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ABSTRACT 

The focus of this note is the Goldwasser-Micali-Rivest Signature Scheme (presented 
in the 25th FOG’S, 1984). T h e  GMR scheme has the salient property that, unless factoring 
is easy, i t  is infeasible to forge any signature even through an adaptive chosen message 
attack. We present two technical contributions with respect to the GMR scheme: 

1) T h e  GMR s c h e m e  c a n  be made totally “memoryless”: Tha t  is, the signature gen- 
erated by the signer on message M does not depend on the previous signed messages. 
(In the original scheme, the signature to a message depends on the number of me* 
sages signed before.) 

The GMR s c h e m e  c a n  be implemented almost as e f ic ient ly  as the RSA: T h e  original 
implementation of the GMR scheme based on factoring, can be speeded-up by a fac- 
tor of 1 N I . Thus ,  both signing and verifying take time 0 ( 1 N 310g2 I N I ). (Here 
N is the moduli.) 

2) 

1. Introduction 

In 1984, Goldwasser, Micah and Rivest presented a signature scheme robust against 
adaptive chosen message attack [GMR]: no  adversary who f i r s t  receives signatures t o  mes-  
sages of his choice, c a n  later create a signature of even a single additional message.  The 
scheme uses two pairs of trapdoor permutations, and is proven to  be secure (in the  above 
sense) if these pairs have a certain clawfree property (i.e. it is infeasible to find z and y 
such that f ~ ( z ) = f  I (y) ) .  I t  was shown that the intracability assumption of factoring 
implies the clawfree condition, and thus  a concrete factoring-based implementation was 
presented. 
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The original GMR scheme suffers from two aesthetic drawbacks: 

1) The signature scheme is not completely L‘memoryles”’. Tha t  is, the signature gen- 
erated by the signer slightly depends on the previous signed messages. 

T h e  signing process in the suggested factoring-based implementation is too slow. Let 
n be the security parameter (i.e. the length of the moduli), then signing takes more 
than n 4  steps (as opposed to n3 steps in the RSA). 

2) 

In this note we suggest a modification of the abstract GMR scheme, and a speed-up in its 
factoring-based implementation. These suggestions eliminate both drawbacks listed above, 
while maintaining the  security of the original scheme. Tha t  is, the modified scheme is 
totally “memoryless”, and  i t s  implementation using factoring is almost as fast as t h e  RSA 
(while being much more secure than  RSA!). 

The  rest of this no te  is organized as follows. In section 2 we briefly review the  GMR 
signature scheme. T h e  reader is encourage to consult the original paper [GMR] for a more 
complete exposition of the  GMR scheme. (This reference is also an excellent source for a 

critical review and a historical account of the problem of obtaining digital signatures.) In 
section 3, we present a modification which makes the GMR scheme “memorylessJ’. In sec- 
tion 4, we present a speed-up in the factoring-based implementation of the GMR scheme. 
Our conclusions are presented in Section 5. 

2. Overview of the GMR Scheme 

The GMR scheme is basically a two-stage authentication process. First the  signer’s 
entry in the public file is used to authenticate a random point of reference (hereafter 
called REF). Next this REF is used to authenticate the message in a bit-by-bit manner. 
The same REF is never used to authenticate two different messages. The  scheme utilizes 
two pairs of trapdoor clawfree permutations, denoted (f o,f and (go,gl). T h e  f -pair is 
used for the first stage (authentication of the REF), while the g -pair is used for t h e  second 
stage (authentication of the  message). 

The  REFS are generated from the public file by using a tree structure (hereafter 
called the REF tree). T h e  same REF tree is used to sign all messages. The  root of the 
REF tree contains par t  of the signer’s (entry in the) public file. Each internal node in the 
REF tree has a constant number of children (say three). Leaves in the R E F  tree are used 
to authenticate messages (in the  second stage of the signing process). It was originally pro- 
pcsed [GMR] t ha t  only the  third node of each internal node be a leaf, while the other chil- 
dren be potential internal nodes. As we will see in the sequel, this particular tree structure 
(for the REF tree) is no t  essential. 

Authentication of the nodes in the REF tree is done successively: each node is 
authenticated by its father in the tree. A crucial detail in the GMR scheme is the  manner 
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in which one REF authenticates i ts  children. Each REF is partitioned into five parts: its 
“name” (denoted z ) ,  the names of its children (denoted y1,yZ,y3), and a “tag” (denoted 

t )  binding them all together. T h e  tag is computed using the first pair of (trapdoor) claw- 
free permutations f 0 and f ’, through what is called an authentication step.  

Let F-’(o , z )=~ a’ (z), for every u E {0,1}. 
every a E {0,1} and a E {0,1}*. 
Then the five par t s  of the REF satisfy t =F-1(y1y2y3 , z). 

Let ~-’(cra,z)=~-’(a,j  ;‘(z)), for 

(The REF tree should not be confused with the treelike nature of the authentication 
step.) 
The autheatication of the message, in the second stage, consists of a single authentication 
step tha t  uses the g-pair .  This  authentication step binds the message m (to be signed) to 
a leaf in the REF tree. T h e  tag  t binding the leaf named z with the message m satisfies 
t =G-’(m ,z), where G-’ is defined analogously to F-’ based on the permutations go and 

9 1. 

To sign a new message, m ,  the signer identifies a leaf tha t  was not used SO far 
(named 2). If no such leaf exists, the signer identifies an unused internal node named 2 
(i.e. a node which is a potential internal node but has no children yet), randomly selects 
names for its children (y1,y2,y3) ,  computes a tag binding the children to  their father (i.e. 
uses the trapdoor information to compute t =F-’(yly2y3 , z)), stores the names of the 
children, and sets z =y3. T h e  signer retrieves (or recomputes) the tags for all the  authen- 
tication steps leading from the root of the REF tree to the leaf named z .  (It is crucial 
that, in all s-s produced, the same names are used for the same nodes.) Th i s  com- 
pletes the first stage of the signing process. Next the signer uses the trapdoor information 
(for the pair g o  and gl) to compute the tag G-’(m , z ) .  The signature consists of the  list of 
all authentication steps mentioned above (corresponding to a path from the root to a leaf 
and an extra step authenticating the message by the leaf). 

To verify the  validity of a signature, the verifier checks that the list corresponds to a 
path from the root t o  a leaf, and that all tags along this path are valid. T o  validate 
t =F-’(a,z), the verifier computes F ( a , t )  and compares it to z . 

3. Making the GMR Scheme Memoryless 

.k hinted in the outline of the GMR scheme, the particular way of using the nodes in 
the REF tree is not essential to  the scheme. In the original scheme, the nodes were used 
in a “greedy” manner so to minimize the length of the first signatures. The  drawback in 
that suggestion is t h a t  it was required to remember the identity of the last node used for 
message authentication (i.e. to  store the number of messages signed so far). Our  aim is to 
eliminate the dependency of the next signature on the past. Thus, we suggest to use the 
REFS in  the tree differently than in the original scheme. 
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Let n be the security parameter, and let k=(log,n)*. For message authentication 

(second stage), we will use only the REFS in the k t h  level of the REF tree. In other 
words, the REF tree will be a full binary tree of depth k .  The  key idea is to use a ran- 
domly chosen (k-level) leaf in order to authenticate a new message. With very high proba- 
bility, we will never use the  same leaf twice (in the second stage). This is the  case since 
2k was chosen to be much larger than the number of messages to be ever signed. 

The  last detail to be mentioned is that  the names of the nodes in the REF tree 
should be generated using a pseudorandom function (applied to the location of the  node), 
rather than randomly. This  way, we guarantee that the same names are always used for 
the same nodes, without having to store these names. (The idea to use pseudorandom 
functions to  eliminate this par t  of the storage requirement in the GMR scheme was sug- 
gested by Leonid Levin.) Assuming the existence of one-way permutations, pseudorandom 
functions can be efficiently constructed [GGM]. 

Proving t h a t  the  modified signature scheme is as secure as the original scheme 
requires a two-step argument. First, one should consider a hybrid scheme where the 
names of the nodes in the REF tree are generated randomly as in the original scheme. The  
proof of security for this scheme is conceptionally identical t o  the proof presented in 
[GMR], and is only a little more involved in details. Next, one uses the polynomially 
indistinguishability of the  pseudorandom functions (from random functions), to show tha t  
the proposed scheme is as secure as the hybrid scheme. 

Remark: the identity of the (k-level) leaf to be used can be computed by applying a 
pseudorandom function to the message to be signed. Thus, no coin tosses are required 
during the signing process. One can easily show that the security feature is preserved. 

4. Speeding-up the  Singing P r o c e s s  in the Factoring Based I m p l e m e n t a t i o n  

The  computational bottleneck in the signing/verifying process are, respectively, the 
computation of F-'(.;) given the trapdoor and the computation of F(.;). In the 

factoring-based implementation presented in [GMR], F-'(.;) was computed in I N I 
steps, while F ( . , - )  was computed in 1 N I steps, where ,V is the modulus in use. In this 
section we show how to  compute F-' in I N I steps. 

In the implementation based on factoring, N = p q  is the product of two primes satis- 
fying p zz q = 3 (mod 4) and p # q (mod 8). This way, each quadratic residue mod 
has a unique square root which is a quadratic residue itself, and neither +2 nor -2 is a 
quadratic residue mod N. f are defined to be permutations over the set of qua- 

dratic residues mod -V : 

and f 

f O ( Z )  = 5 2  (mod Ri) 
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and 
f '(2) = 4.2' (mod N).  

Let denote the  square root of 2 which is a quadratic residue mod N .  Thus ,  
f {' (z)=& and f <' ( z ) = q .  Note that # 2 (moh N).  This observation is the  
key for proving tha t ,  unless factoring is easy, the permutations f and f defined above 

constitute a pair of (trapdoor) clawfree permutations. For more details see [GMR]. 

Recall the definition of F-'(a,z) 
F-l(qr*-Q,  , z )  = f .;' (f .;' (.-f .;' (z)...)) 

The obvious way to compute F-'(cY,z) is by successively taking square roots. This 
results in e( I CY I ) exponentiations. We present an alternative and faster way for comput- 
ing F-'(a,z). This  way requires only a constant number of exponentiations, and is based 
on the following observation: 

Let m denote the  length of a, and i ( a )  denote the integer naturally encoded by the 
string CY. Let R N ( 2 " ' , z )  denote the  Zmth  root of J modulo N (i.e. the quadratic 
residue obtained from z by repeating the Y'operator m times). Then 

(See example in the  Appendix.) 

Computing RN(Zm , z )  reduces to computing i t  modulo each of the factors (i.e. computing 
Rp (2'" ,t) and R, (2"' , z )  ) and applying the Chinese Reminder Theorem. Ra the r  than  
computing R, (2"' ,z)  by successive applications of Y', we compute i t  by one exponentia- 
tion: 

(Pre)-compute, inv, ( 2 ) = ( p  +1)/4, the "inverseJ' of '2 modulo # ( p  ) = p  -1. 

(Note tha t  R, (2 , z )=t inUp( ' ) . )  

(Pre)-compute, inv, (2m)=(invp (2))"' mod p -1, the "inverse" of 2" modulo + ( p  ). 
inu, (2"' ) 

Compute r p =  J ( m o d  PI- 
(Clearly, tp  =R,  (2"' , z ) . )  

Thus, computing F-' reduces to a constant number of modular exponentiations. 

5 .  Conclusions 

Incorporating the  two modifications into the GMR signature scheme, we get a scheme 
which is as secure as the original one, and is both "memoryless'J and "practical". (It is 
important to note t h a t  assuming the intractability of factoring, pseudorandom functions 

f can be implemented, and t h a t  evaluating f ( p )  can be done in n 3 .  I p I steps. Also 
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note that the length of the argument to f is k=( l~g ,n )~ . )  

The “dependency on the past” in the original GMR scheme has nothing to d o  with 
the resolution of the “Paradox” mentioned in [GMR]. The paradox is resolved by observ- 
ing tha t  the adversary is uniform, while the real signer is, %on-uniform”. For further dis- 
cussion see [GMR]. 

Throughout this note, we have implicitly assumed that the length of the  message to 
be signed is linear in the  security parameter ( n ) .  However, the GMR scheme works also if 
this is not the case, while the  running time (naturally) increases. In case we are using the 
factoring-based implementation and the message has length m >>n , the signing time 
increases by an additive term of 0 ( m  . n )  and the verification time increases by an addi- 
tive term of 0 ( m  q.3. A different approach suggested recently by Damgard is to first 
hash the message using collision free  hash functions and then to sign the hashed value [D]. 
Interestingly, Damgard also shows that such hash functions can be constructed based on 
the existence of any pair of clawfree permutations. 
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APPENDIX 

Recall the definition of F-'(aJz ) 
F-'(u1a2--u, 2 )  = f 0 1  -' (f "2 -' (--f 0, -l ( z)..-)) 

and 
f 0' (z)=& and f 1' ( z ) = m ,  

where &- is the square root of z which is a quadratic residue modulo N .  

Let us consider the case where the  length of Q is 2. We get, 


