
Completeness Theorems for Non-Cryptographic 
Fault-Tolerant Distributed Computation 

(Extended Abstract) 

Michael Ben-Or* Shafi Goldwassert 
Hebrew University MIT 

Avi Wigdemon* 
Hebrew University 

Abstract 

Every function of n inputs can be efficiently computed 
by a complete network of n processors in such a way 
that: 

1. 

2. 

If no faults occur, no set of size t < n/2 of players 
gets any additional information (other than the 
function value), 

Even if Byzantine faults are allowed, no set of 
size t < n/3 can either disrupt the computation 
or get additional information. 

Furthermore, the above bounds on t are tight! 

Introduction 

The rapid development of distributed systems raised 
the natural question of what tasks can be performed 
by them (especially when faults occur). A large body 
of literature over the past ten years addressed this 
question. There are two approaches to this question, 
depending on whether a limit on the computational 
power of processors is assun or not. 

The cryptographic approach, inaugurated by Difiie 

and Hellman [DH], assumes the players are computa- 
tionally bounded, and further assumes the existence 
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of certain (one-way) functions, that can be computed 
but not inverted by the player. 

This simple assumption was ppstulated in [DH] in 
order to achieve the basic task of secure message ex- 
change between two of the processors, but turned out 
to be universal! In subsequent years ingenious pro- 
tocols baaed on the same assumption were given for 
increasingly harder tasks such as contract signing, se- 
cret exchange, joint coin flipping, voting and playing 
Poker. These results culminated, through the defini- 
tion of zero-knowledge proofs [GMR], their existence 
for NP-complete problems [GMWl] in completeness 
theorems for two-party pl] and multi-party [GMW2] 
cryptographic distributed computation. In particu- 
lar the results of Goldreich, Micali and Wigdesrson 
in [GMWB] were the main inspiration to our work. 
They show, that if (non-uniform) one way functions 
exist then every (probabilistic) function of n input,s 
can be computed by n computationally bounded pro- 
cessors in such a way that: (1) If no faults occur, 
no subset of the players can compute any additional 
information, and (2) Even if Byzantine faults are al- 
lowed, no set of size t < n/2 can either disrupt the 
computation or compute additional information. 

The non-Cryptographic (or information-theoretic) 
approach does not limit the computational power of 
the processors. Here, the notion of privacy is much 
stronger - for a piece of data to be unknown to a set of 
players it does not suffice that they cannot compute 
it within a certain time bound from what they know, 
but simply that it cannot be computed at all! 

To facilitate the basic primitive of secret message 
exchange between a pair of players, we have secure 
channels. (For an excellent source of results and prob- 
lems in the case no secure channels exist, see [BL]). 
Unlike the cryptographic case, very little was known 
about the capabilities of this model. Two main basic 
problems were studied and solved (in the synchronous 
case): Byzantine agreement [LPS,DS,...] and collec- 
tive coin flipping p2]. 
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This paper provides a full understanding of the: 
power and limits of this model, by proviug a few com- 
pleteness theorems. Comparing these results t#o the 
cryptographic case of [GMW:!], one gets the imprcs- 
sion that one-way functions ar’e “more powerful” th:tn 
secure channels. This should not be surprising, if ale 
considers the case of n = 2. Clearl,y, here a secure 
channel is useless, and indeed two (non-faulty) play- 
ers can compute the OR function of their bits using 
cryptography, while the reader can convince herself 
(it will be proven later) that any protocol will leak 
information in the information-theoretic sense. The 
lower bounds we provide show that the same phz- 
nomenon is true for any value of n. A similar situation 
arises in the Byzantine case where, using cryptogr,i- 
phy one can allow t < n/2 faulty players, but in tile 
non-Cryptogra.phic case one must have t < n/3. 

As happened in the crypt.ographic case, the proto- 
cols are based on a new mc,thod for comput,ing with 
shared secrets. Our constructions are based on AIgc:- 
hraic Coding Theory, particul;rrly the use of gcnc>ral- 
izcd BCll codes. 

It is important to stress here that our main proto- 
cols require only a polynomial amount of work from 
the players. (In fact, they are efficient enough to be 
practical!). Putting no bound on the computational 
power serves only to allow the most stringent deli- 
nition of privacy and the most liberal definition cf 
faultiness, both of which we can handle. 

Essentially the same results we obtain here were 
independentIy discovered by Chaum, Crepeau and 
Darngard [CCD]. We briefly point out the small dif: 
ferences of this work from OUPS. The simple case of no 
faults is almost identical. Their solution in the case of 
Byzantine faults is elementary and requires no error 
correcting codes. The error correction is achieved us- 
ing a clever scheme of zero knowledge proofs. ‘I’llis 
has two consequences: They have to allow an ex- 
ponentially small error probability for both correct,- 
ness and privacy (we can guarantee them with no cr. 
rors), and the frequent zero knowledge proofs increase! 
the complexity of their protocols. In the solution of 
[CCD] the simulation is of Boolean operations while 
our solution allows direct simula.tion of arithmetic op.. 
erations in large finite fields. Thus, for example, corm 

puting the product of two n hit numbers using [CCD: 
calls for O(log n) communication rounds. This can bc, 
done in O(1) rounds using our solution. 

We mention that the above results already found 
application in the new, constant expected number 01’ 
rounds protocol for Byzantine agreement of Feldman 
and Micah [FM]. 

We proceed to define the model, state the results 
and prove them. In the full paper we mention gener- 

alizations aud cxtc%nsions of our rrsulL+ t.o ol.llc>r Itasks 
(playing panics ratllcr than comp~ll,inl; fIiII(*~~iolls), t,o 
other model param&rs (synchrony, ,:.ollll~lultici~t ion 
networks) and other complexity meitSnrrs (nu~~hcr of 

rounds). 

Definitions and Results 

For this abstract, we define the model and state the 
results on an intuitive level. Since even the formal 
definition of the notions of privacy and resiliency are 
nontrivial, we give them explicitly in an appendix. 

The model of computation is a complete syn- 
chronous network of n processors. The pairwise com- 
munication channels between players are secure, i.e. 
they cannot be rrad or t.empered with 1~~ other play- 
crs. In ow round of co~iiput~at~ioli cwch d 1 Iw play- 
(xrs ca.n tlo an arbitrary i~~llOlllll~ cd” local wllqwt a1 ion. 

send a message t.0 each of t.he players, and rc>ad all 
messages that w(xrc scxnt, to it, at, this round. 

We shall be iilt.clrc&4 in t.hc coiilp\il.:ll.icwal p(\w\‘llr 
of this model when imposing privacy and fault. tol- 
erance requirements. For simplicity, we restrict our- 
selves to the computation of (probabilistic) functions 
f from R inputs to n, out,puts. We assume t,liat player 
i holds the i-th input at the start of computation, and 
should obtain the i-th output at the end, but nothing 
else. 

A protocol for computing a function is a specifica- 
tion of 12 programs, one for each of the players. We 
distinguish two kinds of faults: “Gossip” and “Byzan- 
tine”. In the first, faulty processors send messages 
according to their predetermined programs, but try 
to learn as much as they can by sharing the informa- 
tion they received. In t,he scrond, thry can WC t.obnlly 
different, prograins, collal~or:~ting to :icqliirc> morcx iri- 
formation of even sabotage the computa.tion. 

A prot,ocol is t-ptivnle if any set of at most 1 players 
cannot compute aft.cr t,hc protocol more> l.lic~~ t.hy 

could jointly compute solely from their set of privalc 
inputs and outputs. 

A protocol is t-resilienl if no set of f or less play- 
ers can influence the correctness of the output,s of t,he 
remaining players. For this to make sct~se, the func- 
tion definition should be extended to specify what it 
is if some players neglect to give their inpnts or are 
caught cheating (see appendix). 

We can now state the main results of this paper. 

Theorem 1: For every (probabilistic) fun.clion f 
ad t < ?a/2 there exists a t-private prolocol. 

Thcorcm 2: There are functions for which there 
we no n/2-private protocols. 



Theorem 3: For every probabilistic function and 
every t < n/3 there exists a protocol that is both t- 
resilient and t-private. 

Theorem 4: There are functions for which there 
is no n/3-resilient protocol. 

Proof of Theorem 1 

LetPo,...,P,-l be a set of players, and let n 2 2t+ 1. 
Let F be the function which this set of players wants 
to compute t-privately, where each player holds some 
input variables to the function F. Let E be some fixed 
finite field E, with [El > n. Without loss of general- 
ity we may assume that all inputs are elements from 
E and that F is some polynomial (in the input vari- 
ables) over E, and that we are given some arithmetic 
circuit computing IFI, using the operations +, x and 
constants from E. 

To simplify our explanation we divide the compu- 
tation int.o three st.ages. 

Stage I: ‘Hrc: input stage, whcrc each player will en- 
t.cr his input, variables t.0 the computation using 
a srcrcrl. sharing procedure. 

Stage II: The coinput.ation stage, where the players 
will simulate the circuit computing F, gate by 
gat,e, keeping the value of each computed gate as 
secret shared by all players. 

Stage III: The final stage, where the secret shares 
of the final value of F are revealed to one or all 
of the players. 

Stages I and III are very simple and we describe 
them below, and delay the details of the computation 
st,age t,o the next section. 

The input stage 

I,(4 (k(], . . 1 CY,,-1 be some n disbinct, non zero points 
iu our lic,l(l E. (This is why we urctl [[:I > n.) Each 
playc>r holtliug some input s E LS, iutroduccs l,he input 
i,o t,hc corl~l~~rl.;~~.iotl by selecting t random elcment,s 
(li E E, for i = l,, . . ,1, setting 

f(x) = s + a12 +. . . + a& 

and sending to each player Pi the value Si = f(ai). 
As in Shamir’s [Sh] secret sharing scheme, the se- 

qtience (so,. . . , s,,-~) is a sequence of i-wise indepen- 
dent random variables uniformly distributed over E, 
thus the value of the input is completely independent 
from the shares (si} that are given to any set of t 
player that does not include the player holding the 
secret. 

The final stage 

To keep the t-privacy condition, we will make sure 
that the set of messages received by any set oft play- 
ers will be completely independent from all the in- 
pubs. During the whole computation each gate which 
evaluates to some s E E, will be “evaluated” by the 
players by sharing the secret value of 8 using a com- 
pletely independent from all the inputs, random poly- 
nomial f(t) of degree t, with the only restriction that 
f(0) = s. In particular at the end of the computation 
we will have the value of F shared among the play- 
ers in a similar manner. If we want to let just one 
player know the output value, all the players send 
their shares to that particular player. This player 
can compute the interpolation polynomial f(z) and 
use its free coefficient as the result. 

Note that there is a one-to-one correspondence be- 
tween the set of all shares and the coefficients of the 
polynomial f( 2). S ince all the coefficients of f(z), ex- 
cept for its free coeffGent, are uniform random vari- 
ables lhat are independent of the inputs, the set of 
all shares does not contain any information about the 
inputs that does not follow from the value of J(0). 

The Computation Stage 

Let Q, b E E be two secrets that are shared using the 
polynomials f(x),g(r) respectively, and let c E E, 
c # 0 be some constant. It is enough to show how 
one can “compute” c. a, a + 6, and a. b. 

The two linear operations are simple and for their 
evaluation we do not need any communication be- 
tween the players. This is because if f(z) and g(z) en- 
code a and 6, then the polynomials h(z) = c.f(t) and 

k(l) = fb)+!J( > x encode c.a, a+ b respectively. Thus 
to compute for example a +b, each player Pi holding 
/(nil, ad dni) can c0mput.c h(cYi) = f((Yi) + fJ(CYi). 
Likowise, since c is A known constant F’r can compute 
h(tri) = c.f(cq). F ur th crmore, h(z) is random if only 
f(x) was, and k(x) is random if only one of l(z) or 
S(X) Wm. 

As a corollary we immediately have 

Lemma: (Linear Functional) For any t, (t 5 n - l), 
and any linear functional 

F(Xo, . . . , X,-1) = aoX + *. . + Qn-l&b-l 

where each Pi has input xi and the ai are known 
constants, can be computed t-privately. 

From the lemma we have 
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CoroHary: (Matrix Multiplication) Let A be a con-, 
stant n x TI matrix, and let ‘each I\ have an in., 
put variable xi. Let X = (~0, _ . . , zn,-l) and define 
Y = (~1,.-,vn> by 

Y =X.A., 

then for any t, (t 5 n- l), we can t-privately compute 
the vector Y such that the only information given tcl 
Piwillbethevalueof~,fori=O ,..., n-l. 

Proof: Matrix multiplication is ,just the evaluation 01’ 
n linear functionals. By the Lemma, we can compute, 
each linear functional Yi independently, and revea’: 
the outcome only to Pi. 

The multiplication step 

The multiplication step is only a bit harder. Let o 
and b be encoded by f(z) and g(x) as above. We nou’ 
assume that n > 2t + 1. Note thlat the free coefficienl, 
of the polynom%l h(z) = f(z)g(r) is a. b. There arc 
two problems with using h(z) to encode the product 
of a times b. The first, and obvious one, is that the 
degree of h(z) is 2t instead of t. While this poser, 
no problem with interpolating 11(z) from its n pieces 
since n > 2t+l, it is clear that further multiplications, 
will raise the degree, and once the degree passes n 
we will not have enough points for the interpolation 
The second problem is more subtle. h(t) is not a, 
random polynomial of degree 2t (ignoring of course! 
the free coefficient). For example, h(z), as a product 
of two polynomials, cannot be irreducible. 

To overcome these two problems we will, in one! 
step, randomize the coefficients of h(z), and reduce it:, 
degree while keeping the free coefficient unchanged 
We first describe the degree reduction procedure and 
then combine it with the randomization of the coeffi- 
cients. 

The degree reduction s.tep 

Let 
h(x) = ho + hlX +. . . + hztx2f 

and let 
Si = h(ai)= f(ai)g(ai), 

for i=O,..., n - 1 be the “shares” of h(z). Each Pi 
holds an si. Define the truncation of h(z) to be 

k(x) = hrJ + hlX +. *. + htxf, 

andr;=k(cri)fori=l,...,n--1. 

Chim: Let S = (SO,... , b-1 ) and It = 
(PO,. . . , rn- 1) then there is a constant n x n matrix 
A such that 

R=S.A. 

Proof: Let H be the n-vector 

H=(ho,...,ht ,..., hzt,O ,..., 0) 

and let I< be the n-vector 

IC = (ho, 1. . , ht , 0, . . - IO). 

Let B = (bij) be the n x n (Vandermonde) matrix, 
where bi,j = CX~ for i,j = 0,. . . , n - 1. Furthermore, 
let P be the linear projection 

qxo,..., xn-1)=(x0 )...) x*,0 )...) 0). 

We have 
H*B=S 

H.P=I’ 

and 
Ii . B = R. 

Since B is not singular (because the ai- are distinct) 
we have 

S. (B-‘PB) = R 

but A = B-‘PB is some fixed constant matrix, prov- 
ing our claim. 

The randomization step 

As noted above the coefficients of the product poly- 
nomial are not completely random, and likewise the 
coefficients of its truncation b(z) may not be com- 
pletely random. To randomize the coefficients, each 
player Pi randomly selects a polynomial qi(z) of de- 
gree 22 with a zero free coefficient, and dist,ributes 
its shares among the players. By a simple gencral- 
ization of the argument, in Shamir’s [Shl scheme. it is 
easy to see that knowing t values on tl;is polynomial 
gives no information on the vector of coefficients of 
the monomials of t, xz, . . . , xt of qi(+). 

Thus instead of using h(t) in our reduction we can 
use 

n-l 

G) = h(x) + c f&(x) 
j=O 

which satisfies h(O) = h(O) but the other coefficients 
of zi, 1 5 i 5 t, are completely random. Since each 
player can evaluate his point & = h(cyi), we can now 
apply the truncation procedure using the matrix mul- 
tiplication lemma to arrive at a completely random 
polynomial I(z) which satisfies both degi(3:) = I, 
and k(O) = a . b, and k(z) is properly *,haretl a.msng 
all the players. 

Thus (omitting many well known tl<>bdls, see 
[GM W]) we hn.vc proved 

Theorem 1: For every (probabilistic) function F and 
1 < n/2 lhere exisls a t-private protocol. 
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Remarks: 

(1) The complexity of computing F i-privately is 
bounded by a polynomial (in n.) factor times the 
complexity of computing F. 

(2) If F can be computed by an arithmetic circuit 
over some field using unbounded fan-in linear 
operation and bounded fan-in multiplication, in 
depth d, then F can be computed t-privately in 
O(d) rounds of exchange of information. 

(3) In our construction we have to reduce the degree 
of our polynomial only when its degree is about 
to pass n- 1. Thus if 1= O(nl-‘), for some fixed 
e > 0, and we start with polynomials of degree 1, 
the players can simulat#e many steps of the com- 
putat.ion before the degree comes close to n, by 
doing the computation each on t,heir own shares, 
without any communication(!). When the degree 
does get close to n, we reduce the degree back to 
t in one radomizing, degree reducing step. 

Two simple examples are: 

a. Any Boolean function F: {O,l}” + (0, 1) 
can be represented as a multilinear polyno- 
mial over the field F. Thus if t = O(nlme) 
we can compute t-privately, in parallel, all 
the monomials of F in O(1) number of 
rounds and then use a big fan-in addition 
to evaluate F. This procedure may use ex- 
ponentially long messages but only constant 
number of rounds. 

b. The Boolean Majorit,y function has a poly- 
nomial siae O(log n) dcpt.h circuit, and thus 
for f = O(n’-’ ), t,his funclion can be 
computed t-privat,ely using only polynomi- 
ally long messages in constant number of 
rounds. 

For completeness we state the following simple re- 
sult 

Theorem 2: There are functions for which there 
are no n/2 -private protocols. 

Proof: It is easy to see that two players, each hold- 
ing one input bit, cannot compute the OR function 
of their bits, without one of them leaking some in- 
formation. This immediately generalizes to prove the 
theorem. 

Sharing a secret with Cheaters: 

Let n = 3t f 1 and let PO,. . . , Pn-r be a set of n 
players among which we want to share a secret such 
that. 

(A) Any set of at most t players does not have any 
information about the secret and 

(B) It is easy to compute the secret from all its 
shares even if up to t pieces are wrong or missing. 

The following scheme achieves both requirements: 
Let E be a (finite) field with a primitive n-th root 

of unity, w E E, W” = 1 and for all 1 < j < n, 
wj # 1. Without loss of generality we can assume 
that our secret s is in E. 

Pick a random polynomial f(z) E E[t], of degree 
t such that f(0) = s. That, is, set ac = s and pick 
random ai E E for i = 1. . . t and set 

f(x) = al) + 01z + . . . + atd, 

Define the share of 9, i = 0. ..n -- 1, to be Si = 
f(d). As in [Sh], th e si-s are t-wise independent ran- 
dom variables that are uniformly distributed over E, 
and thus our first requirement (A) is met. 

Note that setting oi = 0 for i > t makes our secret 
shares the Discrete Fourier Transform of the sequence 
(ao,... ,an-I). Let f(z) = sg+s~z+~.++~,-i2”-~. 
By the well known formula for the inverse transform 

and in particular p(w-‘) = 0 for i = t+ 1, . . . , n - 1. 
Explicitly the si satisfy the linear equations 

n-l 

c W 
r.i . Si = 0 for r= 1 , . . . ,2t. 

i=o 

Thus the polynomial g(z) = n~~~i,,(z - w-“) di- 

vides the polynomial f(z), which in the language 
of Error Correcting Codes says that the vector s = 

(so , . . . ,sn-1) is a codeword in the Cyclic Code of 
length n generated by g(z). By our choice of g(z), 
this cyclic code is the well known Generalized Reed- 
Miller code. Such codes have a simple error correc- 
tion procedure to correct $ degg(z) = t errors. See 
for example [PW, page 283). 

Verifying a secret 

Assume that player P has distributed a secret in the 
manner described above. Before entering this shared 
secret into a computation we wish to verify that the 



secret shares we are holding are shares of a real secret 
and not some n random numbers. We want to do SC 
without revealing any informat#ion about the secret 
or any of its shares. This is easily done using the 
following Zero Knowledge proof technique, We &ill 
later show how to verify a secret using a different 
technique that has absolutely no proba.bility of error. 
We present this Zero Knowledge technique because it 
is simpler, and uses fewer roundls of communication. 

Simple verification of a secret 

Let fo be the original polynomial. Let fi, . . . , fm, 
m = 3n be random polynomials of degree t generated 
by P, and have P send to Pi the values fj(w’) for 
j= l,..., m. Each Pi selectes a random a # 0 from 
E and sends it to all the other players. After reach- 
ing agreement on the set of Q-S ,the dealer broadcasts 
the set of polynomials f” = cr=‘=o ak fr; to all play- 
ers. Each player Pi checks that at the point wi, the 
shares he received satisfy the required equations, for 
all the cr-s. If some Pi finds an error he broadcasts his 
complaint. If 1+ 1 or more player file a complaint, we 
decide that the dealer is faulty and take some default 
value, say 0, to be the dealers secret, (and pick 0 for 
all the needed shares). 

Cl&n: Let 7’ be a set of good players that did nob 

complain. Let J*T be the the interpolation polynomial 
through the points in T of the original ,polynomial fi. 
Then with probability at least 

1- m2”/lEl 

all the polynomials f,T are of degree t. 

Proof Omitted. 

Keeping in mind the (polynomial) complexity of 
the players computation, we can certainly allow IEl 2 
22”. This makes the error probability exponentially 
small. (The case of small IEJ is similar: Using a some- 
what Inrgw in, each player, using a diffcrcnt sc?t of 
rautlotn polynomials, asks the clealcr to reveal c!it,llc?r 
li or Jo + fi-) 

Note that if n 2 51 + 1, then our srcrct, sharing 
sclietnc can correc.t 2t errors. If a secrcl, is ilCCPlIl.C’tl 

then at most t good players may have wrong values. 
This together with at most 1 more wrong values that 
may come from the bad players, gives altogether at 
most 2t errors. Thus in this case the secret is uniquely 
defined and there is a simple procedure to recover its 
value using the error correcting procedure. 

To handle the case of n = 3t + 1 we must make sure 
that all the pieces in the hands of the good players lie 

on a polynomial of degree 1. To achieve this we ask 
the dealer of the secret to make public all t,he values 
that were sent to each player who filed a complaint. 
We now repeat the test, using new random C-Y-S. Each 
player now checks at his point and at all t.hc poiat,s 

that were made public, and if there is an error IIC files 
a complaint. If by now more t,han 1 + 1 pla.yers I~nvc 

complained we all decide that the sccrc4 is bad i11lci 
take the default zero polynomial. Otherwise, 

Claim: With very high probability, all good play- 
ers are on a polynomial of degree t. 

Proof: Omitted. 

Note that if the dealer is correct then no good 
player’s value will become public during the verifica- 
tion process. This together with the fact that all the 
polynomials that the dealer reveals during this ver- 
ification procedure are completely independent from 
the secret polynomial fo, ensures that the bad play- 
ers will not gain any information about the dealer’s 
secret. (Detailed proof omitted). 

Absolute verification of a secret 

The verification procedure describrd above lcnvcs a11 
exponent,ially snlall pr0habilit.y of c?rror. 111 this scc- 
Lion wc dcscribc a srcrct. vcrificntiou proccdurc, 1.11;il. 
leaves no probability of errorsl. 

Instead of just sending the shares {si}, the 
dealer of the secret selects n random polynomials 
fo@), . . . , fn-l(x), with 

(l)s;=fi(O)fori=O,...,n-l,and 

(2) c;:; w+ Ji(X)=Ofor T= 1,...,21 

In other words, the dealer selects a random polyno- 
mial f(z, y), of degree t in both variables z and y, 
with the only restriction that f(O,O) = s (his secret). 
Then he sends the polynomials fi(z) = f(zlwi) and 
gi(v) = f(W’, W) t.0 playtar Pi, for i = 0,. 1 1) - 1. TtlC 

ITid stiarcl is jllst. Si = /i(O), l>\lL for I.tlcb l)urlww Of 

its verification, Lh (l(:ah’r idSO scntls l.lIC I~oiyllc~nliids 

j;(P) and !/i(u). At. (,liis poitil, C’ZlC11 plirycxr f{ Sc>IldS 

SiJ = fi(WJ) = f(Wj,W’) = gj(Wi) I80 C’ilCIl phycr Pj. 

No1.t. L11ilL if t.h tltbnlcr is corrccL, I.~IVII WIICYI ;z 

good Inlayer I> is looking at Lllo sc’qlrc~llcc’ SSj = 

(SO,j 9 Slj 7 . . ..S.- 1 ,j), then all these points should be 
on his polynomial gj(2/). Tl iereforc Pj cit.11 coniI>are 
the incoming values with his own computation and 
find out which values are wrong. Furthermore it is 

‘Our original protocol was simpliied by Paul Feldman who 
independently observed that the verification procedure can be 
accomplished in a constant number of communication rounds. 



ctea.r that in this case no good player will have to 
correct any vatlIe coining from other good plnycrs. 

On the ot,her hand we have 

Lenknkn: If110 COrreCt phyfY hS t0 COrrCCt adue 

given by a correct player, then thcrc is a polynomial of 
dcgrc%c* 1. 1.11;11. pass(xs through l,lic~ int~crpoliitioti points 
of all the corrf~c’t players. 

Proof: Simple algebra. Omit.ted. 

To make sure t,hat the condition of this lemma is 
satisfied, each player F’j broadcasts a request to make 
the coordinates (i,j) he had to correct public. If 
Pj detects more than t wrong incoming values, or 
had to correct his own value, the dealer is clearly 
faulty. In such a case Pj broadcasts a request to 
make both fj( ) z and gj(y) public. At this point the 
dealer broadcasts the (supposedly true) values si,j at 
all these points, and the polynomials that were to 
be made public. Note that making fj and gj public 
makes all t.he Sk,j and sj,k public for 0 5 k < n, for 
that. part.iculat j. 

Now if some player Pi observes that some new pub- 
lic si,j tout radicts the polynomials he is holding, or 
finds 001. I.hr t,lic public informal.ion already contra- 
dicts ibsclf, ho brondcasts a rcqncsl. t,o lnnke all his in- 
Ibrmat.ion public. llerc once more, 1.11~ dnalcr mnkes 
public all t.llc, rcqucst,ed inforniabion, Fiiially, each I: 
chc~ks aI1 t.hc public and private inforlnntion he re- 
ceived front the dealer.. If Pi finds any inconsistencies 
he br0adcast.s a complaint by asking all his private 
information to be made public. 

If at this point t -+ 1 or more players have asked 
to make their information public, the dealer is clearly 
faulty and all the players pick the default zero poly- 
nomial as the dealer’s polynomial. Likewise, if the 
dealer did not answer all the broadcasted requests he 
is declared faulty. On the other hand, if t or less 
players have complaint, then there are at least t + 1 
good players who are satisfied. These uniquely de- 
fine the polynomial f(;c, y) and they conform with all 
the information that was made public. In this case 
1.11~ complainilig players take the public information 
n.s I.hc*ir share>. 

Not.cb 1.11~1. if (.lrc <lc>alcr has disl.ribut.c~d a correct W- 
(*rv(. f.llc,rl 110 (~iwc~ of il~fi~rl~iiJf.ic~ll cjf ally good pIi1yc.r 
w;is rc975tl(*d tlrlring 1.lie vc~rification process. If Iiow- 
(‘v(ar (.llc? Cif'illCr was bad, WV do not have to protect 
the* privacy of his informat.ion, and the vcrificat,ion 
procedure ensllrcs us that all the good players values 
lie on some polynomial of degree 2. 

Some more tools 

Before going into the computation stage, we need two 
mor(h tools 

(1) Generating (and verifying) a random polynonlial 
of degree 2t, with a zero free coefficient. 

(II) Allowing a dcalcr to clistributc three sccrcts, fr, 
b, and c, and verifying that c = u . b. 

Roth of these are not needed when n 2 4t + 1, but 
are required to handle the n = 3t + 1 case. 

(I) Generating polynomials of degree 2t 
Let each player Pi distribute t random (including the 
free coefficient) polynomials gi,k(CC), /z = 1,. . . ,t, of 

degree t . Define fi (z) by 

fj(z) = x2" . Qi,b 

k=l 

and let the players evaluate from their points on the 
gi,k-s their corresponding point on fi(Z). 

After we have verified that indeed deggi,k 5 t, it 
is clear that degfi(z) 5 2t, and fi(O) = 0. (It is also 
clear that the vector of coefficients of the monomials 
ofzi, i= 1,. . , ,t, in /i(z) are uniformly distributed 
and are completely indcpentlf~nt from the information 
held by any set of at most 1 players that does not 
incltlde Pi .) 

Finally, as our random polynomial we take 

(II) Verifying that c = a. b 
Let the player P distribute a and b using the 

polynomials A(z) and B(r) respectively. We want 
P to also distribute a random polynomial encoding 
c = a A b, in such a way that the players can all verify 
that indeed c = a. b. Let 

D(t) = A(+). B(z) = c + clc + . . . -t cZtz2* 

Ilc(2’) = rt,O + r1,,2 + + r‘l,t-~xr-l + CHAP:’ 
II,-,(x) = Pf--1.0 + ... + 1’1-,,1--12 t--1+ 

+[c2t- I - r’(,t- *p 

L-h(z) = l-1,0 f . . . + q,+&-‘+ 
+[ct - rt,l - rt-l,2 - . . . - f2,t--1lZ’ 

where the ri,j are random elements from E. P se- 
lects the Di(Z) and distributes their shares to all the 



players. After verifying that A(X), B(Z) and all the 
D;(x) are of degree t, define 

C(X) = D(X) - 2 2’ . Di(X). 
i=l 

and verify that C(x) is also of degree 1. From the 
construction of C(z) it is clear that C(z) is a random 
polynomial of degree t with the only restriction that 
C(0) = a. b. 

Proof of Theorem 3 

We separate again the compubation to its Input, 
Computation and Final stages. At the input stage, 
we let each player enter his inputs to the computa- 
tion using our secret sharing scheme, while verifying 
that each secret shared is indeed some polynomial of 
degree t. The secret verification assures that the in- 
puts of any Byzantine player is well defined, but does 
not ensure that it is in the domain of our function. 
For example, in a O-l vote, we must verify that the 
input is 0 or 1. We defer this type of verification to 
the computation stage. 

The final stage is exactly the satme as in the proof of 
Theorem 1. When we have simulated the circuit, and 
the players are holding the pieces of a properly shared 
secret, encoding the final output, they send all the 
pieces to one or all the players. As at most t pieces 
are wrong, each player can use the error correcting 
procedure and recover the result. 

The computation stage - Byzantine 
case 

Let u and b be properly encoded by f(z) and g(z) 
respectively, where by “properly encoded” we mean 
that all the pieces of the good players are on some 
polynomial of degree 1. Since J(X) and g(z) are prop- 
erly encoded the polynomials j(a:)+g(z), and c./(z), 
properly encode a+b, and c.a, for any constant c c E. 
The same argument of Theorem 1 implies that we can 
do the computation of any linear operation with no 
communication at all. 

Bere again, the multiplication step is more in- 
volved. To repeat the procedure of theorem I, using 
the degree reduction step, via the Matrix Multiplica- 
tion Lemma, we must make sure the all the players 
use, as input to this proce+re, their correct point on 
the product polynomial h(z) = f(z)g(z). To guaran- 
tee that this indeed happens, we use the Error Cor- 
recting Codes again. 

Let Uj = f(Ui), bi = g(W’) and Ci = h(U’) = ai . bi 
be the points of Pi on these polynomials. We ask each 

Pi to pick a random polynomial of dcgr,re 1, ,~li(~), 
such that ni = Ai( and use this polynoriiial 1.0 dis- 
tribute aj as a secret, to all the players. Similarly, 
Pi distrihntcs 6; using Bi(z). We atso ~:k /‘i t#o tlis- 
tribute ci using the polynomial Ci(Z), wl~ilr verifying 
that Ai( Bi(l), C’,(X) are all of degree 2, and that 
Ci(O) = Ai(O)Bi(O). 

We want to verify that the free coefficients of the 
polynomials Ci(z) are all points on the product poly- 
nomial h(z). It is enough to verify that all the free 
coefficient of the Ai( and Bi(+) are on f(z) and 
g(z) respectively. We do this as follows. 

The free coefficient of the Ai( are a code word 
with at most t errors. By our assumption, all the 
Ai are properly distributed. We can therefore use 
them to compute any linear functional. In particular, 
using the same Ai(s we can compute the polyno- 
mials 

n-1 

i=O 

for f= l,... ,2t. At this point all the players reveal 
their points on the polynomials S?(Z), enabling all 
the players to recover the value of sp := S,.(O), for 
r = 1,...,2t. 

Note that if all the Ai(0) are correct (i.e. on a 
polynomial of degree 9 then s, = Cl for all r. Thus 
the computed value of the s, are just a function of 
the errors introduced by the Byzantine players. In 
particular, this implies that the value of the s, does 
not reveal any information that is held in the hands 
of the good players! 

Since at most t of the Ai(0) can be wrong, the 
value of the s+, the so called Syndrome Vector, is 
the only information needed by the error correction 
procedure to detect which coordinates .4i(z) encode 
a wrong Ai( and give the correct value. Therefore, 
if some s, # 0, all the players compute the wrong 
coordinates, the correct value of f(wi), and use the 
constant polynomial wit,11 this value, instead of Ai( 

In asimilar way we can check and correct the B;(Z). 
We can, therefore, also check (and correct) the Ci(z), 
so we are sure that all the inputs to the linear com- 
putation we have to do in the degree reduc6ion pro- 
cedure are correct. 

Note that much of this is not needed when 71 > 

4t + 1, because then we can still correct up to t errors 
on polynomials of degree 2t. In this case we can do 
the error correction on the points of h(r) directly. 

As in the proof of Theorem 1, we have, 

Theorem 3: For every probabilistic function and 
every t < n/3 there exists a protocol that is both t - 
resilient and t-pn’vate. 

8 



For completeness we state, 

Theorem 4: There are functions for which there 
is no n/3 - resilient protocol. 

Proof. Follows immediately from the lower bound for 
Byzantine Agreement in this model. We note that 
even if we allow broadcast as a primitive operation, 
theorem 4 remains true. This is because we can ex- 
hibit functions for three players that cannot be com- 
puted tesilient,ly, when one player is bad. This gener- 
alizc%s ir~~n~ctli;rt.cly to n/3. 

Remark: All the remarks following the statement 
of theorem 1 apply also to theorem 3. 
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Appendix 

Formal Not at ion 

Let F’ I)(: a field. Let CJ = P’” denote the standard 7t- 

dimensional vector space over 1” and M,,(F) the ring 
of 72 x n matrices over F. 

Let R be a random variable with distribution D 
over F. Then Rk (R*) denotes k (finitely many) in- 
dependent draws from D. 
Comment: Unless otherwise specified, F will be fi- 
nite, and D the uniform distribution over F. 

The Basic Model: 
Fix n > 0 and a field F. Intuitively, an (n, F) - 

network is a complete synchronous network of n 
probabilistic machines (players) PO, PI, . . . . P,-l. At 
every round, each player can send one message (el- 
ement of F) to each other player, receive a message 
from each other player, and perform arbitrary com- 
putation. 

If we assume for convenience that players send mes- 
sages to themselves too, a round of communication is 
neatly described by a matrix A4 E M,(F), where 
each Pi sent the ith row of M, and receives the ith 
column of M. (This formalizes the security of private 
channels). 

Formally, a T round (n, F) - network is a set of 
players {PO, PI, . . . . P,,-1). Each Pi is a tuple 

Pi =< Qi,q!O) Rig& > t , 

where Qi is a set of states, qj (O) the initial state, Ri is 
a random variable over F (distributed like R) and 

&:[!l’I x&i x F” X R: -*Qi X F” 

is a transition function that given a round number, 
state, previous round input and private coin tosses 
computes the next state and this round’s output. 

A protocol is simply 6 =< 60,61,. . . , a,-, >, the 
transition functions prescribing to each player what 
to do in each round. 

A run M of a protocol 6 is a sequence 
(Ml, M2, . . , MT), Mj E M,(F) of matrices describ- 
ing the communication in rounds j = 1,2,. . . ,T. 
Note that M is a random variable, depending on 
{qi’)}, the initial states, and {R?}, (= R’), the ran- 
dom draws from D. 
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A (probabilistic) function is. a function f, 

f:F” x R”’ + F”. 

Intuitively, a protocol cctmpute:: a function UT if 
for all v E F”, if i’i is given Vi E F be:bre 
round 1, then after round ‘1’ it knows ui, such that 
7.4 =< U(),Ul,.‘., u,- 1 > is distributed exactly like 
f(v x R”). For convenience we denote a vector 

< ~0, ~1, . . . . ~“-1 > by < oi >. Also, let qIj’ derote 
the state of Pi after round i. 

To formally define what it means for a protocol 
to compute a function, we assume fixed input .Pnd 
output functions, Ii, Oi: Qi .+ F for each player Pi. 
Now 6 computes f, if for every choice of < qi”) >, 

we have < Oi(qy’) >= f(li(qiO’) x R”‘) (as ranc.om 
variables). 

Some Intuition 
The bad players in our model can completely coor- 

dinate their actions. Hence, for a bad set (coalition) 
c c [n] = {0,1,2 )“., n - l}, the transition func- 
tions 6i, i E C are replaced by arbitrary functions 
6: that compute the next state and messages of Pi 
from the joint information of the current states, pre- 
viously received messages and random choices 01’ all 
(Pi), i E C. We denote any protocol in which a set 
C is bad (in this sense) by 6~. 

We d&tinguish two types of bad behavior. The 
benign (gossip) kind, in which bad players send mes- 
sages according to the original protocol 6, but tr:r to 
learn as much as they can from it by joining their 
forces. The malign (Byzantine) kind puts no restric- 
tions on the bad players, i.e. the 6: can really be 
arbitrary. 

To formalize the benign kind of bad behavior we 
need the foliowing definition: 
Two protocols 6 and 6’ look alike if their runs have the 
same distribution, i.e. M = M’ as random variables, 
for every fixed initial state c: qi”) > of all players. 

A bad coalition C is called gossip if the protocol 6~ 
looks like 6, otherwise it is catted ByranZine. 

In the case of gossip, we don’t have to worry about 
the correctness of cotnputing f - this follows from the 
definition “took alike”. Here all we shalt have to pre- 
vent, is leakage of information. In case of Byzantine 
faults, we will have to guarantee also the correct:ress 
of the computation. We proceed now to define the 
important notions of Privacy and Correctness. 
Privacy (preliminary): 

Intuitively, a coalition C did not learn anything 
from a protocol for computing f, if whatever it can 
compute after the protocol (from its final states), it 
could compute only from its inputs (initial states) and 
its components of the function values. 

Let QC = ni,, Qi and A be an arbitrary set. Also, 
ifu=<ue,ur ,..., u,- 1 >, UC denotes the sub-vector 
of u that contains ui, i E C. Formally, a set. C is 
ignorant in a protocol 6 (for computing I)* if for ev- 
ery set of initial states < Jo) > every prot.ocot 6 
that looks like d ,nd every fifnct,idn g’: Qc 

c 
+ .4 ttierc 

exists a funclion d: Qc x Ftct -+ A rrnt,isfying 

s’(p) = 9(&f, (< ZiG?j”)) >)c) (*) 

A protocol 6 (for computing f) is t-private if every 
coalition C with ICI 5 t is ignorant. 
Correctness: 

This issue is problematic, since some of the bad 
players can obliterate their initial inputs, and the 
function value is not well defined (a simple example 
is Byzantine agreement). To ignore bad inputs for 
every set B C [n], we need a (sub)function off that 
depends on the input coordinates of only [n] \ B. (a 
special case is assigning default values to input coor- 
dinates in B). 

So now by f we mean a family of funct,ions 
{f~: F n\B x RM - F”}, I3 E [n.], with f+ being 
the original funct8ion f. Typically, (as in 13yza.ut,iuc, 
agreement) this exponemiat size fanrity is very suc- 
cinctly described. 

So now, a romput,ation is correct, if all good ptaycrs 
compute a function fB, where L3 is a subset of the bad 
players. 

More formally, a coalition C is harmless if for every 
set of initial states < *i(O) > and every prot.ocol 6~, 

{< Oi(PjT)) >)[n]\C = fB({< Ii(Q!‘)) >l[n]\B)[n]\C 

for some B C C. 
A protocol is l-resilient if 

ICI 5 1 is harmless. 
Privacy Revisited: 

For the case of Byzantine 
that 6~ looks like 5 is invalid. 

every coalition C with 

faults, the assumption 
For any harmless coali- 

tion C we can remove this assumption from the def- 
inition of ignorance, and replace f in (*) above, by 
fB, the funct.ion that will actually be computed by 
the good players. 

Now the notion of a protocol ttrat is both t-resilient 
and l-private is well defined. 
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