
Two Remarks Concerning
the Goldwasser-Micali-Rivest Signature Scheme

Oded Goldreich
Computer Science Department
Technion, Haifa 32000, Israel

ABSTRACT

The focus of this note is the Goldwasser-Micali-Rivest Signature Scheme (presented
in the 25th FOG’S, 1984). T h e GMR scheme has the salient property that, unless factoring
is easy, i t is infeasible to forge any signature even through an adaptive chosen message
attack. We present two technical contributions with respect to the GMR scheme:

1) T h e GMR s c h e m e c a n be made totally “memoryless”: Tha t is, the signature gen-
erated by the signer on message M does not depend on the previous signed messages.
(In the original scheme, the signature to a message depends on the number of me*
sages signed before.)

The GMR s c h e m e c a n be implemented almost as e f ic ient ly as the RSA: T h e original
implementation of the GMR scheme based on factoring, can be speeded-up by a fac-
tor of 1 N I . Thus , both signing and verifying take time 0 (1 N 310g2 I N I). (Here
N is the moduli.)

2)

1. Introduction

In 1984, Goldwasser, Micah and Rivest presented a signature scheme robust against
adaptive chosen message attack [GMR]: no adversary who f i r s t receives signatures t o mes-
sages of his choice, c a n later create a signature of even a single additional message. The
scheme uses two pairs of trapdoor permutations, and is proven to be secure (in the above
sense) if these pairs have a certain clawfree property (i.e. it is infeasible to find z and y
such that f ~ (z) = f I (y)) . I t was shown that the intracability assumption of factoring
implies the clawfree condition, and thus a concrete factoring-based implementation was
presented.

Work done while au tho r was in t h e Laboratory for Computer Science, MIT.
Partially supported by a Weizmann Postdoctoral Fellowship, an LBM Postdoctoral Fellowship, and NSF G r a n t DCR-8509905.

A.M. Odlyzko (Ed.): Advances in Cryptology - CRYPT0 ’86, LNCS 263, pp. 104-110, 1987.
0 Spnnger-Verlag Berlin Heidelberg 1987

105

The original GMR scheme suffers from two aesthetic drawbacks:

1) The signature scheme is not completely L‘memoryles”’. Tha t is, the signature gen-
erated by the signer slightly depends on the previous signed messages.

T h e signing process in the suggested factoring-based implementation is too slow. Let
n be the security parameter (i.e. the length of the moduli), then signing takes more
than n 4 steps (as opposed to n3 steps in the RSA).

2)

In this note we suggest a modification of the abstract GMR scheme, and a speed-up in its
factoring-based implementation. These suggestions eliminate both drawbacks listed above,
while maintaining the security of the original scheme. Tha t is, the modified scheme is
totally “memoryless”, and i t s implementation using factoring is almost as fast as t h e RSA
(while being much more secure than RSA!).

The rest of this no te is organized as follows. In section 2 we briefly review the GMR
signature scheme. T h e reader is encourage to consult the original paper [GMR] for a more
complete exposition of the GMR scheme. (This reference is also an excellent source for a

critical review and a historical account of the problem of obtaining digital signatures.) In
section 3, we present a modification which makes the GMR scheme “memorylessJ’. In sec-
tion 4, we present a speed-up in the factoring-based implementation of the GMR scheme.
Our conclusions are presented in Section 5.

2. Overview of the GMR Scheme

The GMR scheme is basically a two-stage authentication process. First the signer’s
entry in the public file is used to authenticate a random point of reference (hereafter
called REF). Next this REF is used to authenticate the message in a bit-by-bit manner.
The same REF is never used to authenticate two different messages. The scheme utilizes
two pairs of trapdoor clawfree permutations, denoted (f o,f and (go,gl). T h e f -pair is
used for the first stage (authentication of the REF), while the g -pair is used for t h e second
stage (authentication of the message).

The REFS are generated from the public file by using a tree structure (hereafter
called the REF tree). T h e same REF tree is used to sign all messages. The root of the
REF tree contains par t of the signer’s (entry in the) public file. Each internal node in the
REF tree has a constant number of children (say three). Leaves in the R E F tree are used
to authenticate messages (in the second stage of the signing process). It was originally pro-
pcsed [GMR] t ha t only the third node of each internal node be a leaf, while the other chil-
dren be potential internal nodes. As we will see in the sequel, this particular tree structure
(for the REF tree) is no t essential.

Authentication of the nodes in the REF tree is done successively: each node is
authenticated by its father in the tree. A crucial detail in the GMR scheme is the manner

106

in which one REF authenticates i ts children. Each REF is partitioned into five parts: its
“name” (denoted z) , the names of its children (denoted y1,yZ,y3), and a “tag” (denoted

t) binding them all together. T h e tag is computed using the first pair of (trapdoor) claw-
free permutations f 0 and f ’, through what is called an authentication step.

Let F-’(o , z)=~ a’ (z), for every u E {0,1}.
every a E {0,1} and a E {0,1}*.
Then the five par t s of the REF satisfy t =F-1(y1y2y3 , z).

Let ~-’(cra,z)=~-’(a,j ;‘(z)), for

(The REF tree should not be confused with the treelike nature of the authentication
step.)
The autheatication of the message, in the second stage, consists of a single authentication
step tha t uses the g-pair . This authentication step binds the message m (to be signed) to
a leaf in the REF tree. T h e tag t binding the leaf named z with the message m satisfies
t =G-’(m ,z), where G-’ is defined analogously to F-’ based on the permutations go and

9 1.

To sign a new message, m , the signer identifies a leaf tha t was not used SO far
(named 2). If no such leaf exists, the signer identifies an unused internal node named 2
(i.e. a node which is a potential internal node but has no children yet), randomly selects
names for its children (y1,y2,y3) , computes a tag binding the children to their father (i.e.
uses the trapdoor information to compute t =F-’(yly2y3 , z)), stores the names of the
children, and sets z =y3. T h e signer retrieves (or recomputes) the tags for all the authen-
tication steps leading from the root of the REF tree to the leaf named z . (It is crucial
that, in all s-s produced, the same names are used for the same nodes.) Th i s com-
pletes the first stage of the signing process. Next the signer uses the trapdoor information
(for the pair g o and gl) to compute the tag G-’(m , z) . The signature consists of the list of
all authentication steps mentioned above (corresponding to a path from the root to a leaf
and an extra step authenticating the message by the leaf).

To verify the validity of a signature, the verifier checks that the list corresponds to a
path from the root t o a leaf, and that all tags along this path are valid. T o validate
t =F-’(a,z), the verifier computes F (a , t) and compares it to z .

3. Making the GMR Scheme Memoryless

.k hinted in the outline of the GMR scheme, the particular way of using the nodes in
the REF tree is not essential to the scheme. In the original scheme, the nodes were used
in a “greedy” manner so to minimize the length of the first signatures. The drawback in
that suggestion is t h a t it was required to remember the identity of the last node used for
message authentication (i.e. to store the number of messages signed so far). Our aim is to
eliminate the dependency of the next signature on the past. Thus, we suggest to use the
REFS in the tree differently than in the original scheme.

107

Let n be the security parameter, and let k=(log,n)*. For message authentication

(second stage), we will use only the REFS in the k t h level of the REF tree. In other
words, the REF tree will be a full binary tree of depth k . The key idea is to use a ran-
domly chosen (k-level) leaf in order to authenticate a new message. With very high proba-
bility, we will never use the same leaf twice (in the second stage). This is the case since
2k was chosen to be much larger than the number of messages to be ever signed.

The last detail to be mentioned is that the names of the nodes in the REF tree
should be generated using a pseudorandom function (applied to the location of the node),
rather than randomly. This way, we guarantee that the same names are always used for
the same nodes, without having to store these names. (The idea to use pseudorandom
functions to eliminate this par t of the storage requirement in the GMR scheme was sug-
gested by Leonid Levin.) Assuming the existence of one-way permutations, pseudorandom
functions can be efficiently constructed [GGM].

Proving t h a t the modified signature scheme is as secure as the original scheme
requires a two-step argument. First, one should consider a hybrid scheme where the
names of the nodes in the REF tree are generated randomly as in the original scheme. The
proof of security for this scheme is conceptionally identical t o the proof presented in
[GMR], and is only a little more involved in details. Next, one uses the polynomially
indistinguishability of the pseudorandom functions (from random functions), to show tha t
the proposed scheme is as secure as the hybrid scheme.

Remark: the identity of the (k-level) leaf to be used can be computed by applying a
pseudorandom function to the message to be signed. Thus, no coin tosses are required
during the signing process. One can easily show that the security feature is preserved.

4. Speeding-up the Singing P r o c e s s in the Factoring Based I m p l e m e n t a t i o n

The computational bottleneck in the signing/verifying process are, respectively, the
computation of F-'(.;) given the trapdoor and the computation of F(.;). In the

factoring-based implementation presented in [GMR], F-'(.;) was computed in I N I
steps, while F (. , -) was computed in 1 N I steps, where ,V is the modulus in use. In this
section we show how to compute F-' in I N I steps.

In the implementation based on factoring, N = p q is the product of two primes satis-
fying p zz q = 3 (mod 4) and p # q (mod 8). This way, each quadratic residue mod
has a unique square root which is a quadratic residue itself, and neither +2 nor -2 is a
quadratic residue mod N. f are defined to be permutations over the set of qua-

dratic residues mod -V :

and f

f O (Z) = 5 2 (mod Ri)

108

and
f '(2) = 4.2' (mod N).

Let denote the square root of 2 which is a quadratic residue mod N . Thus ,
f {' (z)=& and f <' (z) = q . Note that # 2 (moh N). This observation is the
key for proving tha t , unless factoring is easy, the permutations f and f defined above

constitute a pair of (trapdoor) clawfree permutations. For more details see [GMR].

Recall the definition of F-'(a,z)
F-l(qr*-Q, , z) = f .;' (f .;' (.-f .;' (z)...))

The obvious way to compute F-'(cY,z) is by successively taking square roots. This
results in e(I CY I) exponentiations. We present an alternative and faster way for comput-
ing F-'(a,z). This way requires only a constant number of exponentiations, and is based
on the following observation:

Let m denote the length of a, and i (a) denote the integer naturally encoded by the
string CY. Let R N (2 " ' , z) denote the Zmth root of J modulo N (i.e. the quadratic
residue obtained from z by repeating the Y'operator m times). Then

(See example in the Appendix.)

Computing RN(Zm , z) reduces to computing i t modulo each of the factors (i.e. computing
Rp (2'" ,t) and R, (2"' , z)) and applying the Chinese Reminder Theorem. Ra the r than
computing R, (2"' ,z) by successive applications of Y', we compute i t by one exponentia-
tion:

(Pre)-compute, inv, (2) = (p +1)/4, the "inverseJ' of '2 modulo # (p) = p -1.

(Note tha t R, (2 , z)=t inUp(') .)

(Pre)-compute, inv, (2m)=(invp (2))"' mod p -1, the "inverse" of 2" modulo + (p).
inu, (2"')

Compute r p = J (m o d PI-
(Clearly, tp =R, (2"' , z) .)

Thus, computing F-' reduces to a constant number of modular exponentiations.

5 . Conclusions

Incorporating the two modifications into the GMR signature scheme, we get a scheme
which is as secure as the original one, and is both "memoryless'J and "practical". (It is
important to note t h a t assuming the intractability of factoring, pseudorandom functions

f can be implemented, and t h a t evaluating f (p) can be done in n 3 . I p I steps. Also

109

note that the length of the argument to f is k=(l~g ,n)~ .)

The “dependency on the past” in the original GMR scheme has nothing to d o with
the resolution of the “Paradox” mentioned in [GMR]. The paradox is resolved by observ-
ing tha t the adversary is uniform, while the real signer is, %on-uniform”. For further dis-
cussion see [GMR].

Throughout this note, we have implicitly assumed that the length of the message to
be signed is linear in the security parameter (n) . However, the GMR scheme works also if
this is not the case, while the running time (naturally) increases. In case we are using the
factoring-based implementation and the message has length m >>n , the signing time
increases by an additive term of 0 (m . n) and the verification time increases by an addi-
tive term of 0 (m q.3. A different approach suggested recently by Damgard is to first
hash the message using collision free hash functions and then to sign the hashed value [D].
Interestingly, Damgard also shows that such hash functions can be constructed based on
the existence of any pair of clawfree permutations.

ACKNOWLEDGEMENTS

Section 4 is joint work with Shafi Goldwasser. I would like to thank her for the colla-
boration, and for the permission to present the result here. I would also like to thank
Louis Guillou for suggesting a simplification in the presentation of this result.

I am grateful to Shafi Goldwasser, Silvio Micali and Ron Rivest for many illuminat-
ing discussions concerning their signature scheme.

REFERENCES

[D] Damgard, I.B., “Collision Free Hash Functions and Public Key Signature
Schemes”, manuscript, 1986.

Diffie, W., and Hellman, M.E., “New Directions in Cryptography”, IEEE Trans.
on Inform. Theory, Vol. IT-22, No. 6, November 1976, pp. 644-654.

[GGM] Goldreich, O., S. Goldwasser, and S. Micali, “How to Construct Random Func-
tions”, Proc. of 25th Symp. on Foundation of Computer Science, 1984, pp. 464479.

To appear in Jour. ofACM.

Goldwasser, S., S. Micali, and R.L. Rivest, “A Paradozical Solution to the Signa-
ture Problem”, Proc. of 25th Symp. on Foundation of Computer Science, 1984, pp.
441-448. A better version is available from the authors.

Rivest, R.L., Shamir, A., and Adleman, L., “A Method for Obtaining Digital Sig-
natures and Public Key Cryptosystems”, Comm. of the ACM, Vol. 21, February
1978, pp. 120-126.

[DH]

[GMR]

[RSA]

110

APPENDIX

Recall the definition of F-'(aJz)
F-'(u1a2--u, 2) = f 0 1 -' (f "2 -' (--f 0, -l (z)..-))

and
f 0' (z)=& and f 1' (z) = m ,

where &- is the square root of z which is a quadratic residue modulo N .

Let us consider the case where the length of Q is 2. We get,

