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Abstract.

The race to find the weakest possible assumptions

on which to base cryptographic primitives such

aa oblivious transfer was abruptly baited by Im-

pagliazzo’s and Rudich’s surprising result: basing

oblivious transfer or other related problems on a

black-box one-way permutation (as opposed to a

one-way trapdoor permutation ) is tantamount to

showing P#NP. In contrast, we show how to gen-

erate OT – in the sense of random number gener-

ation – using any one-way function in a black-box

manner. That is, an initial “seed” of k OT’S suf-

fices to generate O(kc) OT’S.

In turn, we show that such generation is impossi-

ble in an information-theoretic setting, thus plac-

ing OT on an equal footing with random num-

ber generation, and resolving an artificial asym-

metry in the analysis of randomness and partially-

correlated randomness.

We also initiate a complexity theory of privately-

computable probabilistic functional and show that

there is a provably rich hierarchy among them.

Previous work has considered deterministic func-

tions of possibly-random inputs, and focused on

whet her reductions exist, the class of primitives

that are complete, and the amount of information

leaked vs. message complexity. We show that any

complete boolean function gives rise to a nontriv-

ial complexity hierarchy of privately-computable

functions, measured according to invocations of a

complete primitive – and that this hierarchy col-

lapses when restricted to “computational” secu-

rity.
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1 Introduction

Oblivious Transfer, a broadly used primitive introduced

by Rabin [Rab81], is a protocol for sending a bit that

arrives with precisely 50-50 probability – without the

sender knowing the result. This asymmetry in knowl-

edge makes OT a natural basis for achieving security

in a wide variety of interactive protocols, ranging from

bit commitment to zero-knowledge proofs to multiparty

computations to coin tossing, and most of cryptography

(cf. [GMW87, Ki188]).

Despite the widespread use of OT w a primitive, im-

plementations of OT rely on relatively strong assump-

tions, such as the existence of trapdoor one-way permu-

tations and the difficulty of factoring or taking discrete

logarithms [Rab81, EGL82, BM89, Boe91].

In 1989, Impagliazzo and Rudich showed a remark-

able but negative result: basing OT on weaker assump-

tions would be a difficult task [IR89]. In particular, if

there exists an OT protocol that uses a one-way func-

tion as a black-box, then P # NP. This result bears

strong contrast to pseudorandom number generation,

which similarly started with number-theoretic assump-

tions [BM84] yet was indeed reduced to any one-way

function [ILL89].

Expenses and Strong Complexity Assumptions.

Imagine that quantum OT devices are finally in mass

production, but each bit costs a penny to send. Cryp-

tographers rejoice that complexity assumptions are no

longer needed for security, but the price is heavy. Or

imagine that the security of known trapdoor one-way

permutations has been cast in doubt, or that comput-

ing them is as expensive as quantum OT. Meanwhile,

t ant alizingly cheap one-way functions beckon! But im-

ages of Impagliazzo and Rudich stand in their way.

Our work shows how to move past [IR89] by plac-

ing OT on an equal footing with pseudorandom number

generation. In particular, a short “seed” of initial OT’S

can be expanded into a polynomially-long sequence of

OT’S, based only on the existence of a one-way func-

tion (used as a black box). In light of the intricacies

and high OT cost of general two-party protocols and

methodologies, it is somewhat surprising that this can
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be achieved without requiring more OT’S for processing

than are produced in the end.

Non-Interactive Oblivious Transfer. Protocols

for “non-interactive” (with preprocessing) OT and

“non-interactive” zero-knowledge proofs based on it

were presented in [BM89, KM089]. Although remark-

ably elegant, these methods suffered from correlations

among the reception patterns, which were the same in

each ZKP (albeit unknown to the prover). If the prover

learned whether the verifier rejected, he could infer a few

bits of the reception pattern; hence the verifier (and all

other verifiers) would immediately have to quit. Thus
“non-interactive” would have to be replaced by “never-

interactive” for the prover (i. e. the prover could never

learn the success or failure of a proof) or “universally-

interactive” among verifiers.

The bits produced by our method are independent (to

any computationally bounded participant), and thus do

not suffer these problems. They meet the intuition of a

general, computationally-secure “non-interactive oblivi-

ous transfer channel.” Note that the preprocessing step

permits us to escape the impossibility result of [OVY91].

Complexity of Private Computation. Informally,

a n-input function f is t-private if there is a protocol

for n players to compute f, such that no coalition of at

most t players can infer anything more than the value of

f. If multi-input function ~ can be privately computed

with access to a black box for g, then ~ is said to be

reducible to g. If any function is reducible to g, g is said

to be complete for multi-party private computations.

Starting with Chor and Kushilevitz’s work, a long

line of research has characterized privately-computable

2-party functions and boolean n-party functions [CK91,

Kus92, Bea89, Ki191]. Tradeoffs between privacy and

message complexity have been found [BCK093]. More

recent Iy, Kushilevitz, Micali and Ostrovsky identified

the class of complete boolean functions, showing that a

boolean g is complete if and only if it cannot be com-

puted n-privately [KM094]. These constructions typi-

cally invoke a primitive g a reasonable number of times,2

in proportion to the circuit complexity of f.

We give lower bounds on the complexity of such re-

ductions and show that in the information-theoretic set-
ting, there is a provably rich hierarchy of private func-

tions, both in the two-party case and the n-party case.

In particular, any function can be characterized by the

minimal number m of OT’S needed to evaluate it pri-

vately, and for each m z O there is a nonempty set of

2[KM094] furthermore show that complete boolean g’s need be
invoked at only a fixed number of different input-tuples (although
repeatedly), assuming Z1, . . . . Xn can be permuted at will.

functions of invocation complexity m. This character-

ization holds when invocation complexity is measured

according to any complete (not necessarily boolean) g.

As implied by our first result, the hierarchy collapses

when merely computational privacy suffices, if a one-way

function exists.

Asymmetry and Correlated Pseudorandomness.

On a more abstract level, OT can be regarded as a pair

of correlated random sources, where the knowledge of

the results is asymmetric. Our analysis expands the art

of pseudorandom number generation to encompass not

merely correlated pseudorandom sources (highly useful

in accomplishing tasks such as Byzantine Agreement

[Ben83, BS93]) but, more surprisingly, asymmetrically

correlated pseudorandomness (highly useful in achiev-

ing security [Rab81, Ki188, Yao86]), such as OT.

2 Background

We consider three variants of Rabin’s pioneering notion

of Oblivious Transfer:

1.

2.

3.

2.1

OT: Rabin’s original protocol, in which Alice sends
bit b, Bob receives either (O, O) (“failed” ) or (1, b)

(“received b“) uniformly at random, but Alice does

not know which occurred;

*OT: One-out-of-two oblivious transfer [EGL82], in
which Alice haa input bits b. and bl, Bob receives

(c, bc) for a random c outside his control, but Alice

does not learn c;

~)OT: Chosen one-out-of-two oblivious transfer,

in which Alice has input bits b. and bl, Bob chooses

c s {O, 1} and obtains bc, but Alice does not learn

c.

Security

Computational. In the computational setting, we

consider the usual standard of static l-adversaries.

Static l-adversaries decide in advance to corrupt either
Alice or Bob, and may depart from their instructions.
The notion of security is simpler to capture than in a

more robust model where an adversary might corrupt
one or both adaptively.

We follow standard methodology, requiring a simu-

lator to show that Alice gains no information and ex-

erts no undue influence on the output in the case that

an adversary corrupts Alice. A second simulator for

Bob is also required, to show that Bob is similarly lim-

ited. Details are standard and omitted for space (cJ

[Ki188, GMR89]).
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Information Theoretic. We address a more general

scenario for privately-computable functions than previ-

ously considered (see Remarks below). In particular, we

consider probabilistic functions, namely functions map-

ping inputs to distributions.

Let II= (PI,..., P.) be a set of programs for n par-

ties in a synchronous network having private channels

between every pair. Each party is provided an input xi

from domain Xi and a random input ri selected from

some distribution &. At the end of a protocol execu-

tion, each party writes an output yi E Yi. An execution

of II(zl, ..., Zn) maps inputs to a distribution on out-

puts, namely:

II: Xix. ..x X~+dist(Y1x. ..x Yn)

Let F be a probabilistic function, namely a function

mapping inputs to distributions on outputs:

F: XIX... x X. a dist(Y1 x . . . x Yn)

Nothing prevents F from placing all weight on a single
value, thereby behaving like a function with range Y1 x
. . . x Yn. We employ a vector notation Zfor (z1, . . . . Zn).

If DO and D1 are distributions having combined sup-

port S, respectively, we define the distance between

them as:

We say that II computes F e-correctly if

(Vz, y) [] II(z, y) - F(z, y) 11< c.

We address privacy issues in the style of Chor and

Kushilevitz [CK91]. Let S(Z, F’) tabulate the commu-

nication among the parties; let ST be the restriction

to those messages sent or received by parties in coali-

tion’I’~{ 1,,.., n} (called “bad” or “dishonest” play-
ers). ST (FT, FT, ET) can be regarded as a distribution

on coalition-seen messages with respect to the random
inputs ~ of good players.

Protocol II is strongly t-private if for any coali-

tion T with lT1 ~ t, for any ?T, ZT, .ZT such that

F(~T, ~T) = F(~T, +), we have

Protocol II is weakly (6, t)-private if for any coali-

tion T with IT1 ~ t, for any ST, i?~, .ZT such that

F(ZT, LET) = F(ZT, .ZT), we have

Remarks. Although earlier treatment has considered

probabilistic protocols II, the usual goal has been to

compute a single-valued function of the inputs [CK91,

Kus92, Bea89, Ki191, BCK093, KM094]. In other

words, the following requirement is typically made:

(Vz, y) Pr[II(z, y) = ~(z, y)] ~ 1 -e,

Such treatment does not distinguish those random por-

tions of a player’s input that affect the output distribu-

tion but which may (in presumably rare cases) lead to

complete failure of the protocol.

3 Generating Oblivious Trans-

fer

We approach our solution through a series of refine-

ments. In refinement I, we imagine that a trusted third

party, T, were available. Alice constructs two lists of B

random bits, {rirJ}~Gl,,E and {r~l}~sl..~, and send them
to T. When Alice wishes to execute the z“ik OT on some

bit bi, she asks T to flip a coin c and send (c, ric) to

Bob. Alice herself flips a coin d and sends (d, bf @ rid)

to Bob. Bob receives values which he calls (e, ~) from

T and (g, h) from Alice. If e = g then Bob concludes,

“received f @ h ;“ else Bob concludes, “failed.” In fact,

we might as well let Bob choose c, as long as Alice does

not learn it.

Of course, if a third party were available, such efforts
would be unnecessary: we would simply ask it to per-

form the desired OT’S directly. For refinement II, we

invoke a rich variety of results permitting us to replace

a third party by an interactive protocol that simulates

a circuit evaluation without revealing anything but the

results ~ao86, Ki188].

Expressing T’s program as a circuit and applying

known compilation techniques present no difficulty. But

the number of oblivious transfers used by such compi-

lations exceeds the number we wish to generate, as dis-

cussed below.

Oblivious Circuit Evaluation. To illustrate the

problem, consider the ‘(Yao-gate” approach, a general-

ization by Goldreich, Micali, and Wigderson of of Yao’s

methods for two-party circuit evaluation, and further re-

fined elsewhere [Yao86, GMW87, GHY87, GV87, BG89,

GL90]. A circuit is composed of a number of wires and

gates. The value of a wire is not represented directly

as a string or a number, but as the knowledge of a se-
cret key. Specifically, Alice chooses and associates two

secret keys ~io and Hil with wire Wi. If Bob learns ~~o,

this means that wi carries a O; If Bob learns ~il, this

means that wi carries a 1, Clearly, the protocol must
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ensure that Bob learns precisely one key for each wire.

Moreover, the wire keys should have no connection to

the wire values themselves.

To evaluate a gate g(w~, ZUj), Bob must learn the ap-

propriate wire key ~~,gf~, ,w, ) for the output wire wk.

Fig. 1 illustrates the technique, which we sketch briefly.

,flice chooses eight random strings CYO,PO, . . . . as, &I.

She encrypts or exclusive-or’s the strings as illustrated,

hiding each output wire Kk,~(W,,W,) using an a and a

~. She enters the results in a table, permutes the rows

randomly, and gives it to Bob.

If Bob knows tcil and ~io, for example, he can decrypt

CW, %, PO, and P2. Using az @ P2, he can read fih,g(l,o)
from the table. The other entries remain hidden, and

the answer has occurred in a random row; thus Bob

does not learn anything about the actual wire values

themselves.3’4’5

In summary, Alice compiles a circuit into a set of

such tables and gives it to Bob. The primary difficulty

is for Bob to obtain an initial set of keys. Alice might

simply tell Bob the appropriate keys for the wires cor-

responding to her input to the circuit, but this would

reveal which keys Bob wants to learn, namely which

ones correspond to his input bits. Instead, they engage
in one-out-of-two string oblivious transfer: for each wire
corresponding to Bob’s input, Alice transfers precisely

one k-bit key of Bob’s choosing, but Alice does not dis-

cover which keys Bob chose.

It is this step that defeats our purposes. Alice must

transfer at least k bits for each of Bob’s input bits. If we

are to replace the third party T described above in re-

finement II, then Bob will need to specify 1? choices (one

y for each transfer), requiring Alice to transfer at least

kB bits. Using kB transfers to generate B transfers is

hardly a newsworthy accomplishment!

3.1 Adapting OCE to Generate OT

In refinement III, Bob no longer specifies a choice c for

each bit. Instead, he sends a k-bit random seed, s, to T.

T expands s using a pseudorandom number generator,

G.

Refinement IV is simply a compilation of this trusted-

party protocol into a two-party protocol. In particular,

Alice expresses G as a circuit and performs the com-
pilation described above, with a simple modification.

3He may have known something already, particularly if one

wire came from his own input, but he learns nothing he couldn’t

have otherwise guessed a pTiori.
4 Note that the rightmost cohmms of the outPUt gates maY

encode desired output bits directly, rather than a last layer of

wire keys E.,., so that Bob can read the output directly.

5Note that Bob must be able to deduce when a decryption is

successful. There are a multitude of ways to accomplish this; one
simple way is to pad the cleartexts with k 0’s.

Whenever G would output a bit, C;, we add an extra gate
through which Ci selects either ri,o or ri,l. (This simpler

gate contains only two rows: (.E(cw, ~~o), aO (33 (O, r~,o)),

and (E(czl, ~il), al @ (1, ri,l)). Bob will learn ~i,c,, dis-

cover ac,, and deduce (ci, ri, c,).)
Alice’s inputs to this protocol consist of the two se-

quences {~io}i=l..~ and {ril}ial,,~. Bob’s inputs con-
sist of the bits of s. Alice learns nothing, while Bob

discovers the sequence {(ci, ri,c,)}i=l,,~, where G(s) =

clc2. ..c~.

Theorem 1 If a one-way function exists, then for any

constant c >0, there is a proiocol to precompute kc one-

out-of-two oblivious transfers using only k one-out-of-

two oblivious transfers. This protocol is secure against

static l-adversaries.

Proof. Let f be a one-way function; then a

cryptographically strong pseudorandom number gen-

erator Gf exists that maps K-bit seeds to B = Kc

bit sequences [ILL89]. Let CG be the circuit that

takes inputs {rio, r~l }iel,,~ from Alice and and s from

Bob, computes Gf(s) = b1b2 . . . b~, and produces

(c~, rl,cl), (c2, r2,cJ,..., (cB, r~,cB) as its output.

Applying the results sketched above (cf. &ao86,

Ki188]) to CG, we obtain a secure implementation of

a trusted third party, at a cost of O(K) string (?) OT’S.

To handle malicious behavior, we implement bit

commitment and zero-knowledge proofs based on fo
[GMW86, BC86, GMR89, Ki188]. We require that Al-

ice prove in zero knowledge that the cloaked circuit she

sent is constructed correctly. For simulation reasons,

we also require Bob to commit s before Alice sends the

circuit to him. Note that these methods require no in-

vocations of oblivious transfer.

Each string ~) OT can be implemented using O(K)

*OT’S [BC86, BCR86, BCR86, Cr87]. In total, 0(K2)

~OT’S are needed. Setting K = k1i2-’, we obtain the
desired result. ❑

3.2 Storage; Incremental Evaluation

Using the results of [Bea95], the storage requirements

are surprisingly small: once the protocol is complete,

Alice and Bob each need store only two bits for each

future oblivious transfer. In other words, they need not
store the full circuit description.

Moreover, the output stream need not be computed

to its full length (B). Alice can add extra layers to

the simulated circuit later on, without requiring a set of

oblivious transfers. In other words, Alice could transmit

bits 1024 at a time, by sending the appropriate portion

of the cloaked circuit that covers the next window of

outputs of G.
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680 &l KJO KJ 1

E(CYO, &O) E(Po>Kjo) Q’o @ /30 @ ~k,g(o,o)

E(cM, &O) ~(@I , KjI ) al 6 h @ ~k,g(O,l)

-E(CY2, K,l) -W32,Kjo) ~2 @ p2 @ ~k,g(l,O)

E(cY3, K,1) E(/33, Kj1) ~3 693 @ Kk,g(l,l)

Kko ~kl

Figure 1: Yao-style gate (before permuting the rows). The 6’s are encryp-

tion/decryption keys.

Finally, aa in the case of pseudorandom number gen-

eration, we can imagine using the last group of O(k)

transfers to generate an extension to the sequence. This

is useful when the polynomial bound on the number of

transfers required by a protocol is not explicitly known

to the participants.

4 Information Theoretic Impos-

sibility

It is known that OT cannot be generated from scratch

when Alice and Bob are computationally unbounded

[Ki188]. The preceding discussion raises the possibil-

ity that an initial set of transfers might be extended,

however.

Indeed, a simplistic entropy argument raises no con-

tradiction. Bob’s conditional entropy about Alice’s bit b

is easily seen to be H(bll?) = 1/2. The same conditional

entropy is achieved when Alice simply flips a bit b, and

then with probability 1/2 sends b directly to Bob. In a

sense, Alice is always sending “half a bit” to Bob. (Note

that Alice’s knowledge is symmetric with Bob’s in the

latter case; thus a more refined measure is necessary.)

In fact, generating OT is impossible in an

information-theoretic setting, even when both Alice and

Bob are honest (but curious). We prove this through a

series of lemmas concerning reductions among privately-

computable functions. For the moment, we focus on

functions of two inputs and on l-privacy.

We write F s m x G if there exists a strongly private

protocol to compute F, making at most m invocations

of G aa a fundamental (black-box) primitive.

If f : D +. R, let f~m) be the function mapping

Dm ; Rm defined by:

f(m)(xl, xz,..., Zm) = (f(ZI), f(Z2), . . . . f(~rn)).

Similarly, if F = (fA, fE?) is a pair of functions, let F(m)

denote ( f~m), f~m)). (Nothing constrains D from itself

being a cartesian product D1 x D2, or D1 x . . . x Dn, of

sub domains which describe each player’s input domain.)
Note that there is a difference between f(’”), which

is a simultaneous evaluation at m inputs, and m x f,

which denotes m evaluations at different times.

The “F < m x G“ notation lends itself to some natu-

ral and convenient abuse. For example, “m x F <1 x G“
should be read to say that any protocol using m invoca-

tions of F can be implemented with equal security using

1 invocations of G instead.6 Some simple observations

support intuitive conclusions:

Lemma 2

(l) F<mx Gand GSix Himply F<mlx H. We
abusively write this as:

F<mx G<mxlx H<mlx H.

(2) F<mx Gimp!ies lx F<lmx G.

(3) F~m) < m x F.

Proof. Part (1) follows by invoking the protocol be-

hind the reduction G < 1 x H, m times sequentially.

Part (2) is an application of (1). Part (3) is straightfor-

ward: let Alice hold z = (zl, x2, . . . . Zm) and let Bob

‘This is analogous to the overloading of O-notation in cases
like n = 0(n2) = 0(n3).
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hold y= (yl, yz, . . . ~g~); invoke (ai, bi) * F(xi, y~) for
i = l.. m; Alice’s output is a = (al, az, . . . . am), and

Bob’s is b= (b1,62, . . .. bin). •l

Note that the converse of (3) is not generally true,

reflecting the difference between a batch computation

(&’(mJ) and m individual, adaptive computations (m x

F). In fact, the converse of (3) fails for Rabin’s version

of OT, while it holds in both directions for (?) OT and

40T (see [Bea95]).

We proceed with a series of lemmas that show:

Theorem 3 Let Alice and Bob be computationally un-

bounded. For any m ~ O, there exists no secure protocol

by which Alice and Bob can generate m + 1 indepen-

dent one-out-of-two oblivious transfers, when permitted

to invoke up to m one-out-of-two oblivious transfers.

We first consider a protocol for asymmetric AND, a

pair of functions that reveal nothing to Alice but provide

z A y to Bob:

Definition 1 Asymmetric AND (ANDB) is a pair of

functions (fA, f~) each mapping {O, 1}2 + {O, 1}, de-

fined by f~(o,y) = O, f~(x, y) = z Ay.

Lemma 4 AND~ <1 x (?) OT.

Proof. Let Alice’s input be z and Bob’s, y. Alice sets

b. = O and bl = z. Bob sets c = y. One invocation of

(?) OT((bo, bl), c) provides Bob with bc = z A y. ❑

Lemma 5 ~)OT< 2 x ANDB.

Proof. Let Alice’s input be (b., bl) and Bob’s, c. In-

voke ANDB twice to evaluate (5A bo) and (c A 61) with

Bob receiving the answer. Note that if c = O then nei-

ther term leaks any information about bl, while if c = 1

then neither term leaks any information about b.. Bob

then calculates (? A bo) V (c A bl). ❑

For any integer m >0, let G~ = (g~A, gm~) be a pair

of functions, each mapping {O, l}m x {0, 1} +- {O, l}m,

and defined as follows:

%nA(@, Y) = Om

{

Om ify=O
9ml?(~, Y) = x ify=l

Lemma 6 For any integer m >0, Gm ~ 1 x ANDB(ml.

Proof. If Bob’s input v is O, Bob sets Y = 0~; else he
sets Y = 1~. Alice sets X to be her input, z. Invoking

ANDB(m)(X, Y) provides Alice and Bob with the de-

sired results. ❑

The crux of the impossibility result is the following

lemma, which shows that m invocations of ANDB are

insufficient to solve Gm+l.

Lemma 7 For all integers m >0, G~+l ~ mx ANDB.

Proof. Assume by way of contradiction that II is a
protocol that privately computes G~+l with the assis-

tance of up to m invocations of ANDB. We first convert

II into a canonical form by omitting useless invocations

of ANDB and modifying others in a particular way.

Consider a given invo-

cation of ANDB. Let /30 = Pr [Bob applies 1Iy = O] and

,1%= Pr [Bob applies 1Iy = 1]. Because the rules of the
protocol are known to both Alice and Bob, they both

know /30, @l. One of three cases must hold. First, if

@o= PI = O, the ANDB can be omitted, because Bob’s
output is always O. Second, if ,Bo >0, then Alice’s input

to the ANDEI must be independent of x, as must any

future message depending on it, thus the ANDB can be

omitted. Otherwise, Alice will leak information about

her input to Bob even when y = O.

Third, if /30 = O but @I > 0, observe that y = 1

implies Bob is entitled to learn everything that Alice

knows (within the protocol). Thus we can require Bob

to apply y with probability 1 in such cases, effectively

using a new PI = 1. (Technically speaking, when Bob

does this, he should thereafter “pretend” with probabil-

ity 1 –,& that he actually applied a O. Otherwise his

“behavior” may be different than in II.)

Thus, without loss of generality, we may assume that

all invocations of ANDB are such that Bob applies y.

Moreover, we can assume that precisely m invocations

are made, by running extraa at the end and calling on

Alice to apply O’s and Bob to apply y.

Alice must learn nothing; thus she must be able to

generate the open messages in the conversation as well

as her inputs to the ANDB invocations. The transcript

she generates consists of an open message portion, ~,

and an “applied” portion, a, of length m, which de-

scribes the inputs she chooses to apply to the ANDB

invocations.

As an alternate way to carry out II, we can simply

have Alice generate (T, a). Bob receives r. If he holds

y = 1, he is granted o as well. This procedure clearly

gives the same distributions on conversations as II. But

u has length m; thus, for any r, Bob can rule out at

least 2m+1 – 2m = 2m inputs z, even ify = O. Thus If

is insecure. O

Lemma 8 For all integers m ~ O, ANDB(m+ll $ m x

ANDB.

Proof. Assume by way of contradiction that for

some integer m ~ O, ANDB(m+lJ ~ m x ANDB. By

lemma 6, Gm+l ~ 1 x ANDB(m+ll, hence by lemma 2.1,

Gm+l < m x ANDB. But this contradicts lemma 7.0
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We can now prove that it is impossible to generate

additional OT’S:

Proof (Theorem 3). Because (?)OT ~ 1 x *OT ~

1 x ~) OT and such invocations can be precomputed, it

suffices to show (rn + 1) x fi)OT ~ m x @OT,

Assume by way of contradiction that for some integer

L>O,

(L+ 1)X (?)OT ~ L X (?)OT.

Repeated invocation of the protocol supporting this re-
duction gives (2L + 1) x ~)OT ~ L x @OT. Thus:

ANDB(2~+l) < (2L+1) x ANDB (lemma 2.3)

< (2L+ 1) x (?)OT (lemma 4)

~ L X ~)OT (assumption)

~ 2L X ANDB (lemma 5)

But this violates lemma 8. ❑

Theorem 3 also implies the following result for 2-party

privacy:

Corollary 9 Let ~) OT <1 x g for some fixed 1 ~ 1.

Then~or aiim~O, (m+l)xg~mx g.

4.1 Statistical Privacy

For clarity of presentation, we have focused on strong
‘u(l) weakly-private reductionprivacy. Let ~ denote a k

with k-W(l) error, where k is an additional, “security”

parameter; in other words, a statistically private reduc-

tion. The preceding arguments apply mut atis mut andis

with respect to ~, for m = kOIl).7 In particular, if

the given protocols are weakly (k-w(l), 1)-private with

k-w(l) error, the cumulative error of composing k“fl)

protocols is still k-W(l). In the proof of lemma 7, re-

place the & = O comparisons by /3i < 6(k) for some

d(k) = k-W(lJ exceeding the error rate bound. At worst,

this skews II’s results negligibly, by k-W(l).8

While theorem 3 applies equally well to ~OT, Rabin’s

OT must be handled with error in mind. A strongly

private reduction ~) OT ~ m x OT has never been

given; the only known protocols leak exponentially-

small information or permit exponentially-small error

[BC86, BCR86, BCR86, Cr87].

Corollary 10 (Rabin Impossibility) For all integers

m~O, (m+l)x OT~mx OT.

7NatW~y, one cm &O substitute ‘%-n.+ 1“ ad “~” by non-

negative integer-valued M(k) and m(k), where M(k) = kO(lj,
m(k) = kO(l), and M(k) > m(k) a.e..

8& ~ technj~l observation, it should be noted that we me

composing the same subprotocol repeatedly, as opposed to differ-
ent subprotocols; thus convergence thresholds are uniform.

Proof. Weakly-private reductions found in [BC86,

BCR86, Cr87] show that OT variants can be e-~-

privately reduced to OT at invocation cost ck, where

c > 0 is a fixed integer. OT can be reduced to

1 x ~) OT (or to 1 x ~OT) with strong privacy. Sup-

pose that it were the case that, for some integer m ~ O,

(m + 1) x OT ~ m x OT. Then, repeating O(k2)

times, we obtain (k + l)(ck) x OT ~ k x OT. Thus

(k+ 1) x @OT ~ k x ~)OT, violating the statistical

version of theorem 3. 0

5 Complexity of Private Com-

putation

We now turn to private multiparty computations, Let

BF denote the set of boolean-output, n-inputg functions

(for n ~ 2).

We define a complexity measure based on the number
of @ OT’S needed to compute a function ~ t-privately.

Let CPxOt,t (f) be the minimum over the maximal num-

ber of (?) OT’S used by any strongly t-private n-party

protocol for f, or cm if no such protocol exists,

Using this measure, we examine classes of privately-

computable functions sharing the same complexity. For

m c N, let PFot,t (m) be the class of functions ~ c BF

such that CPxOt,t(~) s m.

Theorem 11 (OT Hierarchy) For all n ~ 2 and all

m ~ O, PFOt,n(m) C PFot,n(m + 1), where C denotes

proper containment.

Proof. Clearly, (?) OT(m+l) C pF.t,n(m + 1). Us-

ing theorem 3 and the fact that (m + 1) x @ OT ~
(;)oT(~+Q

[Bea95], we conclude ($) OT(m+’) @

PFot,n(m). ❑

For the more general case, now consider what happens
when (~) OT is replaced by an arbitrary, non-n-private

function f as the “unit” of complexity. Define the mea-

sure CPxf,t () and the classes PFf,t (m) with respect to ~

rather than to ~) OT. A rich hierarchy results again:

Theorem 12 (General Hierarchy) Let f c BF be non-

n-priuate. For all n >2 and all m z O, Pq,n(m) C

PFf,n(m + 1).

Proof. Say f E BF and f is not n-private. Assume

by way of contradiction that for some integer L z O,

PFf,n (L) = PFf,n(L+ l). Then (L+ 1) x f ~ L x f.

Following [Ki191, KM094], an embedded OR is,

roughly speaking, a pair of input variables and for each,

9On a finite domain,

485



a pair of values, such that the output on three of the
four possible input settings is a “1” (or actually, just

the same value), while the output on the fourth setting

is a “O” (or actually, just something different from the

first value). Intuitively, the four input settings form a

rectangular 4-point subset of the domain, on which the

outputs essentially describe an OR.

More formally, a two-argument function g(zl, z2)

contains an embedded ‘OR if there exist input values

xl, X2, yl, y2 and two output values .z1 # zz, such

that g(~l, YI) = g(~l, Y2) = g(z2, Y1) = z1, while

g(z2, y2) = Z2. In the more general case, one must

find a pair of input variables among all n variables,

and a fixed setting for the remaining variables, so that

the two-variable case obtains. In other words, an n-

argument function g(xl, . . ., x~) contains an embedded

OR if there exist indices i and j (with 1 ~ i < j ~
n), and fixed input values ak (for all k @ {i, j}),

such that the two-argument function h(z, y) defined

ssg(al, ..., ai-l, z,ai+l, . . ..al. y,y, aj+l, ..., an) con-

tains an embedded OR.

Now, ~ is not private, so ~ contains an embedded OR

(see [Ki191] for n = 2 case, [KM094] for n >2 case),
thus OR ~ 1 x f. (To apply an n-party protocol for OR

to the 2-party case, assign each party [~] or [~j of the

original roles, taking care to give the role for variable xi

to one player and xj to the other.)

According to lemma 51 then, C) OT ~ 2 x f. By

[Ki188] for the 2-party case and various sources [GHY87,

GV87, BG89, GL90] for the n-party case, there exists a

Cf such that ~ s c; x (?)OT. Thus, in fact, (2Lcf

2) x ~ s L x f. Without loss of generality, take Cf 2

Taking these observations together, we have

(Lc~ + 1) X (:)OT ~ (2Lcf + ‘2) X f

~ Lx f~Lcfx~)OT,

contradicting theorem 11. 0

+
1.

We define the n-party private function hierarchy

PFHg,n as the collection {PFg,n(m)}mcN.

Kushilevitz, Micali and Ostrovsky have characterized

the privacy of boolean functions according to whether

they are n-private or not [KM094]. We now character-

ize privacy according to whether a function supports a

rich complexity hierarchy or not.

Theorem 13 (Complex~ty Characterization of Boolean

Functions) Let g 6 BF. Then g is n-private iff the pri-

vate functton hierarchy based on g coi!apses to two lev-

els.

Proof. Say g is n-private. Then every n-private f E
BF lies in PFg,n (0), while every non-n-private f E BF

lies in PFg,n(CQ). Conversely, say g is not n-private.

Then theorem 12 shows that PFHg,n contains infinitely-

many different complexity classes. ❑

Remarks. As in the two-party case, the arguments

for strong n-privacy extend to statistical n-privacy as

well.

6 Conclusions

In a computationally-bounded setting, we have shown

that it is possible to expand an initial sequence of obliv-

ious transfers (of any flavor) to create a polynomially-

long sequence, based only on the existence of a one-way

function, as opposed to a one-way trapdoor permutw

tion. When the participants are computationally un-

bounded, on the other hand, the generation of oblivious

transfer is not only insecure but, in fact, impossible.

The impossibility of generating oblivious transfer in

the unbounded scenario leads to a non-trivial measure of

the complexity of evaluating an n-private boolean func-

tion, in terms of the number of invocations of a given,

complete primitive. Any complete, n-private boolean

function gives rise to a rich complexity hierarchy of n-

private boolean functions that can be reduced to it.

Because OT is universally complete for private com-

putation [Ki188, GHY87, GV87, BG89, GL90], the var-

ious hierarchies can be related by a “constant factor,”

roughly speaking. It is an interesting open question

to determine whether (~) C)T is an indivisible or funda-

mental unit, ie. whether the (?) OT hierarchy is a re-

finement of all other hierarchies obtained from n-private

boolean functions. It is also of interest to characterize

specific computations, such as the Millionaire’s Prob-

lem, according to the number of oblivious transfers they

require.
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