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Abstract

The goal of this paper isto introduce asimple verifiable secret sharing scheme, and to improve the efficiency
of known secure multiparty protocols and, by employing these techniques, to improve the efficiency of
applications which use these protocols.

First we present a very simple Verifiable Secret Sharing protocol which is based on fast cryptographic
primitivesand avoids atogether the need for expensive zero-knowledge proofs.

Thisis followed by a highly simplified protocol to compute multiplications over shared secrets. Thisisa
major component in secure multiparty computation protocol s and accounts for much of the complexity of
proposed solutions. Using our protocol as a plug in unit for known protocol s reduces their complexity.

We show how to achi eveefficient multiparty computationsin the computational model, through the application
of homomorphic commitments.

Finally, we borrow from other fields and introduce into the multiparty computation scenario the notion of
fast-track computations. In amode in which malicious faults are rare we show that it is possibleto carry
out asimpler and more efficient protocol which does not perform al the expensive checks needed to combat
a malicious adversary from foiling the computation. Yet, the protocol still enables detection of faults and
recovers the computation when faults occur without giving any information advantage to the adversary. This
resultsin protocols which are much more efficient under normal operation of the systemi.e. when there are
no faults.

Asan exampl e of the practical impact of our work we show how our techniques can be used to greatly improve
the speed and the fault-tolerance of existing threshold cryptography protocols.
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1 Introduction

The past twenty years have withessed an exciting development of research in the area of cryptography and
network security. From the introduction of public-key cryptography [DH76, RSA78], to the invention of zero-
knowledgeproofs[ GMR89], to the definition of the problem of secure multiparty computation and the somewhat
surprising proof that any multi party computation can be performed securdly [ Yao82, GMW87, BGW88, CCD88].
The combination of these resultsis extremely powerful, as they show that virtually any cryptographic problem
can be solved under some reasonabl e appropriate assumptions.

Althoughtheoretically impressive, theseresultslack intheareaof practical feasibility. Intoday’sapplications
even a simple public-key operation is sometimes considered too slow in comparison to the speed required by
the application. Thus, the complicated exchanges of messages and zero-knowledge proofs in protocols like
[Ya082, GMW87, BGW88, CCD88], might render them impractical. Thus, it isahigh priority to optimize such
techniques. Yet, they do provide for a sound basis for our sol utions, in particular we will draw heavily on the
solution introduced in [ BGW88].

For the problem of verifiable secret sharing, attempts have been made to simplify the protocols by moving
into the computational model. Such results were achieved by Feldman and Pedersen [Fel87, Ped914], and in
fact exhibit improved results with respect to communication.

We shall concentrate in this paper on the problems of verifiable secret sharing and multiparty computations.
Theinefficiency of thegeneral secure multiparty protocolsispartially caused by the* generality” of thealgorithms.
Thus, optimization can be achieved in (at least) two ways. One is to tailor protocols to the specific problem
at hand. Examples of this kind of approach include works on threshold cryptography (see Section 6) where
efficient multiparty computation protocols are devised for the task of shared generation of digital signatures.

Another possible approach, the one which we follow in this paper, is to go back to the original works
and see if their efficiency can be directly improved. If one can devise general techniques to improve on the
computation/communication of secure multiparty protocolsitisalso likely that these techniqueswould improve
the efficiency of “ad-hoc” optimizations.

OUR CONTRIBUTION. In thispaper we present new algorithmsto perform specific computations more efficiently.
Furthermore, we initiate new modes of operation to enhance overall performance. The major contributions can
be summarized as follows:

o A new simple and efficient design for Verifiable Secret Sharing scheme

e Computational simplificationsof the Ben-Or et al. [BGW88] protocol

o Efficient multiparty computationsin the computational model

o Expediting computations through the notion of “fast-track”

o Applying all the above to a specific cryptographic problem
VSS. The first dgorithm is a very simple and efficient Verifiable Secret Sharing protocol (Section 2). The
main novelty of our protocol is that it is based on an efficient commitment scheme and it avoids altogether
the expensive zero-knowledge proofs, which are usually carried out to ensure the correctness of actions of
the participants in the protocol. Our protocol improves considerably over all existing verifiable secret sharing
schemes, either in communication and/or in computation.
COMPUTATIONAL SIMPLIFICATIONS. The second protocol is a highly simplified protocol to compute multipli-
cation over shared secrets. That is, in the model where there are two secrets ¢ and & which are shared
distributively among a set of n players, the protocol enables the playersto secretly compute the product ab. This
protocol can be used in any existing multiparty computation protocol. For example when used inside [BGW88]
it improvesthe speed of the computation of a multiplication gate by a factor of at least 2. When used inside our
general multiparty protocol, gains are even greater.



EFFICIENT PrOTOCOLS COMPUTATIONAL MODEL. We achieve efficient multiparty computati ons using construc-
tions based on homomorphic commitments. Some of these techniques have been independently devised by
[CDM97], yet they usethem in the context of span programs.

FAasT-TRACK. The following observation leads to an additional contribution. Secure multiparty protocols pay a
heavy cost interms of communi cation/computationin order to guarantee robustnessagai nst malicious adversaries
who may cause playersto behave arbitrarily during the protocol. It isawell-known phenomenon that “ private”
computations (i.e. secure only against passive adversaries) are usualy much simpler and efficient, as they
diminate al verification of proper conduct.

Typically, however, one can expect malicious faults to happen quite rarely. Consider for example a very
sensitivedistributed signature generation system (like aroot certification authority) where the serversare heavily
protected by firewalls and other security mechanisms. In thiscase one cannot rule out malicious faults (and thus
cannot blindly use the simpler private protocols), but on the other hand would like to take advantage in some
way of thefact that faults arerare.

We would like to build on the efficiency of private protocols, which operate under the assumption that no
faultsoccur, whileavoiding thetrap of assuming that you can execute the private computation until afault occurs
and then re-compute. Indeed such a computation might turn out to be insecure, and expose secret information.

Thus, we borrow from other fields and introduce into the multi party computation scenario the notion of fast-
track computations. Theideaisto avoid carrying out al the verification steps, but rather to identify “critical”
verification points. Only at these critical points some verification will be carried out. Once the verification is
carried out in acritical point we are guaranteed that the computation up to this point is correct. These critical
points must be chosen in such a manner that if faults occur between two consecutive critical points ¢; and ¢,
where ¢, isalater point in the protocol, then the faults will be detected at point ¢,. Furthermore, recomputing
the section from critical point ¢; to ¢, will not violate the security of the computation. Thus, if no faults occurred
between ¢, and ¢, we“saved” al the verifications which should have been carried out between these two points.

An attractive feature of our approach is that most of the verification at the critical points will not be the

standard verification steps of the protocol, but rather a subset of the verification steps which should have been
computed. For example in the general multiparty computation of an arithmetic circuit, critical pointsare placed
on multiplications gates. At these gates we need to verify only one VSS compared to, for example, [BGW88]
where O(n) such VSS's must be checked (at |east one for each player).
APPLICATIONS. As an example of the practical impact of our approach, we present its application in the area of
threshold cryptography. We show that existing threshold si gnature protocols can be greatly enhanced in speed
using our techniques. We exemplify this over the threshold DSS protocol of [GIKR96b]. The improvements
are quite substantial. We improve the fault-tolerance from /4 to n/2 without increasing the communication
or the computational complexity, thanks to our simplified VSS and multiplication protocols. We also present a
fast-track version of the protocol which requires >from each server a factor of n» modular exponentiations|ess
than afully fault-tolerant protocol (e.g. in [GIKR96b]) (see Section 6).

2 Verifiable Secret Sharing Made Very Simple

Since the appearance of Shamir’s [Sha79] and Blakley’s [Bla79] semina papers on secret sharing which
introduced the notion of sharing a secret and gave very simple solutions to the problem, the research on
this topic has been extensive. These two solutions worked in the model where there are no faults in the
system. Tompa and Woll [TW88] and McEliece and Sarwate [MS81] gave the first (partial) solutions for a
model with faults. Finaly the paper of Chor et al. [CGMABS85] defined the complete notion of Verifiable
Secret Sharing (VSS), and gave a solution. Under various assumptions, solutions to the problem were given
[CGMAS85, GMW91, Fel87, BGW88, CCD88, RB89, Ped914]. In order to achieve the goa of verifiahility,
these protocols deviate from the original solutions' simplicity. They require either heavy computations and/or



extensive zero-knowledge proofs of proper conduct. Furthermore, in order to reconstruct the secret thereisagain
a need for extensive computations.

In this section we will describe aV'SS protocol which returns to the original simplicity of Shamir’s scheme,
furthermoretheimplementation requiresvery littlecomputationa and communication overhead (both for sharing
and reconstructing). Thissimple solution is enabled through an observation that all existing protocols achieve
much more than is required, and by eliminating all the overhead, efficiency can be regained.

In Appendix A we present Shamir’s Secret Sharing, and in Appendix B a definition of verifiable secret
sharing due to [FM].

2.1 Our VSS protocol

We now proceed to describe a protocol which satisfiesthe above definition of VSS. It will be based on Shamir’s
secret sharing, with an additional low cost added construction. This construction will basically be an efficient
commitment of the dealer to each one of the shares held by the players. The commitment to shares as a whole
commits the dedler to a single secret. The individual commitments can be opened as we have enough good
playerswhowill exposetheir valuesand, throughthose, verify al other commitments. Our V SS protocol appears
in Figure 1. In order to construct our protocol we need some form of commitment which satisfies the following
conditions. We shall denote our commitment functionby . It will be arandomized function which will receive
as input the secret value z and arandom value .

secrecy given H(z,r) itisinfeasibleto compute any information about
collision resistance it isinfeasibleto find two strings z;, 7; and z, 7, such that H(z,, 1) = H(z2,72)

universal verifiability given z,r and y everybody can verify if y = H(z,r) (i.e. the computation of H does
not require knowledge of a secret key).

For example one could conjecture that H(z, ) =SHA-1(z, 7).

Theorem 1 The protocol New-VSS in Figure 1 isa VSS protocol.
Proof appears in Appendix C.

EFFICIENCY AND SECURITY. If H isimplemented viaacryptographic hash function(e.g. H(z,r) =SHA-1(z,r))
then we would like to stress the efficiency of the above VSS protocol. During the sharing phase the dealer has
to compute n executions of the function H while each player computes a single evaluation, and each such
computation is highly efficient. During the recover phase each player has to compute the hash n times. No
costly modular exponentiationsor complex ZK proofs are required.

The security of H(z,7) =SHA-1(z,r) can however be only conjectured on the basis of the collision
resistance of SHA-1. However if one wants provable security without losing in efficiency one can use the
efficient provably secure commitment scheme of [DPP96] based on collision resistant hashing.

2.2 Previous approaches

Almost all theV SS protocol sin theliterature (with the curi ous exception of thefirst one[ CGMA85]) are based on
Shamir’s protocol. On top of that they add some proof from the dealer that the values shared lie on a polynomial
of degreet, thus ensuring that the shares identify aunique secret. We refer to this property astheV SPS property,
which will be defined more rigorously later.

In[GMW91] the shares are encrypted and then the V SPS property isproven viaa“generic” zero-knowledge
(ZK) proof of an NP-complete problem. The public knowledge of the encrypted shares al so prevents bad players
from contributing bad shares during reconstruction. This approach is made more efficient in [Fel87, Ped91a]



Verifiable Secret Sharing

Sharing Phase
1. Protocol for Dealer on input a secret s:

e Randomly choose polynomials f(z) = a;z® + ... + a1z + s, and r(z) = rz’ + ... + r1z + 7o.

€

e Computeand hand player P; thevaluesa; f(2) and p; def r(3), forl <i<n
e Compute and broadcast the value A; def H(eg, pi),forl <i<n
2. Player P; verifiesthat A; = H(as, p;). If the equation does not hold then he broadcasts a complaint against the
deder.

3. If player P; broadcasted a complaint then the dealer broadcasts the values «;, p;, St. H{as, p;) = A;.
4. If the dealer does not follow some step he is disqualified, otherwise conclude that a secret has been shared.

Reconstruction Phase

1. Each player broadcasts the values a, p;.

2. Taket + 1 broadcasted values for which A; = H(cu, p;) and interpolate polynomials f(z) and #(z) of degree at
most ¢ that pass through those points.

3. Computed; = f(i) and g; = #(s) and verify that A; = H(d, ;) for dl 4. If yes, output f(0) else output 0.

Figure 1: New-VSS: - Sharing and Reconstruction Protocols

where the dealer publicly commits to the polynomial using some form of “homomorphic” commitment scheme.
These commitments in return provide for a simpler proof of the V SPS property.

In[BGW88, CCD88, Rab94] the modd assumes a computationally unbounded adversary, disabling the use
of encryption. Inthis casethe ZK proof is done viaa cut-and-choose approach. Correction of bad shares during
recover is done via error-correcting codes [BGW88, CCD88] or via a mechanism of mutual authentication
[Rab94].

Isthere atrend developing in al these solutionswhich explains why our solution is so simple? The answer
isyes. The above mentioned results achieve more than just having the dealer commit to asingle value. Indeed
the dealer commits to a polynomial of degree t, where the intended secret is the free term of this polynomial.
This additional commitment apparently complicates the protocol, and adds computations, and is not necessary
in order to achieve the sole goal of verifiable secret sharing. Indeed our protocol shows that it is possible to
commit to a single value without committing to the full polynomial. We will refer to the above protocols with
the new name of Verifiable Secret and Polynomial Sharing (V SPS).

Definition 1 We say that 7 is a Verifiable Secret and Polynomial Sharing protocol (VSPS) if the following
properties hold for any adversary A:

1. The protocol isa Verifiable Secret Sharing

2. VSPS property If the value set by the VSSis o then there exists a polynomial f(z) of degree at most ¢, such
that f(0) = o and player P; knowsthe value f(z).

In Section 4.2.1 we will provide a method to enhance our V SS scheme by adding the V SPS property.

As we will see later VSPS protocols are important as a tool for multiparty computation, due to their structural
homomorphic properties. However, they are an overkill for a single VSS. And indeed there are severa
applications, such as storing important information for back-up in a distributed fashion on insecure devices,
wherethere isa need only for V SS without a requirement to compute on the shares.

4



3 Simplification to Secure Multiparty Computations

We consider the problem of secure multiparty computation [Yao82, GMW87, BGW88, CCD88]. There are
n players Py, ..., P,. Player P; holds an input z; and the players want to compute a function F(z, ..., z,)
in a secure manner, which intuitively means that the adversary cannot disrupt the computation, i.e. the value
computed is correct, furthermore the adversary does not learn any information about the inputs of the good
players (except for what is revealed by the function value).

MODEL AND DEFINITIONS. Weconsider asynchronousmodel with private channelsand broadcast (e.g.[RB89,
BeaB89]). The parties engage in a distributed computation, following a protocol 7, in order to evaluate
F(z4,...,z,). Weassumethat thereis an adversary A that corrupts up to ¢ players and coordinatestheir actions
in an arbitrary manner. The adversary we consider is static i.e. it decides which players to corrupt at the
beginning of the computation. Also our adversary is computationally unbounded. We follow formal definitions
of secure multiparty computations that have appeared in several papers [MR91, Bea91, CFGN96, Can95].

In this section we will describe two simplifications to the [BGW88] protocol, and in particular to the
multiplication protocol. We first describe an algebraic simplification followed by a simplified zero-knowledge
proof for a specific property.

3.1 Algebraic Smplification for Multiplication Protocol

In the following we shall present a simple method for computing the multiplication of two secrets which are
distributed among a set of players.

Giventwo secrets o and 5 shared by polynomials £, (z) and f(z) respectively of degreet, the playerswould
like to compute the product 3. In their seminal paper Ben-Or et al. [BGW88] note that it isn't sufficient for
each player to locally multiply his shares of both secrets, as this generates a polynomia whose constant term is
thedesired ong, i.e. a8, butitisof degree 2¢ and is not arandom polynomial. To overcome thisthey introduced
adegree reduction and randomi zation protocols. We will show how to achieve both the degree reduction and the
randomization in asingle step. This building block can be substituted for the multiplication step in the protocol
of [BGW8S], asit worksin the same model of computation. The computation in this section is described under
theassumptionthat al playersact properly (as has been said, methods for how to remove this assumption appear
in the next section).

Denoteby f.(2) and fs(¢) the shares of player P; on f,(z) and fz(z) respectively.

The product of f,(z) and fs(z) is fo(z)fs(z) = azz® + ...+ a12 + af & fap(z). FOrl1 <¢<2t41,
fap(2) = faul(3) fs(7). Thuswe can write

1 1 e 1 af fop(1)
1 2 e 22t aq fop(2)
1 2t+1 - 2t41% Qo fap(2t+1)

Denotethe above matrix by A. Thisisa2t + 1 by 2¢ 4+ 1 Van der Monde matrix, hence non-singular and has
aninverse. Let thefirst row of the inverse matrix, A=, be (A4, ..., A2:41), Note that these are known constants.
Then the previous equationimpliesthat af = Ay fo(1) + ... + Aasp1fap (2t + 1).

Given polynomiashy(z), ..., ha.1(2) @l of degree ¢ which satisfy that 2,(0) = foe(s) forl <i <2t +1,
define H(z) © 24 \ k(). Notethat H(0) isexactly A; fus(1) + ... + Aaup1fas(2t + 1) and hence af.
Furthermore, H () = Y24 A\ hy(5).

The polynomial H(z), used for the sharing of o5 is automatically of degree ¢. It is random because the
A; are non-zero (easy to check by inspection) and there are n — ¢ polynomials ;(z) chosen by good players,



and hence at random. Thus, the sharing of 8 by a random polynomial of degree ¢ can be achieved directly
following Protocol Simple-Mult in Figure 2.

Simple-Mult
Input of Player P;: Thevalues f,(3) and fz(3)

1. Player P; shares the vaue f,(3)fs(4) by choosing a random polynomial k;(z) of degree ¢, such that 4;(0) =
fa(d) f5(7). Hegivesplayer P; thevalue h;(5) forl < j <2t + 1.

2. Each player P; computes his share of o8 viaarandom polynomial H, i.e. thevaue H(j), by locally computing
thelinear combination H (5) = Y244 A\ i (5).

Figure 2: Simplified Multiplication Protocol with honest players

Theorem 2 Protocol Simple-Mult is a secure multiplication protocol in the presence of a passive adversary
computationally unbounded.

In order to tolerate an active adversary there is a heed to verify the actions of the players. [BGW88] uses a
computationally expensive protocol to do this (which could be combined with Simple-Mult). However, we were
able to simplify this protocol as well, and greatly improve its efficiency. The description of our simplification
appearsin Appendix D.

4 Computationswith a Polynomial Time Adversary

In this section we describe how to carry out multiparty computations in the presence of a computationally
bounded adversary. It iswell known that in this model there exist VSS protocols due to Feldman [Fel87] and
Pedersen [Ped914a] which are quite efficient and require limited interaction. We will show that is possibleto use
these kind of V SS protocols, including our New-VSS, to perform multiparty computations efficiently.

The basic ideaisto use ahomomorphic commitment (see Section 4.1) to commit to the sharing of the inputs
during the VSS. The computation will then follow the [BGW88] paradigm. Additionsare computed locally by
just summing up the shares of the secret values being added. For multiplication we run arobust version of the
simplified multiplication protocol Simple-Mult presented above. But we will use the public commitments over
the inputsto enforce correct behavior on the part of the players.

This idea originated in [CCD88] in the information-theoretic model, where such “commitments’ were
achieved by a second layer of input sharings. In the cryptographic mode we use homomorphic commitmentsto
generate the same effect. Some of these techniques have been independently devised by [CDM97], yet they use
them in the context of span programs.

In the following sections we will concentrate on the multiplication protocol. Given two secrets o and 3
shared viasome form of V SS, which generated some representation of the secrets, wewant to compute asharing
of ¥ = af resulting in the same representation. By representation we mean either the commitment to the
coefficients or the commitment to the points of the polynomial. Player P, holds shares «;, 5; of a and 5 (resp.).
In order to get arobust version of the multiplication protocol described in Section 3 we need to enforce that P,
shares the product «;3; viaa polynomia of degree t.

4.1 Homomor phic Commitments

The approach we follow requires the usage of homomor phic commitments. Denote by H(«, p) acommitment to
a with randomness p. We shall say that it is a homomorphic commitment if it has the following property: given
A; = H(ay,p1) and Ay = H(ow, p2) itholdsfor some p that: A; - Ay = H(aq + a2, p)



In our protocols we also need a ZK proof for the following: A prover P publishes three commitments:
A="H(a,p),B =H(B,0)andC = H(aB, ) andwantsto provein ZK to averifier V that C' isacommitment
to the product of the committed valuesin A and B (see Appendix F).

POLYNOMIAL EVALUATIONS. Assumingapolynomial f(z) = a;z* + ... + a1z + a,, thefollowing two operations

can be carried out:
o if the coefficients of the polynomial are committed to using the above scheme, then directly from these

commitments we can compute commitments to the value f(z), for 1 < ¢ < n, in the following we will
call this procedure “evaluation in the exponent”.
e and reversely, given commitmentsto f(z), for 1 < ¢ < n, it is possible to compute commitments to the

coefficients of the polynomial, in the following wewill call thisprocedure “interpolationin the exponent”.
Both of these computations are possible as there is a linear relation between the coefficients and the eval uated

points thus, due to the homomorphic properties of the commitment, the computation can be carried out in the
exponent.

Homomorphic commitments based on general computational assumptions have been recently introduced and
studied by Cramer and Damgard [CD97]. The ZK proof in Appendix F is aso due to them. For simplicity of
exposition we will use a specific commitment scheme due to Pedersen described below. However the reader
should keep in mind that any of the commitmentsin [CD97] will do.

Let p and g beprimessuchthat p = ug + 1, where g isan element of order g in Z; and h &' g# mod p. The
value z is unknown to the dealer and players.
Discrete Log Assumption: We assume that it is infeasible to compute discrete logarithms in the subgroup of
Z; generated by g.
A commitment to a string o € Z, using arandom p € Z, isthevalue A = g*h* mod p. It isprovenin
[Ped91a] that this commitment is information-theoretic secure in terms of privacy and can be opened in two
different ways only by somebody who can compute z.

4.2 Multiparty Computation Using our VSS

When we introduced our VSS protocol we said that it gained in efficency because it did not satisfy the VSPS
property, i.e. the guarantee that there exists an underlying polynomial. We further said that this property is
needed for the multiparty computations of [BGW88]. Thus, if we want to use our protocol for computationswe
will first need to reintroduce the V SPS property into our VSS. Yet, we add the VSPS in such a manner that our
V SS with V SPS enjoys anovel property which isthat the verification of the existence of asecret is disjoint from
the verification of the V SPS property. This split will enable usto expedite our computations along the fast-track
paradigm (see Section 5). We start by showing how to verify the V SPS property followed by the presentation of
the robust multiplication gate.

4.2.1 Checking the VSPS Property

The original description of our VSS protocol simply assumed a commitment scheme, but for the multiparty
computations we will implement this commitment with the homomorphic commitment of Pedersen. Now, the
dealer will share his secret o € Z, in the following manner. He will choose polynomials f(z) = a,z* + ... +
a1z + o, and r(z) = rezt + ... + 7o. The dealer will compute and give player P; the values o; & £(3) and
p: = 7(2). The commitment will be doneby A; = H(a,p;) < g*h#* mod p. For reasons that will become
apparent later we extend the V' SS protocol by having the dealer commit also to the secret itself, which is f(z)
evaluated at 0, by publishing.4, = g*A™. Thereconstructionphaseis, in essence, asbefore; player P; broadcasts
a; and p;. We accept only those values that match the published commitment .A;. The polynomias fand 7 are

interpolated from the accepted values and a check is carried out that, for all < = 0,...,n, A, = H(f(2), #(2)).

I this check succeeds then o < hat f(0) otherwise o & 0.



We denote with DL-VSS the above implementation of New-VSS. Although it looks similar to Pedersen’s
VSSit differsfrom it because in DL-VSS the public commitments are to the points of the polynomial, whilein
Pedersen’s V' SS the commitments are to the coefficient. For this same reason however DL-VSS does not have
the V SPS property i.e. it does not insure that the shares lie on a polynomial of degree.

The first method that comes to mind to verify the VSPS property, is to interpolate in the exponent the
polynomial from ¢ + 1 values, and then to evaluate in the exponent the remaining points, and see if they match.
Yet, this solution is highly expensive in computation. We present a more efficient randomized solution.

If the Ao, ...,.A, determine a unique pair of ¢-degree polynomials (f,r) such that A, = ¢g/@A"®), then
Ao, ..., A; should define (f,7) and so should A;y1, ..., As.41. Denote by f(z) = ay.2® + ... + a0,
rM(z) = r b +.. .+ roand fO(z) = ay .2 + ...+ azo, 7 (z) = rosz’ + ... + 730 the polynomias
defined by thefirst and second sets respectively. Theideaof the check isto provethat for arandomvaueé € Z,

we have [€)] [€)] [©)] [©)]
FOOROE Z GO @) (1)

ash = g* thisimpliesthat f)(§) + 2r(1(6) = f@(8) + 2r(2)(§). But sinced ischosen at random that means
that with probability 1 — 3 we have

@)+ 2rV(2) = fO(2) + 2r(a) 2

For large ¢ the probability of error can be made negligible.

Recall that our final goal isto provethat f(*)(z) = f®)(z) and 7()(z) = r(?)(z). Suppose that the dealer
distributed shares such that f(V)(z) # f®@(z) and rM(z) £ #(3)(z), but such that Equation (2) holds. Then it
is easy to seethat the dealer can compute z which contradicts the assumptions.

Thus, the whole test reduces to alocal check by each player of Equation (1) for arandom é € Z, chosen by
the player. Theleft side of the equation can be computed as follows:

gf(l)(g)hr(l)(g) — ng:u a1,j6:’h2j:0h,j6’ _
i IO D RO Dir( .
gEJ:D Ez:D f( ) hEJ:U Ez:D ( ) = H:-I:—i(gf( )h ( ))AI = H:-I:_::II: AZA

where A; = E;':o );:67 for appropriate Lagrange coefficients A;;. Similarly compute the right-hand side of
Equation (1). We denote with VSPS-Check the above method for verifying the V SPS property.

4.2.2 TheRobust Multiplication Gate with our VSS

Let us assume that we are given two secrets a and @ shared via our DL-VSS protocol with polynomias
def def def

fu(2), fo(x) (resp). Player P, hasshares o; < £,(s) and 8; % f,(4) in addition to p; & 7(3) and o; & s(4)
where r(z), s(z) are two random polynomials of degree ¢t. The values A; = H(oy, p;) = g**h** and B; =
H(B;,0;) = g°h° are public. We assume that the VV SPS property of these two sharings has been checked.

Thebasic idea of the robust multiplication protocol is the following: each player P, shares¢; = X, 5; via
our DL-VSS protocol, where ); isthe coefficient defined in Section 3.1. If ¢;; and 7;; are the values P; sendsto
P;, then P; publishesC,; = H(c;j, ;) = g h™.

After the sharing the players check the V SPS property for P,’s sharing. Noticethat P; broadcasted the value
C;o = g+*Pih7o . P; usesthisvalueto provein zero-knowledgethat he shared )\, o, 3; with respect to A; and B;
using the protocol in Appendix F. For any player who does not follow the protocol, all hisprivateinformationis
made public through reconstruction. It isimportant to note that our representation of the secret as acommitment
to the points on the polynomial lends naturally to the ZK proof, as the values are already in the format needed
for the proof.

Now we are at the starting point of the multiplication operation described in Section 3.1 with the additional
property that we know that al the sharings are correct. Thus, each player locally sums the shares which he has
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received from all the other players in order to compute y; = 32750 ¢;; and 7; = Y754 75,. Furthermore, the

publicinformation corresponding to this new shareis generated: C; = H(vy;,7:) = g"h™ = [[;2;" C;;. Thefull
protocol appearsin Figure 3 and is denoted Mult.

Mult: Robust Multiplication

Input of player P;: valuesa; = fo(2), B = fs(2), ps = r(1), o5 = s(2).
Publicinput: A; = H(as, pi) = g*h?**, B; = H(B;,05) = gP*h% for0 <i<mn

1. Each player P; shares A;«;53; using the DL-VSS protocol. That isset ¢;; = fap,i(J), 7; = wi(j) where fopq, u;
are random polynomialsof degree ¢t such that fug,:(0) = A;cif5;.
Secret information of P;: share cj;, 7j; Of Aj o 5;
Publicinformation: C;; = ¢g° A7 forl <i,7 <n Cio=g*°h™ forl <i<n

2. Players run a VSPS-Check on P;'s sharing. If a sharing fails the test then expose the secret through the VSS
reconstruction.

3. P, provesinzero-knowledgethat C;o isacommitment to the product of A, «;5; using the ZK proof from Appendix
F. Expose the values of the players who fail the proof.

4. Player P; computesy; = 2]2?11 ¢;; whichisa share of v = a8 viaarandom polynomid of degree ¢t. Compute
asor; = 2]27:11 Tj4 and C]' = H("}’j,Tj) =g7ihT = l2i-|1-1 Clj, for1 <j<n.

Secret information of P;: share;
Publicinformation: C; for1 <i <mn

Figure 3: Robust multiplication protocol using DL-VSS

Theorem 3 Under the the discrete log assumption protocol Mult is a secure multiplication protocol in the
presence of a computationally bounded active adversary.
Plugging the above multiplication protocol into the [BGW88] construction one gets that for any function ¥’
there exists a secure multiparty computation protocol. We note that this protocol is quite efficient in terms of
computation and communication required by each player.

4.3 Efficiency Analysis
A protocol similar to Mult using Pedersen’sV SSinstead of our DL-VSS is presented in Appendix E and denoted
Ped-mult. We omit from this extended abstract the compl ete computational analysis of Mult, Ped-Mult and the

comparison between them. Here we only point out the major issues in this comparison.
e Our new VSS DL-VSS generates commitments to the points of the polynomial, and these are the values

which are required asinput for the ZK proof of proper conduct. Pedersen’s VSSinstead has commitments
to the coefficients of the polynomial and thus is required in the multiplication protocol to compute these
values viaevaluation in the exponent.

o Pedersen’sV SStakesadvantage of thefact that the check of the V SPS property requires exponentiationsto
relatively small exponents. Our VSPS-Check instead requiresfull exponentiationsinthe group generated
by g. However acloselook at the cost analysis showsthat only for very small » there is an advantage of
using Pedersen’s V SSversus DL-VSS plus VSPS-Check. Rdatively fast (inthe growth of ) they have
the same performance.

e However, the most attractive feature of using DL-VSS is that the verification of the existence of a secret
and the verification of the V SPS property are separate computations. Thiswill alow for theintroduction of
thefast-track paradigm described in Section 5 which will improve the overall performance of the protocol
when there are no faults in the system.



5 Fast-track Computation

As we mentioned in the Introduction secure multiparty protocols pay a heavy cost in terms of communica-
tion/computation in order to guarantee robustness against malicious adversaries. Typically, however, one can
expect malicious faults to happen quite rarely. We would like to build on the efficiency of private protocols,
which operate under the assumption that no faultsoccur, whileavoiding thetrap of assuming that you can execute
the private computation until afault occurs and then re-compute. Indeed such a computation might turn out to
be insecure, and expose secret information.

Thus, we borrow from other fields and introduce into the multi party computation scenario the paradigm
of fast-track computation. The ideaisto avoid carrying out all the verification steps, but rather to identify
“critical” verification points. Only at these critical points some verification will be carried out. Once the
verification is carried out in a critical point we are guaranteed that the computation up to this point was correct.
Thesecritical pointsmust be chosen in such amanner that if faults occur between two consecutive critical points
¢, and ¢,, where ¢, is alater point in the protocol, then the faults will be detected at point ¢,. Furthermore,
recomputing the section from critical point ¢; to ¢, will not violate the security of the computation. Thus, if no
faults occurred between ¢; and ¢, we “saved” all the verifications which should have been carried out between
these two points.

Themain result of this section isthe following.

Theorem 4 For any function F' There exists a fast-track secure multiparty multiplication protocol FT-Mult that
requires a factor of n less computation than Mult when there are no faultsin the system.

It will become clear here why our DL-VSS protocol with VSPS-Check , which has a disjoint verification
for the existence of a secret and for the V SPS property, fals nicely into the framework of fast-track. It allowsto
verify the existence of avalid secret at alow cost, and delay the expensive V SPS check to alater point, in which
the property can be effectively verified for many secrets by a single check.

Furthermore in Appendix H we present fast-track Joint VSS protocols, which allow a set of players to
generate a random secret unknown to all of themin a shared form viaaVSS protocol.

5.1 Fast-track Robust Multiplication Protocol

In this section we describe FT-Mult . When computing a multiplication gate we do not check the V SPS property
on every sharing of thevalues \; a; 5; but rather we check only the combined secret which should be the result of
the multiplication. Basically we run a single VSPS-Check protocol on thevalues(y, . . ., C,. Thus, we reduce
the number of V SPS checks by afactor of n (assuming there are no faults). If the check fails then we know that
there were faults and reiterate the computation of the gate using the Mult protocol.

The protocol works in the following manner: each player P; shares the product of his local shares, i.e.
A 8; viaour DL-VSS protocol. Using the commitment to the free term he proves (using the ZK proof in
Appendix F) that he hasin fact shared the proper value. Then the player computes the sum of the shares which
he has received, and on the set of result of thiscomputation the players check the V SPS property. The complete
protocol appearsin Appendix G.

6 Threshold Cryptography Applications

Inrecent yearsit has become evident that one of themost important applicationsof secure multiparty computation
is threshold cryptography [Des87, Des94]. Consider for example the cryptographic function of signing which
receives as input a secret key and a message, and generates the signature on the message. The signer holding
the secret key can easily generate the signature. But if his computer is broken into, then the secrecy of his key
is compromised. In other words, the storage of the secret key creates a single point of failure which we would
liketo diminate. This can be achieved by sharing the secret key among several signing servers in a threshold
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fashion. Now the computation of the signature must be carried out in a distributed manner via a multiparty
computation protocol among the signing servers.

Threshold cryptography is indeed the study of efficient multiparty computation protocols for cryptographic
functions (e.g. signing or decrypting) in which each party has as input a share of the secret key that allows the
computation of such function. Examples of threshold cryptography protocols can be found in [Boy89, Des87,
DF91, DF89, CMI193, Har94, DDFY 94, PK 96, Lan95, GJKR96b, FGY96, GIKR96a, JY].

The above cited protocols use, in various ways, expensive VSS protocols and zero-knowledge proofs.
Though some are more efficient than others there is still room and need for improvement. Our techniques can
be readily applied to this scenario to obtain much more efficient protocols.

We would like to present a specific application of this paradigm. In the next section we will apply our
techniques to the robust threshold DSS protocol of Gennaro e Tal [GIKR96b]. The improvements to that
protocol will be twofold:
fault-tolerance the simplified multiplication protocol described in this paper brings the fault-tolerance of the
scheme up to 25+ (from 23*) without an increase in communication or computational complexity.
efficiency Our new DSS protocol has afast-track version which requires afactor of n lesscomputation (in terms
of modular exponentiations) from each player.

SecuriTY. Formal definitionsof security for threshold signature protocol scan befoundin [GIK R96b]. We stress
that our new protocol can be proven secure under the sole assumption of the unforgeability of DSS signatures.
For the details see Appendix I.
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A Shamir’sSecret Sharing

Assume the dealer has a secret s which is anumber in Z, where p is aprime. The dealer wantsto “share” this
number among n players Py, . . ., P, sothat ¢ of them have no information about the secret while ¢ + 1 of them
can reconstruct it. Shamir’s protocol [Sha79] is described in Figure 4.

It isimportant to noticethat the protocol works only under the assumption that no faults occur in the system.
Otherwise, for example, there is no assurance that the dealer shared values which define a polynomial of degree
at most ¢. And during reconstruction time the bad players may compromise the recovering of s by contributing
values &; different than the ones originally received from the dealer.

B Verifiable Secret Sharing

Informally aVSS protocol achieves secret sharing in the presence of malicious faults. In other words what we
want isthat at the end of the sharing phase the good players are guaranteed that indeed a secret has been shared,
in the sense that they will be able to reconstruct it at the end of the recover phase, regardless of the actions of a
faulty dedler or players.
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Shamir’s Secret Sharing

Sharing Phase Protocol for Dedler on input a secret s:

e Chooseay,...,a1 €r Z, and definethe polynomia f(z) = a;z® + ... + a1z + s

e Compute and hand to player P; thevalue o, def f(Z) mod p,for1 < i < n.
Reconstruction Phase

1. Each player broadcasts the value «;.

2. Taket + 1 broadcasted values and interpolate a polynomial f(z) of degree at most ¢.

3. Output s = f(0) mod p.

Figure 4. Sharing and Reconstruction Protocols

Another way of thinking of VSSis as a “recoverable commitment”. In typical commitment schemes when
Alice commits to a secret value s to Bob, Bob has a guarantee that indeed there is a unique committed secret
although he knows nothing about s. Thisis due to the secrecy and binding properties of commitment schemes.
However nothing prevents Alice from never opening the commitment at a later time. V'SS protocols have the
same functionality of commitments with the added feature that at alater time it is aways possiblefor the good
players to reconstruct the value the dealer committed to.

Thefollowing definition of VSSisfrom [FM88, FM].

We haven players Py, . . ., P, and adistinguished player D, theded er. Thedealer and the players are connected
by private communication channels and they also have access to abroadcast channel. Thereis astatic adversary
A that can corrupt up to ¢ of the playersincluding the dealer.

Let 7 be aprotocol consisting of two phases Shar e, Reconst r uct inwhich all players have as common
input the description of aset of possible secrets, 5. The dealer has an extrainput the secret s in 5. At theend of
Shar e each player P; isinstructed to output a Boolean value ver;. At the end of Reconst ruct each player
isinstructed to output avaluein S.

We say that = is a Verifiable Secret Sharing protocol (VSS) if the following properties hold for any
adversary A

Unanimity If any good player P; output ver; = 1 at theend of Shar e, thenver; = 1 for al other good players
P

J

Acceptance of good secrets If the dedler isgood, then ver; = 1 for every good F;

Verifiability If agood player P; outputsver; — 1 at the end of Shar e then there existsavalue ¢ in the set of
possiblesecrets, .S, such that the event that all good players output o at theend of Reconst r uct isfixed
at theend of Shar e. Moreover if the dedler is good then ¢ = s the original secret input of the dealer.

Unpredictability If the secret s israndomly chosen from aset of cardinality ¢, and the dealer isgood, then the
adversary A cannot guessat theend of Shar e thevalue s with probability better than % by anon-negligible
additivefactor.

The final condition can be strengthened by requiring that the view of the adversary is simulatable by a
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simulator that has no knowledge of s. Which means that the adversary gains no knowledge at al from the
execution of the VSS protocol.

C Proof of Theorem 1
Sketch of Proof

UNANIMITY. The decision to disqualify or accept the sharing is done based on public information viewed by
al players, hence al good players reach the same decision.

ACCEPTANCE OF GOOD SECRETS. If the dealer is good then all his public actions will be seen as proper and all
honest players will decide that a secret has been shared.

VERIFIABILITY. This property is achieved via the collision resistance of H. Assume w.l.0.g. that at least

Py, ...P,y; arehonest. Let f(z), r(x) be the polynomialsof degree ¢ determined by values o; and p;, for
def def

1<i<t+1.If A =H(f(i),r(:)) Vithendefinec = f(0). Otherwise, ¢ = 0. The dealer committed
himself tothevalues A,, .. .,.A,, by broadcastingthem. Thevalues a;, p; for 1 <: <t + 1 are set at the
end of the sharing phase, and hence f(z) isset. Thus, o iswell defined at the end of the sharing phase. It
remains to be shown that at the end of the reconstruction phase the players output the value . Assume
by contradiction that they reconstruct & # ¢ by choosingt 4 1 values o, . . ., o, ,, givenout by players
such that H(a,, pi,) = A;,. This means that the ¢-degree polynomials f(a;), #(z) interpolated by the
a;, and p;, (resp.) have the property that H(£(3),#(1)) = A; but f(z) # f(z) (asthey differ in thefree
term), thus there must be an index j such that f(5) # £(5). Thepairs (£(5),7(5)) and (f(5),7(j)) are a
collisionfor H, which is known to either the dealer or player P;, which contradictsthe hypothesis.

UNPREDICTABILITY. If the dealer is good the adversary sees t points on a polynomial of degree ¢ plus all the
values A4;. But aswe assumethat H has the secrecy property the .A;’s give no information about the other
points. Hence, .A has no information about the secret. In other wordsit is possibleto simulate the view of
the adversary with ¢ random values as the shares and » random values asthe A;’s.

D Computing Multiplication with Faults

Theunderlying assumption for the computationin the previous sectionisthat each player P, shared apolynomial
h;(z) such that 2,(0) = f.(7)fs(z). We present a simple method for verifying that P; has shared the proper
value. To reduce the complexity of expositionwe change the notation, saying that player P; has values o and 3
and he needs to share a polynomial whose constant term is a3. We take as a starting point that the values «,
have been shared properly using polynomials f,(z), fs(z) resp. (see [BGW8S8] for proof). Thus, we need to
prove that the three polynomials satisfy the property that 2(0) = f,(0)fs(0).

We are able to present a simpler proof for this property based on a combination of two ideas. Thefirst idea
is, as in the multiplication step, that instead of reducing the degree of a polynomial and randomizing it through
computation it can be directly shared as a random polynomial of degree t. And the second is that the prover
is present and can help the players out during the proof stage. More specifically, previous proofs assumed that
the players need to reconstruct the polynomials while correcting errors. Under this assumption a set of 3¢ + 1
players can interpolate a polynomial of degree at most ¢. But if the dealer exposes the polynomial directly and
the players only need to verify their points, then a set of 3¢ + 1 players can check their values and insure the
validity of apolynomial of degree (at most) 2¢.
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Thus, we shall have player P; share h(z) of degree ¢ and prove that ~(0) = f.,(0)fs(0) in the following
manner. First, P; will provethat h(z) isof degreet. Then, P; will share an additional polynomial »(z) of degree
2t — 1, thereis no need to verify that it isof theright degree, because one of two things can happen: information
of P; will berevealed is P;'s, or the proof will not go through. To complete the proof P; will broadcast the
polynomia R(z) = zr(z) + fa(z)fs(z) — h(z). Thisisarandom polynomial of degree 2t and hence revealsno
information about the coefficients of f.(x)fs(z) or h(z). Each player P; checksthat R;(0) = 0 whichindicates
that ~(z) asasits constant term the product o5. Furthermore, P; verifiesthat R(j) = j7(5)+ f«(7) fo(5) —R(7),
to ensure that his share of A(xz) isin fact on the polynomial, if there is no match he requests that his values be
made public.

Thisis much more efficient than the proof in [BGW88] that uses error-correction in quite a complicated way
to enforce the conditionthat 2(0) = £,(0)fs(0). |

E TheMultiplication Gatewith Pedersen’sVSS

In this section we show how to carry out the multiplication gate using Pedersen’s VSS [Ped91a]. A dealer for a
secret o € Z, chooses arandom polynomid f,(z) = a,z® + ... + ao (Withae = «) and arandom polynomial
r(z) = ra® + ...+ ro Where a;,7; € Z,. The deder givesto player P, the values o; = f,(%) mod ¢ and
p; = 7(2) mod ¢. He then publishes the following values A,, ..., A; where A; = ¢%*h’ mod p. The A4;’s
are basically commitments to the coefficients of the polynomials. Each player checks that his share lies on the
committed polynomial by checking that

t
guhf = H A;J
j=0

Let us now dea with a multiplication gate. Assume that the two secrets o and  are currently shared using
Pedersen’'s VSS.

That is o is shared via polynomids f,(z) = a;z* + ... 4+ ao (Withay = @) and 7(z) = rz* + ...+ 7ro;
each player P; holdsthe values o; = f,(%) mod ¢ and p, = 7(¢) mod ¢q. Thevalues A; = g* k"’ mod p (for
j=0,...,t) aepublic.
Similarly g is shared via polynomias fs(z) = byz* 4 ... + by (With by = §) and s(z) = s.z* + ... + So;
each player P; holdsthe values 3; = f4(i) mod ¢ and o; = s(¢) mod q. Thevaues B; = g* h*s mod p (for
j=0,...,t) aepublic.

We use the simplified multiplication protocol shown in Section 3.1. Each player P, shares the value \; a; 53;
via Pedersen’s VSS. This will assure that the value is shared via a polynomial of degree t. A side effect of
the VSS sharing is that P, publishes the value g*:*::A" for some random value 7. We will use this public
value to check that P, shared the correct value o;8;. Thisisdone by first generating from the commitment to
the coefficients of the polynomial of « (3) a commitment to the interpolated values, i.e. g*:h#: (gf:h°:), via
interpolationin the exponents. Then player P; provesin ZK that the value he shared isthe product of the values
contained in these two commitments. A protocol for thistask is described in Appendix F.

Thefull protocol isdescribed in Figure 5.

F ZK Proof for multiplication of committed values

In both the Mult and FT-Mult protocolsacrucial tool to provethat aplayer isperforming correctly isaZK proof
of the following statement.
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1.

Ped-Mult: Multiplication based on Pedersen’s VSS

Publicinput A; = g% k™5, B; = b h%i

Each player P; shares A;«;3;

using Pedersen’s VSS protocol. That islet f;(z) = firz® + ...+ fio and u;(z) = uiz® + ... + u;0 two random
polynomiasof degreet suchthat f;(0) = A;a;08;. Player P; givesto player P; thevaluese;; = fi(4), 7; = wi(j).
Player P; publishesC;; = g¥ii h%ii for j = 0,...,t.

Secret information of P;: share c;;, 7j; Of Aj o 5;
Publicinformation: C;; = g¥is hvs

The players verify each other sharing. The playerswho fail the verification of the VSS protocol are exposed.

Playerscompute A; = g*:h#: = H;:o A;ij and B; = ¢gPh% = H;:o Bjj Require P; to prove in zero-knowledge
that C;o = g*+*F+h%s isof the correct form with respect to .A; and B;. (see Appendix F.) Expose the values of
the players who fail the check.

Player P; computesy; = 2]2?11 ¢;; whichisa share of v = a8 viaarandom polynomia of degree ¢t. Compute
aso T = 2]27:11 Tj4-

Player P; computes C; = [[251* Cy5,for1 < j < n.

Secret information of P;: share vy,
Publicinformation: C; for1 <i<mn

Figure 5: Robust multiplication protocol using Pedersen’s VSS

The prover P publishesthree commitments: A = g*h?, B = ¢°h° and C = ¢g*’h". Hewantsto provein
ZK to averifier V' that he knows how to open such commitments and the opening of C' that he knowsis really
the product of the values he committedtoin A and B.

Thefollowing ZK proof is adapted from a more general one invented by Cramer and Damgard [CD97]. The
basicideaisfor the prover to prove that he knowsthat C' can be writtenas B*h™~7<.

1. P choosesd, s, z,s1,s: €Er Z,. Hesendsto V themessages M = g%h°, My = g®h°*, M, = B®h°=.

2. V choosesachallengee € Z, and sendsit to P

3. P replies with the followingvalues. y = d + eB8, w = s+ e0, z = & + ea, w; = 81 + ep, wy =
sy +e(T — oa).

4. V checksthat: g?h* = M B¢, g°h*+ = M, A° and B*h*> = M,C".

The above protocol isonly ZK against an honest verifier but can be transformed in a ZK proof against any
verifier by standard techniques, i.e. by having the verifier commit to the challenge as afirst round.
Notice that the protocol involves only a constant number of exponentiations(i.e. O (k) multiplications).

Remark: In our protocol we can exploit the fact that the verifier only sends a random challenge to the prover.
Indeed this allows us to run a single proof from P; to all the other players. The proof would go as follows:. 1)

17




all the other players commit to arandom number in Z,; 2) the prover sends the first message; 3) al the players
would decommit and the challenge will be computed as the sum of the decommitted values. If the original
commitment is non-malleable thisis secure.

G Fast-track Multiplication

Protocol appears in Figure 6.

FT-Mult: Fast-track Multiplication

Input of player P;: valuesa; = f,(3), B = fo(3), pi = 7(2), o5 = s(3).
Publicinput A; = H(as, i) = g% h?*, B; = H(B:,05) = gP*h for0 <i<n

1. Each player P; shares A;«;3; using the VSS protocol. That isset ¢;; = fap,i(4), 7j = ui(7) where fop.:, u; are
random polynomialsof degree t such that fus,:(0) = A;c;5;.

Secret information of P;: share c;;, 7j; Of Aj o 5;

Publicinformation: C;; = ¢g® A7 forl < 4,5 <n

Cio=g%°h™forl <i<mn

2. P, provesinzero-knowledgethat C;o isacommitment to the product of A;«;5; using the ZK proof from Appendix
F. Expose the values of the players who fail the proof.

3. Player P; computes v; = E?t:tl ¢;; which is a share of ¥ = o via a random polynomia of degree ¢, and

J
2t+1
= Yo T
4. Player P; computesand broadcasts C; = M (vi, 7:) = g™ h™ = [[;2%" Cji.

5. Playersrun aVSPS-Check on C; for 1 < ¢ < n. If thetest fails STOP and run Multfrom Step 2.

Secret information of P;: share vy,
Publicinformation: C; for1 <i <n

Figure 6: Fast-track multiplication protocol

H Fast-track Joint Random VSS protocols

A crucia tool in severa cryptographic protocolsis a scheme to generate a a random value unknown to all the
players which will be shared with the V SPS property. A method to achieve this was introduced by Pedersen
[Ped91b]. Each player shares arandom value with aV SPS protocol, then these secrets are summed to generate
the random secret. Each player checks all the other sharings and then locally sums the shares received by the
other players. It is easy to see that such a sum is a share (with the V SPS property) of a randomly distributed
secret.

Inthefollowing wewill denote with Joint-Uncond-VSS ajoint VSSthat is obtained by the above paradigm
with the underlying V SPS protocol being either Pedersen’sV SS or our DL-VSS combined with VSPS-Check .

However we observe that if we use DL-VSS as the underlying VSS protocol, we can create a fast track
version of thisprotocol by deferring the verification of the V SPS property only to the combined values. Indeed it
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isnotimportant if individual sharingsdo not havetheV SPS property, asweare only interested that thefinal secret
will have the property. If the resulting sharing fails the VSPS-Check protocol then we know there are faultsin
the system and only then we check each individual sharing. The full protocol which we call FT-Joint-DL-VSS
isdescribed in Figure 7.

Fast-Track Joint VSS

1. Player P; chooses arandom vaue r; and shares it using the DL-VSS protocol in Section 2. Denote by «; ;, ps,;
the shares player P; givestoplayer P;. Thevalue A; ; = g*+i h?+3 ispublic.

2. The players verify the V SPS property of the sum of the shared secrets by running VSPS-Check on Ay, ..., 4,

where
&:H&j

3. If the output of VSPS-Check= 1 then player P; computes his shares «;, p; of the random secret r = . r; by
setting oy = >, a6 5, p; = Y, pi,; Otherwisethe players run VSPS-Check on each individual sharing from step
1. Thevauesa;, p; are set to the sum of the shares from the sharings that pass the VSPS-Check protocol.

Figure7: FT-Joint-DL-VSS

EFFICIENCY GAIN. If there are no faultsin the system the protocol FT-Joint-DL-VSS isafactor of » faster than
the corresponding Joint-Uncond-VSS since the expensive procedure VSPS-Check is performed only once
instead of n times.

| DSSThreshold Signatures

.1 TheDigital Signature Standard

The Digita Signature Standard (DSS) [fST9]] is a signature scheme based on the El-Gamal [EIG85] and
Schnorr’s [Sch91] signature schemes. In our description of the DSS protocol we follow the notation introduced
in[Lan95].
KEY GENERATION. A DSS key is composed of public information p, ¢, g, a public key y and a secret key z,
where: p isa prime number of length [ where [ isamultiple of 64 and 512 < [ < 1024. ¢ isa 160-bit prime
divisor of p — 1. g isan element of order ¢ in Z;. Thetriple(p, g, g) ispublic. z isthe secret key of the signer,
arandom number 1 < z < ¢. y = g*° mod p isthe public verification key.
SIGNATURE ALGORITHM. Let m be a hash of the message to be signed. The signer picks a random number &
suchthat 1 < k < ¢, calculatesk~* mod ¢, and setsr = (gk_1 mod p) mod g and s = k(m + zr) mod ¢ The
pair (r, s) isasignature of m.
VERIFICATION ALGORITHM. A signature (r,s) of a message m can be publicly verified by checking that
7= (g™ 'y mod p) mod ¢ where s~! is computed modulo g.

Our DSS protocol uses in a crucial way Joint VSS protocols, which alow a set of players to generate a
random secret unknown to all of themin a shared form viaa VSS protocol. We describe such protocols and a
clever way to fast-track themin Appendix H
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.2 Yet another VSS

In our basic VSS consider yet another implementation of H directly based on modular exponentiation. That is
the dealer sharesthe secret o € Z, with the polynomial f,(z) = a;z* + ... + a1z + «, givesplayer P; thevalue

= f.(7) and publishes A; = H(a;) & g mod p. The dealer also publishes A4, = g. The reconstruction
is as before. Each player P; broadcasts ;. We accept only those that match the published .A;. We extrapolate
the polynomial 7, check that, forall i = 0,...,n, A; = gf«(). If thischeck succeedsthen o = f(0) otherwise
a=0.

We name the above protocol FVSS. Although it looks similar to Feldman's VSS [Fel87] it differs from it
because in FVSS the public commitments are to the points of the polynomial, while in Pedersen’s VSS the
commitments are to the coefficient. For this same reason however DL-VSS does not have the V SPS property
i.e. it does not insurethat the shareslie on apolynomial of degreet. However itis easy to seethat such property
can be checked viaarandomized test similar to the one described in Section 4.2.1.

Asin Feldman's VSS, FVSS reveas the value ¢ mod p. In general this can be a problem in terms of
security. However for the specific application of threshold DSSitis OK to reveal such avalue, sinceit will turn
out to be part of the output of the protocal.

A joint version of FVSS can be obtained as in Section H. We will denote with Joint-VSS ajoint VSS
protocol in which the underlying VSS scheme is either Feldman’s VSS or our FVSS with VSPS-Check . We
denote with FT-Joint-FVSS the fast-track version of it that can be obtained with FVSS as the underlying VSS.

1.3 Our Protocol for Threshold DSS signatures

KEY GENERATION. Asnoted first in [Ped91b], for any discrete-log based scheme, the distributed key generation
protocol can be implemented with Joint-VSS. Recall that as a result of this protocol player P; holds a secret
input z; whichis his share of the secret key z. Thevaues g* and ¢*+ are public.

OUTLINE OF SIGNATURE ProTOCOL. The protocol follows the same structure of the one in [GIKR96b]. First
the players generate distributively a random value & by running a Joint-Uncond-VSS protocol. It is necessary
that this protocol be unconditionally secure as we do want to reveal ¢*, which isinformation not revealed by
a DSS signature. To compute r = ¢* mod p mod ¢ without revealing &, the players use a variation of a
protocol to compute inverses due to Bar-1lan and Beaver [BB89]. The idea here isto generate a random value
a distributively through a Joint-VSS protocol. Recall that this reveals g¢. Compute a sharing g4, . . ., i, Of
the value . = ka viaa multiplication protocol Mult. Notice that although « is shared with a Feldman-based
protocol the Mult protocol still works (one just needsto adapt the ZK proof to a specia case in which one of the
committed valuesis not information-theoretically secure). Reconstruct y by revealing the shares p; (bad players
are caught because they cannot contribute bad shares which do not match the commitment). Then, the value r
can be publicly computed as ( g“)“_l . For the generation of the signature’s value s, the players have to compute
amultiplication protocol Mult and alinear combination over the shared values k& and = (here once again one has
to noticethat = is shared viaa Feldman-based VSS).
The protocol isdescribed infull in Figure 8.

Theorem 5 DSS-Thresh is a secure threshold signature protocol for DSS

IMPROVEMENTS. What did we gain with respect to the protocol in [GIKR96b]? First of all the use of the
simplified multiplication approach alows us to bring the fault-tolerance up to ¢ = n/2. Thisis a dramatic
improvement over the fault-tolerance of t = n/4 in [GIKR96b]. This does not come at the expenses of extra
complexity. A close look at the protocol reveals that each player performs 4 VSS's as a dealer and it also
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DSS-Thresh

Privateinput to player P;: A share z; of the secret key z.
Public Input: Thevauesg®, ¢*1, ..., g*~ and the message m.

1. Generate k. The players generate a secret value k, uniformly distributed in Z,, by running Joint-Uncond-VSS
with two polynomials of degreet, fi(z) and f,(z) such that f;(0) = & and f,(0) = p.

Secret information of P; : sharesk; = f(4) and p; = r(z)
Publicinformation g® A, g*h?:, 1 <4 < n.

2. Generater = gk_1 mod p mod ¢

(8) Generate arandom value a, uniformly distributed in 7, with a polynomial of degree ¢, using Joint-VSS.

Secret information of P; : ashare a; of a
Publicinformation: ¢g%,¢%, 1 <i<mn

(b) Perform protocol Mult to get shares p;, of 1 = ka mod ¢ that lie on a polynomia of degree ¢t. Thisaso
produces random values ¢; that lie on a polynomial of degree.

Secret information of P; : shares u; and o;
Publicinformation: g*h?, g**h%, 1 <i<mn

(c) Player P; broadcasts p;, o;. Discard those that do not match g#*h?%:. Interpolate the remaining ones to

def

reconstruct ;. = ka. Each player P; computeslocaly r = (g")“_1 mod p mod gq.

| Publicinformation: r |

3. Generate s = k(m + xr) mod ¢

(8 Perform aprotocol Mult to get shares s; of s = k(m + zr) mod ¢ that lieon apolynomial of degreet. This
also produces random values ; that lie on apolynomia of degree.

Private Information of Player P;: shares s; and ;.
Publicinformation: ¢°*h™,1 <:<n

(b) Player P; broadcasts s;, ;. Discard those that do not match g°*h":. Let s be thefree term of the polynomial
interpolating the accepted s;’s.

4. Check and Output. Output (r, s) as asignature on m.

Figure 8: DSS Distributed signature generation

participates to 4(n — 1) VSS's dealt by other players as a participant. Thisis the same asin [GIKR96b], but

we have an increase in fault-tolerance. This is due to our improved and simplified multiplication protocols.

Basically the VSS's used in [GIKR96b] to randomize polynomials of degree 2¢ are replaced in our protocol by

VSS's that at the same time reduce the degree and randomi ze the polynomial.

Another nice property of our protocol (which the one in [GIKR96b] does not have) is the possibility of

creating afast-track version as we will see in the next section.
ON-LINE/OFF-LINE BEHAVIOR. It is worth noting that the on-ling/off-line behavior of DSS is preserved even
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under our new protocols. Indeed the value » can be precomputed off-line first. Then » can be used for the
computation of s on-line. In order to avoid computing modular exponentiations during the on-line computation
of s (because of the VSS's of the values k;z;) one must precompute the sharings of thevalues k;z; aswdll.

|.4 Fast Track version

It is possible to create a fast-track version of the protocol considered above. When run in fast-track mode the
protocol will improveits speed by afactor of n if there are no faultsin the system. However if amalicious fault
happen the protocol has to be resetted and ran in the fully fault-tolerant mode.

OUTLINE. The basic idea of the protocol isto use our DL-VSS and FVSS protocols (instead of Pedersen’s and
Feldman's VSS) for the joint VSS used during signature generation. This is because using thos protocols will
allows usto fast-track thejoint VSS's by postponing the V SPS check to the combined secret. Also the FT-Mult
protocol is used instead of Mult . Thismeans that the V SPS check is done on the resulting sharing of the product
rather than on the single sharings of the players. If a malicious fault is discovered it isimportant to notice that
the fully fault-tolerant protocol starts from the round the fault manifested itself.

USING THE PUBLIC KEY. An additional improvement to the efficiency of the fast-track version can be obtained
by performing a weaker multiplication protocol during the computation of s. We will not require the playersto
prove they are sharing the proper value during the multiplication protocol. This may mess up the result of the
computation of s. But now we can usethe publickey y = ¢© to check that the signatureis correct and if it is not
just run the fully fault-tolerant multiplication protocol in the last round.

Remark. In [GIKR96b] avery simple and efficient protocol is presented for the case of no malicious faults.
Players carry out simple secret sharings. One could be tempted to use this protocol for the fast-track case and
then do thefully fault-tolerant protocol only if the signature does not match. However we were not able to prove
that the first run of the protocol does not reveal information to the adversary. For the same reason the weaker
multiplication protocol can be used only at the last round and not during the computation of .

IMPROVEMENTS. The net result isthat if there are no maliciousfaultsthe playershaveto perform only oneVSPS
check per round instead of the n — 1 per round required by the fully fault-tolerant protocol. Thus, we have a
reduction of the overall complexity of the protocol by afactor of n.
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