
One-Way Functions are Necessary and Sufficient
for Secure Signatures

John Rompel*

L a b o r a t o r y for C o m p u t e r S c i en ce

M a s s a c h u s e t t s I n s t i t u t e of T e c h n o l o g y

C a m b r i d g e , M A 02139

1 I n t r o d u c t i o n

Much research in theoretical cryptography has been cen-
tered around finding the weakest possible cryptographic
assumptions required to implement major primitives.
Ever since Diffie and Hellman first suggested that mod-
ern cryptography be based on one-way functions (which
are easy to compute, but hard to invert) and trapdoor
functions (one-way functions which are, however, easy
to invert given an associated secret), researchers have
been busy trying to construct schemes that only require
one of these general assumptions. For example, pseudo-
random generators at first could only be constructed
from a specific hard problem, such as discrete log IBM2].
Later it was shown how to construct pseudo-random
generators given any one-way permutation [Y], and from
other weak forms of one-way functions [Le, GKL]. Fi-
nally JILL] proved that the existence of any one-way
function was a necessary and sufficient condition for the
existence of pseudo-random generators. Similarly, the
existence of t rapdoor permutations can be shown to be
necessary and sufficient for secure encryption schemes.

However, progress on characterizing the requirements
for secure digital signatures has been slower in coming.
We will be interested in signature schemes which are
secure agMnst existential forgery under adaptive cho-
sen message attacks. This notion of security, as well as
the first construction of digital signatures secure in this
sense was provided by [GMR]. Their scheme was based
on factoring, or more generally, the existence of claw-
free pairs. More recently, signatures based on any trap-

*supported in pa r t by a Na t iona l Science F o u n d a t i o n G r a d u a t e
Fellowship, D A R P A con t r ac t N00014-80-C-0622, a n d Air Force
Gran t AFSOR-86-0078

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

door permutation [BM1] and any one-way permutation
[NY] have been constructed. In this paper, we present a
method for constructing secure digital signatures given
any one-way function. This is the best possible result,
since a one-way function can be constructed from any
secure signature scheme.

Our method follows [NY] in basing signatures on one-
way hash functions: functions which compress their in-
put, but have the property that even given one preim-
age, it is hard to find a different one. This in itself
provides a weak form of signature; they show how to
build secure signatures from this primitive. To com-
plete their construction, they provide a simple method
for constructing a one-way hash function from any one-
way permutation.

However, arbitrary one-way functions must be man-
aged much more carefully. The bulk of this paper is con-
cerned with building a one-way hash function given any
one-way function. First we show how to build a func-
tion which has the property that given one preimage,
although most other preimages may be trivial to find, a
small fraction must be hard. Then we show how to am-
plify this into a full one-way hash function. Our proof
makes heavy usage of universal hash functions [CW].

2 P r e l i m i n a r i e s

2 .1 S i g n a t u r e S c h e m e s

A signature scheme has the following components:

• A security parameter k, determining the security,
running time, and lengths of messages.

• A message space, which we will assume to be strings
in E L, where E = {0,1}.

• A polynomial SB called the signature bound

© 1990 ACM 089791-361-2/90/0005/0387 $1.50 387

• A probabilistic poly-time key generation algorithm
KG, which on input 1 k, outputs a public key PK,
and a matching secret key SK.

• A probabilistic poly-time signing algorithm SP,
which given a message m and a matching pair of
keys <P K, S K>, outputs a signature of m with re-
spect to PK.

* A poly-time verification algorithm V, which given
S, m, and PK, tests whether or not S is a valid
signature of m with respect to PK.

The notion of security we are interested in is security
against existential forgery under adaptive chosen mes-
sage attack. This means we will allow our adversary,
the forger, to adaptively choose messages, and be sup-
plied with signatures. We will consider him successful
if, on his own, he is able to produce a valid signature for
any message that we did not sign for him. We will be
interested in signature schemes for which no polynomial-
sized forger has a 1/p(k) chance of producing a forged
message, for any polynomial p and for sufficiently large
k. This is the strongest natural notion of security.

L e m m a 1 The existence of a secure signature scheme
implies the existence of a one-way function.

P r o o f : Let f (1 k, x) run the KG algorithm on input 1 k
and using random tape x, and output PK. Then f is
a one-way function. Why? Assume we could invert f .
Then given the public key PK, we would be able to ob-
tain a secret key SW with the property that SK' could
generate signatures valid for PK. But this implies that
the signature scheme is insecure, which is a contradic-
tion. D

The [BM1] and [NY] signature schemes both use the
notion of a window, due to Lamport [La]. In this limited
signature scheme, the public file contains some one-way

0 1 0 1 To sign a bit function f and some a x , a l , . . . , a m , a m .
bi, the signer reveals f - l (a ~ ') . The limitation is that
only m bits can be signed. The scheme used by [BM1] is
to have f be a trapdoor permutation, and at each stage
sign a message and a new f . In this way, the same a 's
could be used over and over. The [NY] scheme modifies
this slightly by, at each stage, signing the hash value of a
new set of a 's. They define a uniform family of one-way
hash functions to to be such that no poly-time circuit
exists which, first outputs an x, then, for a randomly
selected function f from the family, can output a sibling
of x - - a n x' ~ x such that f (x ') = f (x) . Using this type
of hash function, they are assured that signing the hash
value of the a 's is sufficient for security.

Their construction of a one-way hash function is as
follows: Given f : ~ - - - * ~ " a one-way permutation, pick

a random h : E ~ ~ E n - 1 from a 2-universal family of
hash functions. Their one-way hash function is h o f .

2.2 Universal Hash Funct ions

A k-universal family of hash functions [CW] from m-bit
strings t o / -b i t strings is a collection {hi} of poly-time
computable functions from ~'~ to E l such that

1. Pr[h i (x l) = Yl A . . . A hi(x~) = y~] = 2 -kt for any
X l , . . . , x k E E,n and Yl , . . . ,Yk E E s, and

2. Given j < k and any x l , . . . , x I E E m and
Yl , . . . ,Yj E Et, it is possible in probabilistic
polynomial-time to uniformly sample from the hi
such that hi(x1) = Yl A . . . A h i (x j) = yj .

Note that the first condition is equivalent to saying that
the random variables {hi (x) lx E ~m} are uniform and
k-wise independent. In light of this equivalence, the fol-
lowing lemma will prove useful in calculations involving
hash functions:

L e m m a 2 Let random variables X1, . . . , X N be 2k-wise
independent and have Pr[Xi = 1] = p and Pr[Xi = 0] =
1 - p. Furthermore, let X - ~N=I X, . I f k = o(pN),
then

Pr [lX - p i [> a] < O ((~) k) .
a "

P r o o f Ske tch : Let Z = (X - p N) 2k. Then,

Pr[IX-pN I > a] = Pr[Z>a ~]
< E[Z]/a 2k.

Note that , since Z is a degree 2k polynomial in the
Xi's, E[Z] has the same value in any distribution with
at least 2k-wise independence. In particular, assuming
full independence of the Xi ' s and using that k = o(pN),
we can compute a bound of (2kpN) k on E[Z]. The
lemma follows from plugging in this bound for E[Z]. {3

Finally, we give the standard construction of a k-
universal family of hash functions from m-bit strings to
m-bit strings. Let F = GF(2m). For a 0 , . . . , a k - 1 E F,
we let

hao ak_,(x) = ao + a lx + . . . + ak_ l x k-1

The fact that this is a k-universal hash function follows
from a simple interpolation argument. Finally note that
the case m < I can be handled by padding out the
argument to the hash function; the case m > l can be
handled by stripping bits from the result of the hash
function.

388

2 . 3 N o t a t i o n

Function f : E k -~ Era is one-way in the non-uniform
(uniform) model if f is poly-time computable, but there
is not poly-sized family of circuits A (probabilistic poly-
time algorithm A) such that

Pr[f (A (f (x) , lk)) = / (x)] > k -~

for infinitely many k, where the probabil i ty is as x is
chosen uniformly from E k. In this paper, we will use the

non-uniform model of security unless stated otherwise.

For a function f , we define the following:

The siblings of x under f , S I (x) = {x' : f (x ') = f (x)} .
Di(f) = i x : 2 i _< [S. t (z) [< 2i+1}.
R (f) = -- { v : 2 < If- (v)l <

We will denote the concatenation of strings x and y
by x • y. We will denote the composition of functions f
~nd g by f o g, i.e. (f o g)(x) = f (g(x)) .

3 C o n s t r u c t i n g a O n e - w a y H a s h

F u n c t i o n

.3.1 O v e r v i e w

[n this section we will show how to, given any one-
¢¢ay function, create a family of one-way hash functions.
t h i s will imply tha t we can construct, given any one-
'~ay function, a signature scheme secure against exis-
~;ential forgery under adaptive chosen message attacks.

Start ing with our original one-way function f , we con-
,~truct a series of functions, each one closer to our goal of
~ one-way hash function. In Section 3.2, we construct
7~ function f l with the proper ty that , although most
:-;ihlings under f l may be easy to find, a non-negligible
fraction are provably hard to find. Next, in Section 3.3,
,re construct a function f2 such that most siblings under
f2 are provably hard to find. Then, in Section 3.4, we
construct a function f3 with the proper ty that almost
all the time, it is hard to find any sibling. This func-
~.ion is length-increasing, so in Section 3.5 we construct
from it a function f4 which is sibling-hard and length-
decreasing. Finally, in Section 3.6, we give a family of
,me-way hash functions.

3 . 2 M a k i n g S o m e S i b l i n g s H a r d

'Fhe big cryptographic property of a one-way hash func-
lion is that it is hard to find a sibling of any domain
(dement. Naor and Yung star t with a one-way permu-
l ation, which trivially has this property, and thus only
had to show how to make the function compress as well.

We are not so fortunate. Consider, for example, the
function f (< x, y >) = < g(x), 1 k >, where x and y are
k-bit strings, and g is some one-way permutat ion. It it
easy to show that f is one-way, but that each element
of the domain has an exponential number of siblings,
all of which are trivial to find. Nevertheless, in this
section, we will show how to take any one-way function
and convert it into one for which we can prove that at
least some (a non-negligible fraction) of the siblings are
hard to find.

We begin by putt ing our one-way function into a nor-
mal form. Assume we are given a function f : E m --~ E ra
which is one way. Let l (m) = [log m] and k(m) = 2 z(ra).
Let n = m + 4 k (m) + l (m) + 2 . We construct the function
/to : E n --~ En such that for x E Era, y E E 4k(ra), and
i E Z '°g4k(m), fo(x " v ' i) = f (x) . (vA (1 i" 04k(m)-i) "i,
where the A is bitwise AND. The reason for constructing
f0 is that its preimage structure is largely known.

L e m m a 3 Im (fo)l, a function of j , is increasing
in the range 0 to m, flat and equal to 2n /4k(m) in the
range m to 4k(m), and decreasing in the range 4k(m)
to m + 4k(m).

P r o o f i

4k(ra)-I

IDj(.fo)l =
i=0

min(ra,j)
= 24k(m) E

i=max(O,j -4k(rn)+l)
Di(f) .

From this form, one can easily observe the monotone
nature of IDj(fo)l for small and large j . For m < j <
4k(m), we note that

IDj(fo)l = 24k(r a) £ l D i (f) l
i=O

_w. 24k (ra)+ m

= 2n/4k(m).U

Now we can construct a function f l such that a non-
negligible fraction of the siblings are hard to find. Let
hi be randomly chosen from an n-universal family of
hash functions mapping (n / 2 + l o g n)-bit strings to n-bit
strings. Let h2 be randomly chosen from an n-universal
family of hash functions mapping n-bit strings to (n / 2 -
21ogn)-bit strings. Then we let f l = h~ o f0 o hi (fl
maps E n[2Wl°gn to En/2-21°g ') .

Next we must define what we mean by a hard sibling.
For any hi, h2, and for any x E E n/2-21°gn, we define
the hard sibling set Hhx,hz(X) to be the set of y's in
E'*/2-21og,, such that

389

1. f i (y) = f l (x)

2. fo (h l (y)) # fo (h l (x))

3. hi(y) E D,,/2(fo).

The first condition states that y is a sibling of z. We
will not be able to prove any hardness results about
elements which collide with x on hi or f0, so we will
simply declare them to be easy siblings. The second
condition states that y is a sibling of x due to a collision
on h2, not on f0 (or hi). Finally, we give for technical
reasons which will be apparent below the third condition
on a sibling being hard. For convenience, wg also define
the set of easy siblings, Eht,h~(X) = St, (X) - Hh,,h2(X).

Now we can give two lemmas which make precise the
hardness of f l . The first is that hard siblings are actu-
ally hard.

L e m m a 4 I f there exists a poly-sized family of circuits
{A,} such that for an infinite number of n of the form
m + 4k(m) + l (m) + 2, there exists an x of length n /2 +
logn, such that the probability over hi and h2 that A
outputs an element of Hhl,h2(X) is at least n -~, then
there is a poly-sized family of circuits which invert fo
with non-negligible probability.

P r o o f : Let n = m + 4 k (m) + l (m) + 2 and x E y]n/2+logn
be such that A~ outputs a hard sibling of x with prob-
ability at least n -e . We will show that there is a circuit
B such that Pr[fo(B(fo(w))) = f0(w)] >_ n - ` - 2 where
the probabil i ty is taken over w picked uniformly from
E'*. Algorithm B, given z = fo(w), picks hi at ran-
dom, picks r E E n/2-21°gn at random, then picks h2 at
random subject to the constraint that h2(fo(hl (x))) =
h2(z) = r. It then lets y be the output of An given hi,
h2, and x. Finally, if fo (h t (y)) = z, it outputs hi(y) ,
otherwise it outputs "failure."

We will, in fact, only try to invert strings in R,~/2(fo).
So, for now, let us assume that w is picked uniformly
from D,~/2(fo). Under this assumption, let us first con-
sider the probabil i ty that A , outputs an element of
Hh~,h=(X). This probabil i ty can be written as

E P r [A n outputs yEHh:,h~(x)]hl,h2] Pr[B picks hi,h2].
hi,h2

The above summat ion would be at least n -~ if the prob-
ability that B selected hi and h2 was exactly equal to
the probabil i ty of picking hi and h2 uniformly at ran-
dom. What we will in fact show is that , for almost all
hi and h2, these two probabilities differ by at most a
(1 + 2 - '~/s) factor. This implies that the summat ion
above is at least n-C(1 - 2-~/8).

Fix any hi and r. Let G(h2) contain the elements of
D,~/2(fo) which h2 o f0 map to r, i.e.

G(h2) = f o l (h 2 1 (r)) f) Dn/2(fo).

The expected size of G(h~) is n22'~/2/4k(m). Using a
slight variant of Lemma 2 we can show that for all but
an exponentially vanishing fraction of the h2's,

n22n/2 n22n/2
(1 -- 2 - " / s) < IG(h2)l < 4 k - - ~ (1 + 2-n /s) .

4k(m)

This holds even if we first restrict to those h2 which
map fo(hl(X)) to r. Since for every w, the fraction of
the h2's for which h2(fo(w)) = h2(f0(hl(x))) = r is ex-
actly 2 - '~-4 logn, we can think of B as uniformly picking
a pair < w, h2 > from the set {< w, h2 > Ih2(fo(w)) =
h2(fo(hx(z))) = r). So clearly, the probabil i ty of pick-
ing h2 is exactly proportional to the size of IG(h2)l, and
is thus within a (1 + 2 - " /8) factor of uniform for almost
all h2.

Now let us assume that A,~ does in fact output a
hard sibling y. Then in particular, hi(y) E G (h 2) -
S]o(hl(X)). But given the information g, , sees (i.e.
hi, h2, r, and x), w is just a random element of
G(h~) - Sfo(h~(x)). So

Pr[fo(hl(y)) = fo(w) = z]

> ISlo(W)l
- IC(h2)l

4k(m) (1 - 2 -n / s)
>- n 2
> Un.

So if w is picked uniformly from D~/2(fo) then the
probabili ty B outputs "failure" is at most 1 - 1 / n . Since
Dn/2(fo) accounts for more than a 1/n fraction of E '*,
this implies that the probabil i ty the B outputs failure
is at most 1 - 1/n 2. []

Lemma 4 says that we cannot find hard siblings in
polynomial time. The next l emma says that these hard
siblings form a non-negligible fraction of the possible
siblings.

L e m m a 5 Fix x E En/2+logn and let X be a random
variable (dependent on the random choice of hi and h2)
such that

X = log I S t , (~) l

i.e. X is the logarithm of the ratio between the number
of siblings and the number of easy siblings. Then the
X takes on values in the range 0 to n and has ezpected
value at least ~(1 /n) .

P r o o f : Consider some w E y]n/2+|ogn, We will show
that with constant probability, w has at most n 3 sib-
lings, and at least n 2 of them are hard. Pick x E E'~ and
z E E '*/2-21°g'~ at random, and let y = f0(x). We will
restrict our at tent ion to hash functions hi which map

390

w t o x and h2 which map y to z. Note that p ick ingx
at random and then hi at random subject to hi(w) = x
is the same as just picking hi at random, and we are
similarly picking h~ at random.

Consider any sibling w' and let x ' = hx(w') and
y' = fo(x~). To show that the number of siblings is
small, we consider 4 cases: First we count the number
o fw ' such that x' E Ui<_n/2Di(fo). Using standard hash
function arguments, we can show that with overwhelm-
ing probability, the number of such x ' mapped to z is

2n22n/2 at most ~ , and thus with overwhelming proba-
bility, the number of w ~ mapped to such x ~ is at most
3n3/4. The second case is x j E Di(fo) for some i in

3 the range n/2 < i < n /2+-~ logn . For each s u c h i , a
similar argument shows that , with overwhelming prob-
ability, there are at most n 11/4 to t mapped to such x' .
The third case is x ' E Di(fo) for some i > n/2 + ~ log n.
In this case, with probabil i ty at least 1 - 1/V/'ff, there
are no such w' at all mapping to z, other than ones for
which y' = y. Finally, we consider the case when y' = y.
With probabil i ty at least 3/8, Ifo~(y)l < 2 ~12, in which
case it is very unlikely that more than n such w ~ exist.
Putt ing this all together, with probabili ty at least 1/3,
the number of siblings is at most 4n3/5.

Now consider the number of hard siblings. With
overwhelming probability, at least 1.1n2 'q2 elements of
Dn/2(fo) - Slo(y) map to z, and thus with overwhelm-
ing probability, at least n 2 siblings of w map through
Dn/2(fo) - Slo(y). These are exactly the hard siblings
Df W.

Therefore, with probabili ty at least 1/3, X is at least
l /n , so E[X] > 1/3n. []

More details of the hash function arguments in the
~bove lemmas will appear in the full version of this pa-
per.

3 . 3 M a k i n g M o s t S i b l i n g s H a r d

:n the previous section, we showed how to, given any
one-way function, construct one for which some of the
Ablings are hard to find. In this section we will con-
struct a function for which almost all siblings are hard
I,o find.

Let f2 : Y]n6T2nSl°gn -'-# Y]n6-4nSl°gn be constructed
i!)e the function which runs 2n s copies of f l in parallel
each with independently chosen hi and h2. More pre-
(:isely, we pick h l , . . . , h~ '*s and h ~ , . . . , h~ "~ at random,
~:md let

" . . . " 1 1 h ~ , n , h ~ , * "~
f2(xl x 2 n ~) : f h l ' h 2 " ' ' ' " f l

where f([,h~ is f l using hash functions h~ and h/2. To
define our set of hard siblings, we let Eh-: ,K~(x 1 x 2"~)

be

{yl y2nS[yi E Ehl,h ~ for 1 < i < 2n5},

and let Hh- ' h-(X) = SI~(X) -- E~I,~:(x), i.e. a sibling is
easy if and only if it is easy in each component.

Again, we must show two facts, first that our notion
of hardness is correct, and second that most siblings are
in fact hard.

L e m m a 6 If there exists a poly-sized family of circuits
A such that for an infinite number of n, there exists an
x of length n6 + 2n s log n, such that the probability over
hi and h2 that A outputs an element of Hg~,~(x) is at
least n -r , then there is a poly-sized family of circuits
which invert fo with non-negligible probability.

P r o o f : Given an algorithm for finding a hard sibling
under f~, we obtain an algorithm for finding a hard
sibling of f l as follows. If x = xl - . . . - x2,~s, we will
select an i at random between 1 and 2n 5 and a t tempt
to find a hard sibling for zi. Given hi and h~ picked at
random, we pick the rest of h~ and h 2 at random, run A
to get y = Yl ". . . 'Y2ns. If y is a hard sibling of x under
f2, then some yj must be a hard sibling of xj under]'1.
Since i was chosen at random, there is a 1/2n 5 chance
that i = j . Thus with probabili ty at least 1/2n c+5, we
output a hard sibling for xi. By Lemma 4, this implies
the existence of an inversion algorithm for f0. []

L e m m a 7 Fix x E E n6+2n~l°gn and let X be a random
variable (dependent on the random choice of l~ and 1['2)
such that

X = log ISI~(~)l
I Eh', ,h', (z) l

Then the probability the X < O(n 4) is at most e -®(n).
In other words, with all but an exponentially small prob-
ability, there is an exponential gap between the number'
of siblings and the number of easy siblings.

P r o o f : Because both easy siblings and all siblings of
./2 are just cross products of the respective sets from
f l , we get that X is the sum of X 1 , . . . , X ~ , ~ , chosen
independently according to the distribution defined in
Lemma 5. But by Lemma 5, each Xi is between 0 and
n and has expected value at least 1/3n. The lemma
follows from applying Chernoff 's bounds. []

3 . 4 M a k i n g A l l S i b l i n g s H a r d

From the previous section, we now have a function
where almost all the siblings are hard to find. Unfortu-
nately, there still may be an exponential number of easy
siblings for any element of the domain. In this section,
we show how to use the exponential gap between easy

391

and hard siblings to construct a function where, except
with an exponentially small probability, all siblings are
hard.

Let us look more carefully at Lernma 7. We rewrite
the random variable X as Y - Z , where random vari-
able Y = log lS/2(x)[and random variable Z :
log lEh-l,h- (x)l. Assume for now that we are told the
values of E[Y] and E[Z] (we will remove this assump-
tion in Section 3.6). Let l = (E[Y] + E[Z])/2. Then
let h3 be randomly chosen from an 2-universal family of
hash functions mapping (n 6 + 2n 5 log n - /) - b i t strings
to (n 6 + 2n 5log n)-bi t strings. Let fa(x) = f2(ha(x)).
The intuition is tha t ha selects a very small subset of the
domain of f2. This subspace is so small that it will not
contain any easy siblings, although it will contain many
hard siblings. This intuition is captured more formally
in the following lemma.

L e m m a 8 Fix x E E n~+2ns logn-l . Then with proba-
bility at least 1 - e -®(n) (over the choice of the hash
functions), ha(S/3(x) - {x}) C Hh-,ti2(x).

P r o o f : Z is the sum of Z1 , . . . ,Z2nb , where each Zi is
the logari thm of the number of easy siblings of xi and
is between 0 and n. Then, by Chernoff bounds,

Pr[lZ - E[Z]I > a] < e -a2/`n, .

In particular, plugging in a = (1 - E[Z])/2 > n4/6, we
get that the probabil i ty Z > (E[Z] + 1)/2 is at most
e - ' /144. Assuming that Z < (E[Z] + 1)/2, The proba-
bility that h~l(EK,,~2(x)) ~ x is at most [E~, ,~(x) l /2 z,
which assuming that Z _< (E[Z] 4-1)/2, is at most
2-"~/6. 1:3

Given Lemma 8, it is trivial to show that any al-
gori thm that outputs a sibling for f3 some polynomial
fraction of the time can be converted into one which
outputs a sibling for f2 with virtually the same proba-
bility (which in turn implies the existence of an inverter
for f0)-

3.5 C o m p r e s s i n g

We have finally achieved a function with the hard-
sibling proper ty that we want. However, there are
still a couple of problems left to be solved. The most
obvious is that , in our quest to get the hard-sibling
property, we have created a length-increasing function.
In particular, the function]'3 constructed in the pre-
vious section maps (n 6 + 2n 5 logn - /)-bit strings to
(n 6 - 4 n 5 logn)-bi t strings. Since one can show that
l = O(n6), it is clear tha t f3 expands its input, and by
quite a bit. In fact, simply applying a randomly selected
hash function h4 mapping (n 6 - 4n 5 log n)-bit strings to

(n 6 + 2n ~ log n - l - n /50)-bi t strings to the result of f3
will solve the problem. So let f4(x) be h4(f3(x)) . Then
we have the following lemma.

L e m m a 9 Fix x E ~ n~q-2nsl°gn-l. Then with probabil-
ity at least 1 - e -e(n) , h4 induces no collisions with x,
i.e. SS,(x) = Sf3(x).

P r o o f : We will bound the size of the range of f3 by
2 n~+2nbl°gn-l-n[40. Once we have established this fact,
the lemma follows trivially. In principle, we would like
to bound the range of f3 by

n6W2nS--I
2-i lDi(f3) l •

i=0

In fact, it will be more convenient to work with f2. We
will consider 2 cases.

First, consider z E Ui>l Ri(f~). We will conserva-
tively assume tha t all sucl~ z are in the range of f3, i.e.
if we expect to have z in the range, then just assume it
is. We can bound the number of such z by

n6q-2n 5

2 - i l D i (f z) l •
i=l

Now we must bound [Di(f2)l. For all y, for random

and log ISf (y)l is just the random variable Y
we have already considered. In particular, by Chernoff
bounds, we can show

Pr[IY - E[Y][> a] < e -a2/4n,.

However, what we are interested in is closer to the case
where the hash functions are fixed and y is chosen at
random. To get the bound we desire, consider pairs
< y, < hxh2 >>. Using the bound above, we can show,
for any e, for all but an e fraction of the hash functions,
the fraction of y 's with IS]2(y)l < 2 E[r]-a is at most

e-a~/4nT/e. In particular, fix c = 2 - " / l ° ° . This gives
that

n6+2n s

2- i lD i (f2) [
i=l

n %l-2n s
~-- E 2n~+2nb-i+n/lOOe-(ElY]-i)2/4nr

i=l
E[Y]-l

<-- E 2n"+2nb-E[Yl+j+n/lOOe-J~14n"

j=E[Y]-n6-2n 5
E[Y]-I

: 2ne+2nS-E[Y]+n/lO0 E 2J-JZ/3nr

j=E[Y]-ne'-2n 5

392

< 2n~+2nS-E[Y]+n/lOO+12E[Y]-I-(E[Y]-I)~[3n7

<~ 2n6+2nS-I+n/lOO+12(n4/3)2/3n ~

,~ 2n6+2na-I+n/40-1 "

The second case we consider is z E Ui<l Ri(f2). Here,
we will bound the number of such z in the range of f3
by the number of x in the domain of f3 which map to
them. To do this, we first note that

I
UID'(L2)I < -(Elvl-'?/4""
i<l i:0

< 2n6+2nS+n/lOO+le-(ElY]-l)2[4nr

2n6+2nS+n/lOOe-(n4/3)"/4n'¢

2n6+2n s-n[35

Now we can apply Lemma 2 to bound the number of x
in the domain of]'3 which map to z E Ui<l/g/(f2) by

2 '~/6+2'?-I-n/4°-1 for almost all hz.
Adding these two parts together, we get the desired

bound on the range of f3 for almost all hash functions,
so h4 is very unlikely to induce a collision. []

As an immediate corollary, we can show that any sib-
ling finder for f4 is a sibling finder for f3.

3 . 6 P u t t i n g T h i n g s T o g e t h e r

Now that we have achieved some compression, we can
run this scheme in parallel and series to achieve arbi-
trary amounts of compression. More specifically, we
achieve a compression of at least a (1 - 1/50n 5) fac-
tor at each stage, so if we start out with O(n s) copies
in parallel, we can in O(n 5log n) stages compress by
a factor of O(n3). This is important, because there is
still one last problem to remove. When constructing
f3, we assumed we knew the correct value of l. In fact,
we know little about it. However, we need only know
its value to within an additive O(n4). So we can build
a new function f5 which hashes its input using ®(n 2)
different values for l and outputt ing all the hash val-
ues. By the above, we know that f5 compresses by a
factor of n. Since any sibling under f5 is a sibling un-
der each component hash function, a sibling finder for
f5 is automatically a sibling finder for whichever of the
components has a good value for I. Thus f5 is a one-
way hash function. Summing up we get the following
Lheorems.

t h e o r e m 1 Under the assumption that one-way func-
lions exist, one-way hash functions exist.

T h e o r e m 2 Under the assumption that one-way func-
.lions exist, there exists a signature scheme which is se.
,:ure against existential forgery under adaptive chosen
message attacks.

Finally, we note that, although this paper has been
mostly phrased in terms of the non-uniform model of
security, our construction works equally well in the uni-
form model. Thus we get the following theorem.

T h e o r e m 3 Under the assumption that one-way func-
tions in the uniform model exist, there exists a signature
scheme which is secure against existential forgery under
adaptive chosen message attacks by polynomial-time al-
gorithms.

4 Acknowledgments

I would like to thank Mihir Bellare for many helpful dis-
cussions on the subject of signature schemes and pseu-
dorandomness. I would also like to thank him for pa-
tiently listening to early versions of this work and giving
helpful comments.

References

IBM1] Bellare, M., and Micali, S., "How to Sign
Given any Trapdoor Function", Proc. 20th
STOC, 1988, pp. 32-42.

[BM2]

[cw]

Blum, M., and Micali, S., "How to Gen-
erate Cryptograpically Strong Sequences of
Pseudo-Random Bits", SIAM 3. Comp., 13:4
(Nov. 84), pp. 850-864.

Carter, J.L., and Wegman, M.N., "Universal
Classes of Hash Functions", JCSS, 18 (1979),
pp. 143-154.

[DH] Diffie, W., and Hellman, M., "New Directions
in Cryptography", IEEE Trans. on Info. The-
ory, vol. IT-22, 6 (1976), pp 644-654.

[GKL] Goldreich, O., Krawczyk, H., and Luby, M.,
"On the Existence of Pseudorandom Genera-
tors", Proc. 29th FOCS, 1988, pp. 12-24.

[GMR] Goldwasser, S., Micali, S., and Rivest, R., "A
Secure Digital Signature Scheme", SIAM J.
Comp., 17:2, 1988, pp. 281-308.

JILL1 Impagliazzo, R., Levin, L., and Luby, M.,
"Pseudorandom Generation from One-Way
Functions", Proc. 21st STOC, 1989, pp. 12-
24.

[La] Lamport, L., "Constructing Digital Signa-
tures from One-Way Functions", SRI intl.
CSL-98, Oct. 1979.

393

[Le]

[NY]

IV]

Levin, L., "One-Way Functions and Pseudo-
random Generators", Proc. 17th STOC, 1985,
pp. 363-365.

Naor, M., and Yung, M., "Universal One-Way
Hash Functions and their Cryptographic Ap-
plications", Proc. 21st STOC, 1989, pp. 33-
43.

Yao, A.C., "Theory and Applications of Trap-
door Functions", Proc. 23rd FOCS, 1982, pp.
80-91.

394

