that  our notion 
of hardness is correct, and second that  most siblings are 
in fact hard. 

L e m m a  6 If  there exists a poly-sized family of circuits 
A such that for an infinite number of n, there exists an 
x of length n6 + 2n s log n, such that the probability over 
hi and h2 that A outputs an element of Hg~,~(x) is at 
least n -r ,  then there is a poly-sized family of circuits 
which invert fo with non-negligible probability. 

P r o o f :  Given an algorithm for finding a hard sibling 
under f~, we obtain an algorithm for finding a hard 
sibling of f l  as follows. If x = xl - . . . -  x2,~s, we will 
select an i at random between 1 and 2n 5 and a t tempt  
to find a hard sibling for zi. Given hi and h~ picked at 
random, we pick the rest of h~ and h 2 at random, run A 
to get y = Yl ". . . 'Y2ns. If  y is a hard sibling of x under 
f2, then some yj must  be a hard sibling of xj under ]'1. 
Since i was chosen at random, there is a 1/2n 5 chance 
that  i = j .  Thus with probabili ty at least 1/2n c+5, we 
output  a hard sibling for xi. By Lemma 4, this implies 
the existence of an inversion algorithm for f0. [] 

L e m m a  7 Fix x E E n6+2n~l°gn and let X be a random 
variable (dependent on the random choice of l~ and 1['2) 
such that 

X = log ISI~(~)l 
I Eh', ,h', ( z ) l  

Then the probability the X < O(n 4) is at most e -®(n). 
In other words, with all but an exponentially small prob- 
ability, there is an exponential gap between the number' 
of siblings and the number of easy siblings. 

P r o o f :  Because both easy siblings and all siblings of 
./2 are just  cross products of the respective sets from 
f l ,  we get that  X is the sum of X 1 , . . . , X ~ , ~ ,  chosen 
independently according to the distribution defined in 
Lemma 5. But by Lemma 5, each Xi is between 0 and 
n and has expected value at least 1/3n. The lemma 
follows from applying Chernoff 's bounds. [] 

3 . 4  M a k i n g  A l l  S i b l i n g s  H a r d  

From the previous section, we now have a function 
where almost all the siblings are hard to find. Unfortu- 
nately, there still may be an exponential  number of easy 
siblings for any element of the domain. In this section, 
we show how to use the exponential  gap between easy 
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and hard siblings to construct a function where, except 
with an exponentially small probability, all siblings are 
hard. 

Let us look more carefully at Lernma 7. We rewrite 
the random variable X as Y - Z ,  where random vari- 
able Y = log lS/2(x)[ and random variable Z : 
log lEh-l,h- (x)l. Assume for now that  we are told the 
values of E[Y] and E[Z] (we will remove this assump- 
tion in Section 3.6). Let l = (E[Y] + E[Z])/2. Then 
let h3 be randomly chosen from an 2-universal family of 
hash functions mapping (n 6 + 2n 5 log n - / ) - b i t  strings 
to (n 6 + 2n 5log n)-bi t  strings. Let fa(x)  = f2(ha(x)).  
The intuition is tha t  ha selects a very small subset of the 
domain of f2. This subspace is so small that  it will not 
contain any easy siblings, although it will contain many  
hard siblings. This intuition is captured more formally 
in the following lemma. 

L e m m a  8 Fix x E E n~+2ns logn-l .  Then with proba- 
bility at least 1 - e -®(n) (over the choice of the hash 
functions), ha(S/3(x ) - {x}) C Hh-,ti2(x). 

P r o o f :  Z is the sum of Z1 , . . . ,Z2nb ,  where each Zi is 
the logari thm of the number of easy siblings of xi and 
is between 0 and n. Then, by Chernoff bounds, 

Pr[lZ - E[Z]I > a] < e -a2/`n, .  

In particular,  plugging in a = ( 1 -  E[Z])/2 > n4/6, we 
get that  the probabil i ty Z > (E[Z] + 1)/2 is at most 
e - ' /144.  Assuming that  Z < (E[Z] + 1)/2, The proba- 
bility that  h~l(EK,,~2(x)) ~ x is at most  [E~, ,~(x) l /2  z, 
which assuming that  Z _< (E[Z] 4-1)/2,  is at most 
2-"~/6. 1:3 

Given Lemma 8, it is trivial to show that  any al- 
gori thm that  outputs  a sibling for f3 some polynomial 
fraction of the time can be converted into one which 
outputs  a sibling for f2 with virtually the same proba- 
bility (which in turn implies the existence of an inverter 
for f0)- 

3.5 C o m p r e s s i n g  

We have finally achieved a function with the hard- 
sibling proper ty  that  we want. However, there are 
still a couple of problems left to be solved. The most 
obvious is that ,  in our quest to get the hard-sibling 
property, we have created a length-increasing function. 
In particular,  the function ]'3 constructed in the pre- 
vious section maps (n 6 + 2n 5 logn - /)-bit strings to 
(n 6 - 4 n  5 logn)-bi t  strings. Since one can show that  
l = O(n6), it is clear tha t  f3 expands its input, and by 
quite a bit. In fact, simply applying a randomly selected 
hash function h4 mapping (n 6 - 4n 5 log n)-bit  strings to 

(n 6 + 2n ~ log n - l - n /50)-bi t  strings to the result of f3 
will solve the problem. So let f4(x) be h4(f3(x)) .  Then 
we have the following lemma. 

L e m m a  9 Fix x E ~ n~q-2nsl°gn-l. Then with probabil- 
ity at least 1 - e -e(n) ,  h4 induces no collisions with x, 
i.e. SS,(x ) = Sf3(x ). 

P r o o f :  We will bound the size of the range of f3 by 
2 n~+2nbl°gn-l-n[40. Once we have established this fact, 
the lemma follows trivially. In principle, we would like 
to bound the range of f3 by 

n6W2nS--I 
2-i lDi( f3) l  • 

i=0 

In fact, it will be more convenient to work with f2. We 
will consider 2 cases. 

First, consider z E Ui>l Ri(f~).  We will conserva- 
tively assume tha t  all sucl~ z are in the range of f3, i.e. 
if we expect to have z in the range, then just assume it 
is. We can bound the number  of such z by 

n6q-2n 5 

2 - i l D i ( f z ) l  • 
i=l 

Now we must bound [Di(f2)l. For all y, for random 

and log ISf (y)l is just the random variable Y 
we have already considered. In particular,  by Chernoff 
bounds, we can show 

Pr[IY - E[Y][ > a] < e -a2/4n,. 

However, what we are interested in is closer to the case 
where the hash functions are fixed and y is chosen at 
random. To get the bound we desire, consider pairs 
< y, < hxh2 >>.  Using the bound above, we can show, 
for any e, for all but  an e fraction of the hash functions, 
the fraction of y 's  with IS]2(y)l < 2 E[r]-a  is at most 

e-a~/4nT/e. In particular,  fix c = 2 - " / l ° ° .  This gives 
that  

n6+2n s 

2- i lD i ( f2 ) [  
i=l 

n %l-2n s 
~-- E 2n~+2nb-i+n/lOOe-(ElY]-i)2/4nr 

i=l 
E[Y]-l 

<-- E 2n"+2nb-E[Yl+j+n/lOOe-J~14n" 

j=E[Y]-n6-2n 5 
E[Y]-I 

: 2ne+2nS-E[Y]+n/lO0 E 2J-JZ/3nr 

j=E[Y]-ne'-2n 5 
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< 2n~+2nS-E[Y]+n/lOO+12E[Y]-I-(E[Y]-I)~[ 3n7 

<~ 2n6+2nS-I+n/lOO+12(n4/3)2/3n ~ 

,~ 2n6+2na-I+n/40-1 " 

The second case we consider is z E Ui<l Ri(f2). Here, 
we will bound the number of such z in the range of f3 
by the number of x in the domain of f3 which map to 
them. To do this, we first note that  

I 
UID'(L2)I < -(Elvl-'?/4"" 
i<l i:0 

< 2n6+2nS+n/lOO+le-(ElY]-l)2[ 4nr 

2n6+2nS+n/lOOe-(n4/3)"/4n'¢ 

2n6+2n s-n[35 

Now we can apply Lemma 2 to bound the number of x 
in the domain of ]'3 which map to z E Ui<l/g/(f2) by 

2 '~/6+2'?-I-n/4°-1 for almost all hz. 
Adding these two parts together, we get the desired 

bound on the range of f3 for almost all hash functions, 
so h4 is very unlikely to induce a collision. [] 

As an immediate corollary, we can show that any sib- 
ling finder for f4 is a sibling finder for f3. 

3 . 6  P u t t i n g  T h i n g s  T o g e t h e r  

Now that  we have achieved some compression, we can 
run this scheme in parallel and series to achieve arbi- 
trary amounts of compression. More specifically, we 
achieve a compression of at least a (1 - 1/50n 5) fac- 
tor at each stage, so if we start  out with O(n s) copies 
in parallel, we can in O(n 5log n) stages compress by 
a factor of O(n3). This is important,  because there is 
still one last problem to remove. When constructing 
f3, we assumed we knew the correct value of l. In fact, 
we know little about it. However, we need only know 
its value to within an additive O(n4). So we can build 
a new function f5 which hashes its input using ®(n 2) 
different values for l and outputt ing all the hash val- 
ues. By the above, we know that  f5 compresses by a 
factor of n. Since any sibling under f5 is a sibling un- 
der each component hash function, a sibling finder for 
f5 is automatically a sibling finder for whichever of the 
components has a good value for I. Thus f5 is a one- 
way hash function. Summing up we get the following 
Lheorems. 

t h e o r e m  1 Under the assumption that one-way func- 
lions exist, one-way hash functions exist. 

T h e o r e m  2 Under the assumption that one-way func- 
.lions exist, there exists a signature scheme which is se. 
,:ure against existential forgery under adaptive chosen 
message attacks. 

Finally, we note that,  although this paper has been 
mostly phrased in terms of the non-uniform model of 
security, our construction works equally well in the uni- 
form model. Thus we get the following theorem. 

T h e o r e m  3 Under the assumption that one-way func- 
tions in the uniform model exist, there exists a signature 
scheme which is secure against existential forgery under 
adaptive chosen message attacks by polynomial-time al- 
gorithms. 
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