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Abstract

The goal of this paper is to introduce a simple verifiable secret sharing scheme, and to improve the efficiency
of known secure multiparty protocols and, by employing these techniques, to improve the efficiency of
applications which use these protocols.

First we present a very simple Verifiable Secret Sharing protocol which is based on fast cryptographic
primitives and avoids altogether the need for expensive zero-knowledge proofs.

This is followed by a highly simplified protocol to compute multiplications over shared secrets. This is a
major component in secure multiparty computation protocols and accounts for much of the complexity of
proposed solutions. Using our protocol as a plug in unit for known protocols reduces their complexity.

We show how to achieve efficient multiparty computations in the computational model, through the application
of homomorphic commitments.

Finally, we borrow from other fields and introduce into the multiparty computation scenario the notion of
fast-track computations. In a model in which malicious faults are rare we show that it is possible to carry
out a simpler and more efficient protocol which does not perform all the expensive checks needed to combat
a malicious adversary from foiling the computation. Yet, the protocol still enables detection of faults and
recovers the computation when faults occur without giving any information advantage to the adversary. This
results in protocols which are much more efficient under normal operation of the system i.e. when there are
no faults.

As an example of the practical impact of our work we show how our techniques can be used to greatly improve
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1 Introduction
The past twenty years have witnessed an exciting development of research in the area of cryptography and
network security. From the introduction of public-key cryptography [DH76, RSA78], to the invention of zero-
knowledge proofs [GMR89], to the definition of the problem of secure multiparty computation and the somewhat
surprising proof that any multiparty computation can be performed securely [Yao82, GMW87, BGW88, CCD88].
The combination of these results is extremely powerful, as they show that virtually any cryptographic problem
can be solved under some reasonable appropriate assumptions.

Althoughtheoretically impressive, these results lack in the area of practical feasibility. In today’s applications
even a simple public-key operation is sometimes considered too slow in comparison to the speed required by
the application. Thus, the complicated exchanges of messages and zero-knowledge proofs in protocols like
[Yao82, GMW87, BGW88, CCD88], might render them impractical. Thus, it is a high priority to optimize such
techniques. Yet, they do provide for a sound basis for our solutions, in particular we will draw heavily on the
solution introduced in [BGW88].

For the problem of verifiable secret sharing, attempts have been made to simplify the protocols by moving
into the computational model. Such results were achieved by Feldman and Pedersen [Fel87, Ped91a], and in
fact exhibit improved results with respect to communication.

We shall concentrate in this paper on the problems of verifiable secret sharing and multiparty computations.
The inefficiency of the general secure multiparty protocols is partially caused by the “generality” of the algorithms.
Thus, optimization can be achieved in (at least) two ways. One is to tailor protocols to the specific problem
at hand. Examples of this kind of approach include works on threshold cryptography (see Section 6) where
efficient multiparty computation protocols are devised for the task of shared generation of digital signatures.

Another possible approach, the one which we follow in this paper, is to go back to the original works
and see if their efficiency can be directly improved. If one can devise general techniques to improve on the
computation/communication of secure multiparty protocols it is also likely that these techniques would improve
the efficiency of “ad-hoc” optimizations.

OUR CONTRIBUTION. In this paper we present new algorithms to perform specific computations more efficiently.
Furthermore, we initiate new modes of operation to enhance overall performance. The major contributions can
be summarized as follows:� A new simple and efficient design for Verifiable Secret Sharing scheme� Computational simplifications of the Ben-Or et al. [BGW88] protocol� Efficient multiparty computations in the computational model� Expediting computations through the notion of “fast-track”� Applying all the above to a specific cryptographic problem
VSS. The first algorithm is a very simple and efficient Verifiable Secret Sharing protocol (Section 2). The
main novelty of our protocol is that it is based on an efficient commitment scheme and it avoids altogether
the expensive zero-knowledge proofs, which are usually carried out to ensure the correctness of actions of
the participants in the protocol. Our protocol improves considerably over all existing verifiable secret sharing
schemes, either in communication and/or in computation.
COMPUTATIONAL SIMPLIFICATIONS. The second protocol is a highly simplified protocol to compute multipli-
cation over shared secrets. That is, in the model where there are two secrets a and b which are shared
distributively among a set of n players, the protocol enables the players to secretly compute the product ab. This
protocol can be used in any existing multiparty computation protocol. For example when used inside [BGW88]
it improves the speed of the computation of a multiplication gate by a factor of at least 2. When used inside our
general multiparty protocol, gains are even greater.
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EFFICIENT PROTOCOLS COMPUTATIONAL MODEL. We achieve efficient multiparty computations using construc-
tions based on homomorphic commitments. Some of these techniques have been independently devised by
[CDM97], yet they use them in the context of span programs.
FAST-TRACK. The following observation leads to an additional contribution. Secure multiparty protocols pay a
heavy cost in terms of communication/computationin order to guarantee robustnessagainst malicious adversaries
who may cause players to behave arbitrarily during the protocol. It is a well-known phenomenon that “private”
computations (i.e. secure only against passive adversaries) are usually much simpler and efficient, as they
eliminate all verification of proper conduct.

Typically, however, one can expect malicious faults to happen quite rarely. Consider for example a very
sensitive distributed signature generation system (like a root certification authority) where the servers are heavily
protected by firewalls and other security mechanisms. In this case one cannot rule out malicious faults (and thus
cannot blindly use the simpler private protocols), but on the other hand would like to take advantage in some
way of the fact that faults are rare.

We would like to build on the efficiency of private protocols, which operate under the assumption that no
faults occur, while avoiding the trap of assuming that you can execute the private computation until a fault occurs
and then re-compute. Indeed such a computation might turn out to be insecure, and expose secret information.

Thus, we borrow from other fields and introduce into the multiparty computation scenario the notion of fast-
track computations. The idea is to avoid carrying out all the verification steps, but rather to identify “critical”
verification points. Only at these critical points some verification will be carried out. Once the verification is
carried out in a critical point we are guaranteed that the computation up to this point is correct. These critical
points must be chosen in such a manner that if faults occur between two consecutive critical points c1 and c2,
where c2 is a later point in the protocol, then the faults will be detected at point c2. Furthermore, recomputing
the section from critical point c1 to c2 will not violate the security of the computation. Thus, if no faults occurred
between c1 and c2 we “saved” all the verifications which should have been carried out between these two points.

An attractive feature of our approach is that most of the verification at the critical points will not be the
standard verification steps of the protocol, but rather a subset of the verification steps which should have been
computed. For example in the general multiparty computation of an arithmetic circuit, critical points are placed
on multiplications gates. At these gates we need to verify only one VSS compared to, for example, [BGW88]
where O(n) such VSS’s must be checked (at least one for each player).
APPLICATIONS. As an example of the practical impact of our approach, we present its application in the area of
threshold cryptography. We show that existing threshold signature protocols can be greatly enhanced in speed
using our techniques. We exemplify this over the threshold DSS protocol of [GJKR96b]. The improvements
are quite substantial. We improve the fault-tolerance from n=4 to n=2 without increasing the communication
or the computational complexity, thanks to our simplified VSS and multiplication protocols. We also present a
fast-track version of the protocol which requires >from each server a factor of n modular exponentiations less
than a fully fault-tolerant protocol (e.g. in [GJKR96b]) (see Section 6).

2 Verifiable Secret Sharing Made Very Simple
Since the appearance of Shamir’s [Sha79] and Blakley’s [Bla79] seminal papers on secret sharing which
introduced the notion of sharing a secret and gave very simple solutions to the problem, the research on
this topic has been extensive. These two solutions worked in the model where there are no faults in the
system. Tompa and Woll [TW88] and McEliece and Sarwate [MS81] gave the first (partial) solutions for a
model with faults. Finally the paper of Chor et al. [CGMA85] defined the complete notion of Verifiable
Secret Sharing (VSS), and gave a solution. Under various assumptions, solutions to the problem were given
[CGMA85, GMW91, Fel87, BGW88, CCD88, RB89, Ped91a]. In order to achieve the goal of verifiability,
these protocols deviate from the original solutions’ simplicity. They require either heavy computations and/or
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extensive zero-knowledge proofs of proper conduct. Furthermore, in order to reconstruct the secret there is again
a need for extensive computations.

In this section we will describe a VSS protocol which returns to the original simplicity of Shamir’s scheme,
furthermore the implementation requires very little computational and communication overhead (both for sharing
and reconstructing). This simple solution is enabled through an observation that all existing protocols achieve
much more than is required, and by eliminating all the overhead, efficiency can be regained.

In Appendix A we present Shamir’s Secret Sharing, and in Appendix B a definition of verifiable secret
sharing due to [FM].

2.1 Our VSS protocol
We now proceed to describe a protocol which satisfies the above definition of VSS. It will be based on Shamir’s
secret sharing, with an additional low cost added construction. This construction will basically be an efficient
commitment of the dealer to each one of the shares held by the players. The commitment to shares as a whole
commits the dealer to a single secret. The individual commitments can be opened as we have enough good
players who will expose their values and, through those, verify all other commitments. Our VSS protocol appears
in Figure 1. In order to construct our protocol we need some form of commitment which satisfies the following
conditions. We shall denote our commitment function byH. It will be a randomized function which will receive
as input the secret value x and a random value r.

secrecy given H(x; r) it is infeasible to compute any information about x
collision resistance it is infeasible to find two strings x1; r1 and x2; r2 such that H(x1; r1) = H(x2; r2)
universal verifiability given x; r and y everybody can verify if y = H(x; r) (i.e. the computation of H does

not require knowledge of a secret key).

For example one could conjecture that H(x; r) =SHA-1(x; r).
Theorem 1 The protocol New-VSS in Figure 1 is a VSS protocol.

Proof appears in Appendix C.

EFFICIENCY AND SECURITY. IfH is implemented via a cryptographic hash function (e.g. H(x; r) =SHA-1(x; r))
then we would like to stress the efficiency of the above VSS protocol. During the sharing phase the dealer has
to compute n executions of the function H while each player computes a single evaluation, and each such
computation is highly efficient. During the recover phase each player has to compute the hash n times. No
costly modular exponentiations or complex ZK proofs are required.

The security of H(x; r) =SHA-1(x; r) can however be only conjectured on the basis of the collision
resistance of SHA-1. However if one wants provable security without losing in efficiency one can use the
efficient provably secure commitment scheme of [DPP96] based on collision resistant hashing.

2.2 Previous approaches
Almost all the VSS protocols in the literature (with the curious exception of the first one [CGMA85]) are based on
Shamir’s protocol. On top of that they add some proof from the dealer that the values shared lie on a polynomial
of degree t, thus ensuring that the shares identify a unique secret. We refer to this property as the VSPS property,
which will be defined more rigorously later.

In [GMW91] the shares are encrypted and then the VSPS property is proven via a “generic” zero-knowledge
(ZK) proof of an NP-complete problem. The public knowledge of the encrypted shares also prevents bad players
from contributing bad shares during reconstruction. This approach is made more efficient in [Fel87, Ped91a]

3



Verifiable Secret Sharing

Sharing Phase

1. Protocol for Dealer on input a secret s:� Randomly choose polynomials f(x) = atxt + :::+ a1x+ s, and r(x) = rtxt + :::+ r1x+ r0.� Compute and hand player Pi the values �i def= f(i) and �i def= r(i), for 1 � i � n� Compute and broadcast the value Ai def= H(�i; �i), for 1 � i � n
2. Player Pi verifies that Ai = H(�i; �i). If the equation does not hold then he broadcasts a complaint against the

dealer.
3. If player Pi broadcasted a complaint then the dealer broadcasts the values �i; �i, s.t. H(�i; �i) = Ai.
4. If the dealer does not follow some step he is disqualified, otherwise conclude that a secret has been shared.

Reconstruction Phase

1. Each player broadcasts the values �i; �i.
2. Take t + 1 broadcasted values for which Ai = H(�i; �i) and interpolate polynomials f̂ (x) and r̂(x) of degree at

most t that pass through those points.
3. Compute �̂i = f̂ (i) and �̂i = r̂(i) and verify that Ai = H(�̂i; �̂i) for all i. If yes, output f̂ (0) else output 0.

Figure 1: New-VSS: - Sharing and Reconstruction Protocols

where the dealer publicly commits to the polynomial using some form of “homomorphic” commitment scheme.
These commitments in return provide for a simpler proof of the VSPS property.

In [BGW88, CCD88, Rab94] the model assumes a computationally unbounded adversary, disabling the use
of encryption. In this case the ZK proof is done via a cut-and-choose approach. Correction of bad shares during
recover is done via error-correcting codes [BGW88, CCD88] or via a mechanism of mutual authentication
[Rab94].

Is there a trend developing in all these solutions which explains why our solution is so simple? The answer
is yes. The above mentioned results achieve more than just having the dealer commit to a single value. Indeed
the dealer commits to a polynomial of degree t, where the intended secret is the free term of this polynomial.
This additional commitment apparently complicates the protocol, and adds computations, and is not necessary
in order to achieve the sole goal of verifiable secret sharing. Indeed our protocol shows that it is possible to
commit to a single value without committing to the full polynomial. We will refer to the above protocols with
the new name of Verifiable Secret and Polynomial Sharing (VSPS).

Definition 1 We say that � is a Verifiable Secret and Polynomial Sharing protocol (VSPS) if the following
properties hold for any adversaryA:
1. The protocol is a Verifiable Secret Sharing
2. VSPS property If the value set by the VSS is � then there exists a polynomial f(x) of degree at most t, such
that f(0) = � and player Pi knows the value f(i).
In Section 4.2.1 we will provide a method to enhance our VSS scheme by adding the VSPS property.

As we will see later VSPS protocols are important as a tool for multiparty computation, due to their structural
homomorphic properties. However, they are an overkill for a single VSS. And indeed there are several
applications, such as storing important information for back-up in a distributed fashion on insecure devices,
where there is a need only for VSS without a requirement to compute on the shares.
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3 Simplification to Secure Multiparty Computations
We consider the problem of secure multiparty computation [Yao82, GMW87, BGW88, CCD88]. There aren players P1; : : : ; Pn. Player Pi holds an input xi and the players want to compute a function F (x1; : : : ; xn)
in a secure manner, which intuitively means that the adversary cannot disrupt the computation, i.e. the value
computed is correct, furthermore the adversary does not learn any information about the inputs of the good
players (except for what is revealed by the function value).

MODEL AND DEFINITIONS. We consider a synchronous model with private channels and broadcast (e.g.[RB89,
Bea89]). The parties engage in a distributed computation, following a protocol �, in order to evaluateF (x1; :::; xn). We assume that there is an adversary A that corrupts up to t players and coordinates their actions
in an arbitrary manner. The adversary we consider is static i.e. it decides which players to corrupt at the
beginning of the computation. Also our adversary is computationally unbounded. We follow formal definitions
of secure multiparty computations that have appeared in several papers [MR91, Bea91, CFGN96, Can95].

In this section we will describe two simplifications to the [BGW88] protocol, and in particular to the
multiplication protocol. We first describe an algebraic simplification followed by a simplified zero-knowledge
proof for a specific property.

3.1 Algebraic Simplification for Multiplication Protocol

In the following we shall present a simple method for computing the multiplication of two secrets which are
distributed among a set of players.

Given two secrets � and � shared by polynomials f�(x) and f�(x) respectively of degree t, the players would
like to compute the product ��. In their seminal paper Ben-Or et al. [BGW88] note that it isn’t sufficient for
each player to locally multiply his shares of both secrets, as this generates a polynomial whose constant term is
the desired one, i.e. ��; but it is of degree 2t and is not a random polynomial. To overcome this they introduced
a degree reduction and randomization protocols. We will show how to achieve both the degree reduction and the
randomization in a single step. This building block can be substituted for the multiplication step in the protocol
of [BGW88], as it works in the same model of computation. The computation in this section is described under
the assumption that all players act properly (as has been said, methods for how to remove this assumption appear
in the next section).

Denote by f�(i) and f�(i) the shares of player Pi on f�(x) and f�(x) respectively.

The product of f�(x) and f�(x) is f�(x)f�(x) = a2tx2t + :::+ a1x+ �� def= f��(x). For 1 � i � 2t+ 1,f��(i) = f�(i)f�(i). Thus we can write266664 1 1 � � � 11 2 � � � 22t
...1 2t+ 1 � � � 2t+ 12t 377775 266664 ��a1

...a2t 377775 = 266664 f��(1)f��(2)
...f��(2t+ 1) 377775

Denote the above matrix by A. This is a 2t+1 by 2t+1 Van der Monde matrix, hence non-singular and has
an inverse. Let the first row of the inverse matrix, A�1, be (�1; :::; �2t+1), note that these are known constants.
Then the previous equation implies that �� = �1f��(1) + :::+ �2t+1f��(2t+ 1).

Given polynomials h1(x); :::; h2t+1(x) all of degree t which satisfy that hi(0) = f��(i) for 1 � i � 2t+ 1,

define H(x) def= P2t+1i=1 �ihi(x). Note that H(0) is exactly �1f��(1) + :::+ �2t+1f��(2t+ 1) and hence ��.
Furthermore, H(j) =P2t+1i=1 �ihi(j):

The polynomial H(x), used for the sharing of �� is automatically of degree t. It is random because the�i are non-zero (easy to check by inspection) and there are n � t polynomials hi(x) chosen by good players,
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and hence at random. Thus, the sharing of �� by a random polynomial of degree t can be achieved directly
following Protocol Simple-Mult in Figure 2.

Simple-Mult

Input of Player Pi: The values f�(i) and f�(i)
1. Player Pi shares the value f�(i)f�(i) by choosing a random polynomial hi(x) of degree t, such that hi(0) =f�(i)f�(i). He gives player Pj the value hi(j) for 1 � j � 2t+ 1.

2. Each player Pj computes his share of �� via a random polynomial H, i.e. the value H(j), by locally computing
the linear combination H(j) =P2t+1i=1 �ihi(j).

Figure 2: Simplified Multiplication Protocol with honest players

Theorem 2 Protocol Simple-Mult is a secure multiplication protocol in the presence of a passive adversary
computationally unbounded.

In order to tolerate an active adversary there is a need to verify the actions of the players. [BGW88] uses a
computationally expensive protocol to do this (which could be combined with Simple-Mult). However, we were
able to simplify this protocol as well, and greatly improve its efficiency. The description of our simplification
appears in Appendix D.

4 Computations with a Polynomial Time Adversary
In this section we describe how to carry out multiparty computations in the presence of a computationally
bounded adversary. It is well known that in this model there exist VSS protocols due to Feldman [Fel87] and
Pedersen [Ped91a] which are quite efficient and require limited interaction. We will show that is possible to use
these kind of VSS protocols, including our New-VSS, to perform multiparty computations efficiently.

The basic idea is to use a homomorphic commitment (see Section 4.1) to commit to the sharing of the inputs
during the VSS. The computation will then follow the [BGW88] paradigm. Additions are computed locally by
just summing up the shares of the secret values being added. For multiplication we run a robust version of the
simplified multiplication protocol Simple-Mult presented above. But we will use the public commitments over
the inputs to enforce correct behavior on the part of the players.

This idea originated in [CCD88] in the information-theoretic model, where such “commitments” were
achieved by a second layer of input sharings. In the cryptographic model we use homomorphic commitments to
generate the same effect. Some of these techniques have been independently devised by [CDM97], yet they use
them in the context of span programs.

In the following sections we will concentrate on the multiplication protocol. Given two secrets � and �
shared via some form of VSS, which generated some representation of the secrets, we want to compute a sharing
of  = �� resulting in the same representation. By representation we mean either the commitment to the
coefficients or the commitment to the points of the polynomial. Player Pi holds shares �i; �i of � and � (resp.).
In order to get a robust version of the multiplication protocol described in Section 3 we need to enforce that Pi
shares the product �i�i via a polynomial of degree t.
4.1 Homomorphic Commitments
The approach we follow requires the usage of homomorphic commitments. Denote by H(�; �) a commitment to� with randomness �. We shall say that it is a homomorphic commitment if it has the following property: givenA1 = H(�1; �1) and A2 = H(�2; �2) it holds for some � that: A1 �A2 = H(�1 + �2; �)
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In our protocols we also need a ZK proof for the following: A prover P publishes three commitments:A = H(�; �),B = H(�; �) and C = H(��; �) and wants to prove in ZK to a verifier V thatC is a commitment
to the product of the committed values in A and B (see Appendix F).

POLYNOMIAL EVALUATIONS. Assuming a polynomial f(x) = atxt+ :::+a1x+a0, the following two operations
can be carried out:� if the coefficients of the polynomial are committed to using the above scheme, then directly from these

commitments we can compute commitments to the value f(i), for 1 � i � n, in the following we will
call this procedure “evaluation in the exponent”.� and reversely, given commitments to f(i), for 1 � i � n, it is possible to compute commitments to the
coefficients of the polynomial, in the following we will call this procedure “interpolation in the exponent”.

Both of these computations are possible as there is a linear relation between the coefficients and the evaluated
points thus, due to the homomorphic properties of the commitment, the computation can be carried out in the
exponent.

Homomorphic commitments based on general computational assumptions have been recently introduced and
studied by Cramer and Damgard [CD97]. The ZK proof in Appendix F is also due to them. For simplicity of
exposition we will use a specific commitment scheme due to Pedersen described below. However the reader
should keep in mind that any of the commitments in [CD97] will do.

Let p and q be primes such that p = �q +1, where g is an element of order q in Z�p and h def= gz mod p. The
value z is unknown to the dealer and players.
Discrete Log Assumption: We assume that it is infeasible to compute discrete logarithms in the subgroup ofZ�p generated by g.
A commitment to a string � 2 Zq using a random � 2R Zq is the value A = g�h� mod p. It is proven in
[Ped91a] that this commitment is information-theoretic secure in terms of privacy and can be opened in two
different ways only by somebody who can compute z.

4.2 Multiparty Computation Using our VSS
When we introduced our VSS protocol we said that it gained in efficency because it did not satisfy the VSPS
property, i.e. the guarantee that there exists an underlying polynomial. We further said that this property is
needed for the multiparty computations of [BGW88]. Thus, if we want to use our protocol for computations we
will first need to reintroduce the VSPS property into our VSS. Yet, we add the VSPS in such a manner that our
VSS with VSPS enjoys a novel property which is that the verification of the existence of a secret is disjoint from
the verification of the VSPS property. This split will enable us to expedite our computations along the fast-track
paradigm (see Section 5). We start by showing how to verify the VSPS property followed by the presentation of
the robust multiplication gate.

4.2.1 Checking the VSPS Property
The original description of our VSS protocol simply assumed a commitment scheme, but for the multiparty
computations we will implement this commitment with the homomorphic commitment of Pedersen. Now, the
dealer will share his secret � 2 Zq in the following manner. He will choose polynomials f(x) = atxt + :::+a1x + �, and r(x) = rtxt + ::: + r0. The dealer will compute and give player Pi the values �i def= f(i) and�i def= r(i). The commitment will be done by Ai = H(�i; �i) def= g�ih�i mod p. For reasons that will become
apparent later we extend the VSS protocol by having the dealer commit also to the secret itself, which is f(x)
evaluated at 0, by publishingA0 = g�hr0 . The reconstruction phase is, in essence, as before; playerPi broadcasts�i and �i. We accept only those values that match the published commitment Ai. The polynomials f̂ and r̂ are
interpolated from the accepted values and a check is carried out that, for all i = 0; : : : ; n, Ai = H(f̂ (i); r̂(i)).
If this check succeeds then � def= hatf(0) otherwise � def= 0.
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We denote with DL-VSS the above implementation of New-VSS. Although it looks similar to Pedersen’s
VSS it differs from it because in DL-VSS the public commitments are to the points of the polynomial, while in
Pedersen’s VSS the commitments are to the coefficient. For this same reason however DL-VSS does not have
the VSPS property i.e. it does not insure that the shares lie on a polynomial of degree t.

The first method that comes to mind to verify the VSPS property, is to interpolate in the exponent the
polynomial from t + 1 values, and then to evaluate in the exponent the remaining points, and see if they match.
Yet, this solution is highly expensive in computation. We present a more efficient randomized solution.

If the A0; : : : ;An determine a unique pair of t-degree polynomials (f; r) such that Ai = gf(i)hr(i), thenA0; :::;At should define (f; r) and so should At+1; :::;A2t+1. Denote by f (1)(x) = a1;txt + : : : + a1;0,r(1)(x) = r1;txt + : : :+ r1;0 and f (2)(x) = a2;txt + : : :+ a2;0, r(2)(x) = r2;txt + : : :+ r2;0 the polynomials
defined by the first and second sets respectively. The idea of the check is to prove that for a random value � 2 Zq
we have gf(1)(�)hr(1)(�) = gf(2)(�)hr(2) (�) (1)

as h = gz this implies that f (1)(�) + zr(1)(�) = f (2)(�) + zr(2)(�): But since � is chosen at random that means
that with probability 1� tq we havef (1)(x) + zr(1)(x) = f (2)(x) + zr(2)(x) (2)

For large q the probability of error can be made negligible.
Recall that our final goal is to prove that f (1)(x) = f (2)(x) and r(1)(x) = r(2)(x). Suppose that the dealer

distributed shares such that f (1)(x) 6= f (2)(x) and r(1)(x) 6= r(2)(x), but such that Equation (2) holds. Then it
is easy to see that the dealer can compute z which contradicts the assumptions.

Thus, the whole test reduces to a local check by each player of Equation (1) for a random � 2 Zq chosen by
the player. The left side of the equation can be computed as follows:gf(1)(�)hr(1)(�) = gPtj=0 a1;j�jhPtj=0 r1;j�j =gPtj=0Pti=0 f(i)�ji�jhPtj=0Pti=0 r(i)�ji�j = Qt+1i=1(gf(i)hr(i))�i = Qt+1i=1A�ii
where �i = Ptj=0 �ji�j for appropriate Lagrange coefficients �ji. Similarly compute the right-hand side of
Equation (1). We denote with VSPS-Check the above method for verifying the VSPS property.

4.2.2 The Robust Multiplication Gate with our VSS
Let us assume that we are given two secrets � and � shared via our DL-VSS protocol with polynomialsf�(x); f�(x) (resp). Player Pi has shares �i def= f�(i) and �i def= f�(i) in addition to �i def= r(i) and �i def= s(i)
where r(x); s(x) are two random polynomials of degree t. The values Ai = H(�i; �i) = g�ih�i and Bi =H(�i; �i) = g�ih�i are public. We assume that the VSPS property of these two sharings has been checked.

The basic idea of the robust multiplication protocol is the following: each player Pi shares ci = �i�i�i via
our DL-VSS protocol, where �i is the coefficient defined in Section 3.1. If cij and �ij are the values Pi sends toPj , then Pi publishes Cij = H(cij ; �ij) = gcijh�ij .

After the sharing the players check the VSPS property for Pi’s sharing. Notice that Pi broadcasted the valueCi0 = g�i�i�ih�i0 . Pi uses this value to prove in zero-knowledge that he shared �i�i�i with respect to Ai and Bi
using the protocol in Appendix F. For any player who does not follow the protocol, all his private information is
made public through reconstruction. It is important to note that our representation of the secret as a commitment
to the points on the polynomial lends naturally to the ZK proof, as the values are already in the format needed
for the proof.

Now we are at the starting point of the multiplication operation described in Section 3.1 with the additional
property that we know that all the sharings are correct. Thus, each player locally sums the shares which he has
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received from all the other players in order to compute i = P2t+1j=1 cji and �i = P2t+1j=1 �ji. Furthermore, the
public information corresponding to this new share is generated: Ci = H(i; �i) = gih�i = Q2t+1j=1 Cji. The full
protocol appears in Figure 3 and is denoted Mult.

Mult: Robust Multiplication

Input of player Pi: values �i = f�(i), �i = f�(i), �i = r(i), �i = s(i).
Public input: Ai = H(�i; �i) = g�ih�i , Bi = H(�i; �i) = g�ih�i for 0 � i � n

1. Each player Pi shares �i�i�i using the DL-VSS protocol. That is set cij = f��;i(j), �ij = ui(j) where f��;i, ui
are random polynomials of degree t such that f��;i(0) = �i�i�i.
Secret information of Pi: share cji; �ji of �j�j�j
Public information: Cij = gcijh�ij for 1 � i; j � n Ci0 = gci0h�i0 for 1 � i � n

2. Players run a VSPS-Check on Pi’s sharing. If a sharing fails the test then expose the secret through the VSS
reconstruction.

3. Pi proves in zero-knowledge that Ci0 is a commitment to the product of �i�i�i using the ZK proof from Appendix
F. Expose the values of the players who fail the proof.

4. Player Pi computes i = P2t+1j=1 cji which is a share of  = �� via a random polynomial of degree t. Compute

also �i =P2t+1j=1 �ji and Cj = H(j ; �j) = gjh�j = Q2t+1l=1 Clj , for 1 � j � n.
Secret information of Pi: share i
Public information: Ci for 1 � i � n

Figure 3: Robust multiplication protocol using DL-VSS

Theorem 3 Under the the discrete log assumption protocol Mult is a secure multiplication protocol in the
presence of a computationally bounded active adversary.
Plugging the above multiplication protocol into the [BGW88] construction one gets that for any function F
there exists a secure multiparty computation protocol. We note that this protocol is quite efficient in terms of
computation and communication required by each player.

4.3 Efficiency Analysis
A protocol similar to Mult using Pedersen’s VSS instead of our DL-VSS is presented in Appendix E and denoted
Ped-mult. We omit from this extended abstract the complete computational analysis of Mult, Ped-Mult and the
comparison between them. Here we only point out the major issues in this comparison.� Our new VSS DL-VSS generates commitments to the points of the polynomial, and these are the values

which are required as input for the ZK proof of proper conduct. Pedersen’s VSS instead has commitments
to the coefficients of the polynomial and thus is required in the multiplication protocol to compute these
values via evaluation in the exponent.� Pedersen’s VSS takes advantage of the fact that the check of the VSPS property requires exponentiations to
relatively small exponents. Our VSPS-Check instead requires full exponentiations in the group generated
by g. However a close look at the cost analysis shows that only for very small n there is an advantage of
using Pedersen’s VSS versus DL-VSS plus VSPS-Check. Relatively fast (in the growth of n) they have
the same performance.� However, the most attractive feature of using DL-VSS is that the verification of the existence of a secret
and the verification of the VSPS property are separate computations. This will allow for the introduction of
the fast-track paradigm described in Section 5 which will improve the overall performance of the protocol
when there are no faults in the system.
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5 Fast-track Computation
As we mentioned in the Introduction secure multiparty protocols pay a heavy cost in terms of communica-
tion/computation in order to guarantee robustness against malicious adversaries. Typically, however, one can
expect malicious faults to happen quite rarely. We would like to build on the efficiency of private protocols,
which operate under the assumption that no faults occur, while avoiding the trap of assuming that you can execute
the private computation until a fault occurs and then re-compute. Indeed such a computation might turn out to
be insecure, and expose secret information.

Thus, we borrow from other fields and introduce into the multiparty computation scenario the paradigm
of fast-track computation. The idea is to avoid carrying out all the verification steps, but rather to identify
“critical” verification points. Only at these critical points some verification will be carried out. Once the
verification is carried out in a critical point we are guaranteed that the computation up to this point was correct.
These critical points must be chosen in such a manner that if faults occur between two consecutive critical pointsc1 and c2, where c2 is a later point in the protocol, then the faults will be detected at point c2. Furthermore,
recomputing the section from critical point c1 to c2 will not violate the security of the computation. Thus, if no
faults occurred between c1 and c2 we “saved” all the verifications which should have been carried out between
these two points.

The main result of this section is the following.

Theorem 4 For any functionF There exists a fast-track secure multiparty multiplication protocol FT-Mult that
requires a factor of n less computation than Mult when there are no faults in the system.

It will become clear here why our DL-VSS protocol with VSPS-Check , which has a disjoint verification
for the existence of a secret and for the VSPS property, falls nicely into the framework of fast-track. It allows to
verify the existence of a valid secret at a low cost, and delay the expensive VSPS check to a later point, in which
the property can be effectively verified for many secrets by a single check.

Furthermore in Appendix H we present fast-track Joint VSS protocols, which allow a set of players to
generate a random secret unknown to all of them in a shared form via a VSS protocol.

5.1 Fast-track Robust Multiplication Protocol
In this section we describe FT-Mult . When computing a multiplication gate we do not check the VSPS property
on every sharing of the values �i�i�i but rather we check only the combined secret which should be the result of
the multiplication. Basically we run a single VSPS-Check protocol on the values C1; : : : ; Cn. Thus, we reduce
the number of VSPS checks by a factor of n (assuming there are no faults). If the check fails then we know that
there were faults and reiterate the computation of the gate using the Mult protocol.

The protocol works in the following manner: each player Pi shares the product of his local shares, i.e.�i�i�i via our DL-VSS protocol. Using the commitment to the free term he proves (using the ZK proof in
Appendix F) that he has in fact shared the proper value. Then the player computes the sum of the shares which
he has received, and on the set of result of this computation the players check the VSPS property. The complete
protocol appears in Appendix G.

6 Threshold Cryptography Applications
In recent years it has become evident that one of the most important applicationsof secure multiparty computation
is threshold cryptography [Des87, Des94]. Consider for example the cryptographic function of signing which
receives as input a secret key and a message, and generates the signature on the message. The signer holding
the secret key can easily generate the signature. But if his computer is broken into, then the secrecy of his key
is compromised. In other words, the storage of the secret key creates a single point of failure which we would
like to eliminate. This can be achieved by sharing the secret key among several signing servers in a threshold
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fashion. Now the computation of the signature must be carried out in a distributed manner via a multiparty
computation protocol among the signing servers.

Threshold cryptography is indeed the study of efficient multiparty computation protocols for cryptographic
functions (e.g. signing or decrypting) in which each party has as input a share of the secret key that allows the
computation of such function. Examples of threshold cryptography protocols can be found in [Boy89, Des87,
DF91, DF89, CMI93, Har94, DDFY94, PK96, Lan95, GJKR96b, FGY96, GJKR96a, JY].

The above cited protocols use, in various ways, expensive VSS protocols and zero-knowledge proofs.
Though some are more efficient than others there is still room and need for improvement. Our techniques can
be readily applied to this scenario to obtain much more efficient protocols.

We would like to present a specific application of this paradigm. In the next section we will apply our
techniques to the robust threshold DSS protocol of Gennaro e Tal [GJKR96b]. The improvements to that
protocol will be twofold:
fault-tolerance the simplified multiplication protocol described in this paper brings the fault-tolerance of the
scheme up to n�12 (from n�14 ) without an increase in communication or computational complexity.
efficiency Our new DSS protocol has a fast-track version which requires a factor of n less computation (in terms
of modular exponentiations) from each player.

SECURITY. Formal definitions of security for threshold signature protocols can be found in [GJKR96b]. We stress
that our new protocol can be proven secure under the sole assumption of the unforgeability of DSS signatures.
For the details see Appendix I.
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A Shamir’s Secret Sharing

Assume the dealer has a secret s which is a number in Zp where p is a prime. The dealer wants to “share” this
number among n players P1; : : : ; Pn so that t of them have no information about the secret while t+ 1 of them
can reconstruct it. Shamir’s protocol [Sha79] is described in Figure 4.

It is important to notice that the protocol works only under the assumption that no faults occur in the system.
Otherwise, for example, there is no assurance that the dealer shared values which define a polynomial of degree
at most t. And during reconstruction time the bad players may compromise the recovering of s by contributing
values �̂i different than the ones originally received from the dealer.

B Verifiable Secret Sharing

Informally a VSS protocol achieves secret sharing in the presence of malicious faults. In other words what we
want is that at the end of the sharing phase the good players are guaranteed that indeed a secret has been shared,
in the sense that they will be able to reconstruct it at the end of the recover phase, regardless of the actions of a
faulty dealer or players.
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Shamir’s Secret Sharing

Sharing Phase Protocol for Dealer on input a secret s:� Choose at; : : : ; a1 2R Zp and define the polynomial f(x) = atxt + :::+ a1x+ s� Compute and hand to player Pi the value �i def= f(i) mod p, for 1 � i � n.

Reconstruction Phase

1. Each player broadcasts the value �i.
2. Take t+ 1 broadcasted values and interpolate a polynomial f(x) of degree at most t.
3. Output s = f(0) mod p.

Figure 4: Sharing and Reconstruction Protocols

Another way of thinking of VSS is as a “recoverable commitment”. In typical commitment schemes when
Alice commits to a secret value s to Bob, Bob has a guarantee that indeed there is a unique committed secret
although he knows nothing about s. This is due to the secrecy and binding properties of commitment schemes.
However nothing prevents Alice from never opening the commitment at a later time. VSS protocols have the
same functionality of commitments with the added feature that at a later time it is always possible for the good
players to reconstruct the value the dealer committed to.

The following definition of VSS is from [FM88, FM].
We have n players P1; : : : ; Pn and a distinguished player D, the dealer. The dealer and the players are connected
by private communication channels and they also have access to a broadcast channel. There is a static adversaryA that can corrupt up to t of the players including the dealer.

Let � be a protocol consisting of two phases Share,Reconstruct in which all players have as common
input the description of a set of possible secrets, S. The dealer has an extra input the secret s in S. At the end of
Share each player Pi is instructed to output a Boolean value veri. At the end of Reconstruct each player
is instructed to output a value in S.

We say that � is a Verifiable Secret Sharing protocol (VSS) if the following properties hold for any
adversary A
Unanimity If any good playerPi output veri = 1 at the end of Share, then verj = 1 for all other good playersPj
Acceptance of good secrets If the dealer is good, then veri = 1 for every good Pi
Verifiability If a good player Pi outputs veri = 1 at the end of Share then there exists a value � in the set of

possible secrets, S, such that the event that all good players output � at the end of Reconstruct is fixed
at the end of Share. Moreover if the dealer is good then � = s the original secret input of the dealer.

Unpredictability If the secret s is randomly chosen from a set of cardinality q, and the dealer is good, then the
adversaryA cannot guess at the end ofShare the value swith probability better than 1q by a non-negligible
additive factor.

The final condition can be strengthened by requiring that the view of the adversary is simulatable by a
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simulator that has no knowledge of s. Which means that the adversary gains no knowledge at all from the
execution of the VSS protocol.

C Proof of Theorem 1

Sketch of Proof

UNANIMITY. The decision to disqualify or accept the sharing is done based on public information viewed by
all players, hence all good players reach the same decision.

ACCEPTANCE OF GOOD SECRETS. If the dealer is good then all his public actions will be seen as proper and all
honest players will decide that a secret has been shared.

VERIFIABILITY. This property is achieved via the collision resistance of H. Assume w.l.o.g. that at leastP1; :::Pt+1 are honest. Let f(x), r(x) be the polynomials of degree t determined by values �i and �i, for1 � i � t+1. If Ai = H(f(i); r(i)) 8i then define � def= f(0). Otherwise, � def= 0. The dealer committed
himself to the values A1; : : : ;An by broadcasting them. The values �i; �i for 1 � i � t+ 1 are set at the
end of the sharing phase, and hence f(x) is set. Thus, � is well defined at the end of the sharing phase. It
remains to be shown that at the end of the reconstruction phase the players output the value �. Assume
by contradiction that they reconstruct �̂ 6= � by choosing t+ 1 values �i1 ; : : : ; �it+1 given out by players
such that H(�ij ; �ij) = Aij . This means that the t-degree polynomials f̂(x); r̂(x) interpolated by the�ij and �ij (resp.) have the property that H(f̂(i); r̂(i)) = Ai but f̂(x) 6= f(x) (as they differ in the free
term), thus there must be an index j such that f̂(j) 6= f(j). The pairs (f̂(j); r̂(j)) and (f(j); r(j)) are a
collision for H, which is known to either the dealer or player Pj, which contradicts the hypothesis.

UNPREDICTABILITY. If the dealer is good the adversary sees t points on a polynomial of degree t plus all the
valuesAi. But as we assume that H has the secrecy property the Ai’s give no information about the other
points. Hence, A has no information about the secret. In other words it is possible to simulate the view of
the adversary with t random values as the shares and n random values as the Ai’s.

D Computing Multiplication with Faults

The underlying assumption for the computation in the previous section is that each player Pi shared a polynomialhi(x) such that hi(0) = f�(i)f�(i). We present a simple method for verifying that Pi has shared the proper
value. To reduce the complexity of exposition we change the notation, saying that player Pi has values � and �
and he needs to share a polynomial whose constant term is ��. We take as a starting point that the values �; �
have been shared properly using polynomials f�(x); f�(x) resp. (see [BGW88] for proof). Thus, we need to
prove that the three polynomials satisfy the property that h(0) = f�(0)f�(0).

We are able to present a simpler proof for this property based on a combination of two ideas. The first idea
is, as in the multiplication step, that instead of reducing the degree of a polynomial and randomizing it through
computation it can be directly shared as a random polynomial of degree t. And the second is that the prover
is present and can help the players out during the proof stage. More specifically, previous proofs assumed that
the players need to reconstruct the polynomials while correcting errors. Under this assumption a set of 3t + 1
players can interpolate a polynomial of degree at most t. But if the dealer exposes the polynomial directly and
the players only need to verify their points, then a set of 3t + 1 players can check their values and insure the
validity of a polynomial of degree (at most) 2t.
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Thus, we shall have player Pi share h(x) of degree t and prove that h(0) = f�(0)f�(0) in the following
manner. First, Pi will prove that h(x) is of degree t. Then, Pi will share an additional polynomial r(x) of degree2t� 1, there is no need to verify that it is of the right degree, because one of two things can happen: information
of Pi will be revealed is Pi’s, or the proof will not go through. To complete the proof Pi will broadcast the
polynomialR(x) = xr(x)+f�(x)f�(x)�h(x). This is a random polynomial of degree 2t and hence reveals no
information about the coefficients of f�(x)f�(x) or h(x). Each player Pj checks that Ri(0) = 0 which indicates
that h(x) as as its constant term the product��. Furthermore, Pj verifies thatR(j) = jr(j)+f�(j)f�(j)�h(j),
to ensure that his share of h(x) is in fact on the polynomial, if there is no match he requests that his values be
made public.

This is much more efficient than the proof in [BGW88] that uses error-correction in quite a complicated way
to enforce the condition that h(0) = f�(0)f�(0).
E The Multiplication Gate with Pedersen’s VSS

In this section we show how to carry out the multiplication gate using Pedersen’s VSS [Ped91a]. A dealer for a
secret � 2 Zq chooses a random polynomial f�(x) = atxt + : : :+ a0 (with a0 = �) and a random polynomialr(x) = rtxt + : : :+ r0 where ai; ri 2 Zq. The dealer gives to player Pi the values �i = f�(i) mod q and�i = r(i) mod q. He then publishes the following values A0; : : : ; At where Aj = gajhrj mod p. The Ai’s
are basically commitments to the coefficients of the polynomials. Each player checks that his share lies on the
committed polynomial by checking that g�ih�i = tYj=0Aijj

Let us now deal with a multiplication gate. Assume that the two secrets � and � are currently shared using
Pedersen’s VSS.
That is � is shared via polynomials f�(x) = atxt + : : : + a0 (with a0 = �) and r(x) = rtxt + : : : + r0;
each player Pi holds the values �i = f�(i) mod q and �i = r(i) mod q. The values Aj = gajhrj mod p (forj = 0; : : : ; t) are public.
Similarly � is shared via polynomials f�(x) = btxt + : : :+ b0 (with b0 = �) and s(x) = stxt + : : : + s0;
each player Pi holds the values �i = f�(i) mod q and �i = s(i) mod q. The values Bj = gbjhsj mod p (forj = 0; : : : ; t) are public.

We use the simplified multiplication protocol shown in Section 3.1. Each player Pi shares the value �i�i�i
via Pedersen’s VSS. This will assure that the value is shared via a polynomial of degree t. A side effect of
the VSS sharing is that Pi publishes the value g�i�i�ih� for some random value � . We will use this public
value to check that Pi shared the correct value �i�i. This is done by first generating from the commitment to
the coefficients of the polynomial of � (�) a commitment to the interpolated values, i.e. g�ih�i (g�ih�i ), via
interpolation in the exponents. Then player Pi proves in ZK that the value he shared is the product of the values
contained in these two commitments. A protocol for this task is described in Appendix F.

The full protocol is described in Figure 5.

F ZK Proof for multiplication of committed values

In both the Mult and FT-Mult protocols a crucial tool to prove that a player is performing correctly is a ZK proof
of the following statement.
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Ped-Mult: Multiplication based on Pedersen’s VSS

Input of player Pi: values �i = f�(i), �i = f�(i), �i = r(i), �i = s(i).
Public input Aj = gajhrj , Bj = gbjhsj

1. Each player Pi shares �i�i�i
using Pedersen’s VSS protocol. That is let fi(x) = fitxt + : : :+ fi0 and ui(x) = uitxt + : : :+ ui0 two random
polynomials of degree t such that fi(0) = �i�i�i. Player Pi gives to player Pj the values cij = fi(j), �ij = ui(j).
Player Pi publishes Cij = gfijhuij for j = 0; : : : ; t.

Secret information of Pi: share cji; �ji of �j�j�j
Public information: Cij = gfijhuij

2. The players verify each other sharing. The players who fail the verification of the VSS protocol are exposed.

3. Players compute Ai = g�ih�i = Qtj=0Aijj and Bi = g�ih�i = Qtj=0Bijj Require Pi to prove in zero-knowledge
that Ci0 = g�i�i�ihui0 is of the correct form with respect to Ai and Bi. (see Appendix F.) Expose the values of
the players who fail the check.

4. Player Pi computes i = P2t+1j=1 cji which is a share of  = �� via a random polynomial of degree t. Compute

also �i =P2t+1j=1 �ji.
5. Player Pi computes Cj = Q2t+1i=1 Cij, for 1 � j � n.

Secret information of Pi: share i
Public information: Ci for 1 � i � n

Figure 5: Robust multiplication protocol using Pedersen’s VSS

The prover P publishes three commitments: A = g�h�, B = g�h� and C = g��h� . He wants to prove in
ZK to a verifier V that he knows how to open such commitments and the opening of C that he knows is really
the product of the values he committed to in A and B.

The following ZK proof is adapted from a more general one invented by Cramer and Damgard [CD97]. The
basic idea is for the prover to prove that he knows that C can be written as B�h����.

1. P chooses d; s; x; s1; s2 2R Zq . He sends to V the messages M = gdhs, M1 = gxhs1 , M2 = Bxhs2 .

2. V chooses a challenge e 2R Zq and sends it to P
3. P replies with the following values: y = d + e�, w = s + e�, z = x + e�, w1 = s1 + e�, w2 =s2 + e(� � ��).
4. V checks that: gyhw = MBe, gzhw1 = M1Ae and Bzhw2 = M2Ce.

The above protocol is only ZK against an honest verifier but can be transformed in a ZK proof against any
verifier by standard techniques, i.e. by having the verifier commit to the challenge as a first round.

Notice that the protocol involves only a constant number of exponentiations (i.e. O(k) multiplications).

Remark: In our protocol we can exploit the fact that the verifier only sends a random challenge to the prover.
Indeed this allows us to run a single proof from Pi to all the other players. The proof would go as follows: 1)
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all the other players commit to a random number in Zq; 2) the prover sends the first message; 3) all the players
would decommit and the challenge will be computed as the sum of the decommitted values. If the original
commitment is non-malleable this is secure.

G Fast-track Multiplication

Protocol appears in Figure 6.

FT-Mult: Fast-track Multiplication

Input of player Pi: values �i = f�(i), �i = f�(i), �i = r(i), �i = s(i).
Public inputAi = H(�i; �i) = g�ih�i , Bi = H(�i; �i) = g�ih�i for 0 � i � n

1. Each player Pi shares �i�i�i using the VSS protocol. That is set cij = f��;i(j), �ij = ui(j) where f��;i, ui are
random polynomials of degree t such that f��;i(0) = �i�i�i.

Secret information of Pi: share cji; �ji of �j�j�j
Public information: Cij = gcijh�ij for 1 � i; j � nCi0 = gci0h�i0 for 1 � i � n

2. Pi proves in zero-knowledge that Ci0 is a commitment to the product of �i�i�i using the ZK proof from Appendix
F. Expose the values of the players who fail the proof.

3. Player Pi computes i = P2t+1j=1 cji which is a share of  = �� via a random polynomial of degree t, and�i =P2t+1j=1 �ji.
4. Player Pi computes and broadcasts Ci = H(i; �i) = gih�i = Q2t+1j=1 Cji.
5. Players run a VSPS-Check on Ci for 1 � i � n. If the test fails STOP and run Multfrom Step 2.

Secret information of Pi: share i
Public information: Ci for 1 � i � n

Figure 6: Fast-track multiplication protocol

H Fast-track Joint Random VSS protocols

A crucial tool in several cryptographic protocols is a scheme to generate a a random value unknown to all the
players which will be shared with the VSPS property. A method to achieve this was introduced by Pedersen
[Ped91b]. Each player shares a random value with a VSPS protocol, then these secrets are summed to generate
the random secret. Each player checks all the other sharings and then locally sums the shares received by the
other players. It is easy to see that such a sum is a share (with the VSPS property) of a randomly distributed
secret.

In the following we will denote with Joint-Uncond-VSS a joint VSS that is obtained by the above paradigm
with the underlying VSPS protocol being either Pedersen’s VSS or our DL-VSS combined with VSPS-Check .

However we observe that if we use DL-VSS as the underlying VSS protocol, we can create a fast track
version of this protocol by deferring the verification of the VSPS property only to the combined values. Indeed it
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is not important if individual sharings do not have the VSPS property, as we are only interested that the final secret
will have the property. If the resulting sharing fails the VSPS-Check protocol then we know there are faults in
the system and only then we check each individual sharing. The full protocol which we call FT-Joint-DL-VSS
is described in Figure 7.

Fast-Track Joint VSS

1. Player Pi chooses a random value ri and shares it using the DL-VSS protocol in Section 2. Denote by �i;j; �i;j
the shares player Pi gives to player Pj. The valueAi;j = g�i;jh�i;j is public.

2. The players verify the VSPS property of the sum of the shared secrets by running VSPS-Check on A1; : : : ;An
where Aj =Yi Ai;j

3. If the output of VSPS-Check= 1 then player Pj computes his shares �j; �j of the random secret r = Pi ri by
setting �j =Pi �i;j, �j =Pi �i;j otherwise the players run VSPS-Check on each individual sharing from step
1. The values �j; �j are set to the sum of the shares from the sharings that pass the VSPS-Check protocol.

Figure 7: FT-Joint-DL-VSS

EFFICIENCY GAIN. If there are no faults in the system the protocol FT-Joint-DL-VSS is a factor of n faster than
the corresponding Joint-Uncond-VSS since the expensive procedure VSPS-Check is performed only once
instead of n times.

I DSS Threshold Signatures

I.1 The Digital Signature Standard

The Digital Signature Standard (DSS) [fST91] is a signature scheme based on the El-Gamal [ElG85] and
Schnorr’s [Sch91] signature schemes. In our description of the DSS protocol we follow the notation introduced
in [Lan95].
KEY GENERATION. A DSS key is composed of public information p; q; g, a public key y and a secret key x,
where: p is a prime number of length l where l is a multiple of 64 and 512 � l � 1024. q is a 160-bit prime
divisor of p� 1. g is an element of order q in Z�p . The triple (p; q; g) is public. x is the secret key of the signer,
a random number 1 � x < q. y = gx mod p is the public verification key.
SIGNATURE ALGORITHM. Let m be a hash of the message to be signed. The signer picks a random number k
such that 1 � k < q, calculates k�1 mod q, and sets r = (gk�1 mod p) mod q and s = k(m+ xr) mod q The
pair (r; s) is a signature of m.
VERIFICATION ALGORITHM. A signature (r; s) of a message m can be publicly verified by checking thatr = (gms�1yrs�1 mod p) mod q where s�1 is computed modulo q.

Our DSS protocol uses in a crucial way Joint VSS protocols, which allow a set of players to generate a
random secret unknown to all of them in a shared form via a VSS protocol. We describe such protocols and a
clever way to fast-track them in Appendix H
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I.2 Yet another VSS

In our basic VSS consider yet another implementation of H directly based on modular exponentiation. That is
the dealer shares the secret � 2 Zq with the polynomial f�(x) = atxt+ :::+ a1x+ �, gives player Pi the value�i = f�(i) and publishes Ai = H(�i) def= g�i mod p. The dealer also publishes A0 = g�. The reconstruction
is as before. Each player Pi broadcasts �i. We accept only those that match the published Ai. We extrapolate
the polynomial f̂� check that, for all i = 0; : : : ; n, Ai = gf̂�(i). If this check succeeds then � = f̂(0) otherwise� = 0.

We name the above protocol FVSS. Although it looks similar to Feldman’s VSS [Fel87] it differs from it
because in FVSS the public commitments are to the points of the polynomial, while in Pedersen’s VSS the
commitments are to the coefficient. For this same reason however DL-VSS does not have the VSPS property
i.e. it does not insure that the shares lie on a polynomial of degree t. However it is easy to see that such property
can be checked via a randomized test similar to the one described in Section 4.2.1.

As in Feldman’s VSS, FVSS reveals the value g� mod p. In general this can be a problem in terms of
security. However for the specific application of threshold DSS it is OK to reveal such a value, since it will turn
out to be part of the output of the protocol.

A joint version of FVSS can be obtained as in Section H. We will denote with Joint-VSS a joint VSS
protocol in which the underlying VSS scheme is either Feldman’s VSS or our FVSS with VSPS-Check . We
denote with FT-Joint-FVSS the fast-track version of it that can be obtained with FVSS as the underlying VSS.

I.3 Our Protocol for Threshold DSS signatures

KEY GENERATION. As noted first in [Ped91b], for any discrete-log based scheme, the distributed key generation
protocol can be implemented with Joint-VSS. Recall that as a result of this protocol player Pi holds a secret
input xi which is his share of the secret key x. The values gx and gxi are public.

OUTLINE OF SIGNATURE PROTOCOL. The protocol follows the same structure of the one in [GJKR96b]. First
the players generate distributively a random value k by running a Joint-Uncond-VSS protocol. It is necessary
that this protocol be unconditionally secure as we do want to reveal gk, which is information not revealed by
a DSS signature. To compute r = gk�1 mod p mod q without revealing k, the players use a variation of a
protocol to compute inverses due to Bar-Ilan and Beaver [BB89]. The idea here is to generate a random valuea distributively through a Joint-VSS protocol. Recall that this reveals ga. Compute a sharing �1; : : : ; �n of
the value � = ka via a multiplication protocol Mult. Notice that although a is shared with a Feldman-based
protocol the Mult protocol still works (one just needs to adapt the ZK proof to a special case in which one of the
committed values is not information-theoretically secure). Reconstruct � by revealing the shares �i (bad players
are caught because they cannot contribute bad shares which do not match the commitment). Then, the value r
can be publicly computed as (ga)��1 . For the generation of the signature’s value s, the players have to compute
a multiplication protocol Mult and a linear combination over the shared values k and x (here once again one has
to notice that x is shared via a Feldman-based VSS).

The protocol is described in full in Figure 8.

Theorem 5 DSS-Thresh is a secure threshold signature protocol for DSS

IMPROVEMENTS. What did we gain with respect to the protocol in [GJKR96b]? First of all the use of the
simplified multiplication approach allows us to bring the fault-tolerance up to t = n=2. This is a dramatic
improvement over the fault-tolerance of t = n=4 in [GJKR96b]. This does not come at the expenses of extra
complexity. A close look at the protocol reveals that each player performs 4 VSS’s as a dealer and it also
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DSS-Thresh

Private input to player Pi: A share xi of the secret key x.
Public Input: The values gx; gx1 ; : : : ; gxn and the message m.

1. Generate k. The players generate a secret value k, uniformly distributed in Zq, by running Joint-Uncond-VSS
with two polynomials of degree t, fk(x) and f�(x) such that fk(0) = k and f�(0) = �.

Secret information of Pi : shares ki = f(i) and �i = r(i)
Public information gkh�; gkih�i ; 1 � i � n.

2. Generate r = gk�1 mod p mod q
(a) Generate a random value a, uniformly distributed in Z�q , with a polynomial of degree t, using Joint-VSS.

Secret information of Pi : a share ai of a
Public information: ga; gai ; 1 � i � n

(b) Perform protocol Mult to get shares �i, of � = ka mod q that lie on a polynomial of degree t. This also
produces random values �i that lie on a polynomial of degree t.

Secret information of Pi : shares �i and �i
Public information: g�h�; g�ih�i ; 1 � i � n

(c) Player Pi broadcasts �i, �i. Discard those that do not match g�ih�i . Interpolate the remaining ones to

reconstruct � = ka. Each player Pi computes locally r def= (ga)��1 mod p mod q.

Public information: r
3. Generate s = k(m + xr) mod q

(a) Perform a protocol Mult to get shares si of s = k(m+ xr) mod q that lie on a polynomial of degree t. This
also produces random values �i that lie on a polynomial of degree t.

Private Information of Player Pi: shares si and �i.
Public information: gsih�i , 1 � i � n

(b) Player Pi broadcasts si, �i. Discard those that do not match gsih�i . Let s be the free term of the polynomial
interpolating the accepted si’s.

4. Check and Output. Output (r; s) as a signature on m.

Figure 8: DSS Distributed signature generation

participates to 4(n � 1) VSS’s dealt by other players as a participant. This is the same as in [GJKR96b], but
we have an increase in fault-tolerance. This is due to our improved and simplified multiplication protocols.
Basically the VSS’s used in [GJKR96b] to randomize polynomials of degree 2t are replaced in our protocol by
VSS’s that at the same time reduce the degree and randomize the polynomial.

Another nice property of our protocol (which the one in [GJKR96b] does not have) is the possibility of
creating a fast-track version as we will see in the next section.

ON-LINE/OFF-LINE BEHAVIOR. It is worth noting that the on-line/off-line behavior of DSS is preserved even
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under our new protocols. Indeed the value r can be precomputed off-line first. Then r can be used for the
computation of s on-line. In order to avoid computing modular exponentiations during the on-line computation
of s (because of the VSS’s of the values kixi) one must precompute the sharings of the values kixi as well.

I.4 Fast Track version

It is possible to create a fast-track version of the protocol considered above. When run in fast-track mode the
protocol will improve its speed by a factor of n if there are no faults in the system. However if a malicious fault
happen the protocol has to be resetted and ran in the fully fault-tolerant mode.

OUTLINE. The basic idea of the protocol is to use our DL-VSS and FVSS protocols (instead of Pedersen’s and
Feldman’s VSS) for the joint VSS used during signature generation. This is because using thos protocols will
allows us to fast-track the joint VSS’s by postponing the VSPS check to the combined secret. Also the FT-Mult
protocol is used instead of Mult . This means that the VSPS check is done on the resulting sharing of the product
rather than on the single sharings of the players. If a malicious fault is discovered it is important to notice that
the fully fault-tolerant protocol starts from the round the fault manifested itself.

USING THE PUBLIC KEY. An additional improvement to the efficiency of the fast-track version can be obtained
by performing a weaker multiplication protocol during the computation of s. We will not require the players to
prove they are sharing the proper value during the multiplication protocol. This may mess up the result of the
computation of s. But now we can use the public key y = gx to check that the signature is correct and if it is not
just run the fully fault-tolerant multiplication protocol in the last round.

Remark. In [GJKR96b] a very simple and efficient protocol is presented for the case of no malicious faults.
Players carry out simple secret sharings. One could be tempted to use this protocol for the fast-track case and
then do the fully fault-tolerant protocol only if the signature does not match. However we were not able to prove
that the first run of the protocol does not reveal information to the adversary. For the same reason the weaker
multiplication protocol can be used only at the last round and not during the computation of r.

IMPROVEMENTS. The net result is that if there are no malicious faults the players have to perform only one VSPS
check per round instead of the n � 1 per round required by the fully fault-tolerant protocol. Thus, we have a
reduction of the overall complexity of the protocol by a factor of n.
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