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Recap

So far we saw how Alice and Bob can communicate securely, guaran-
teeing both secrecy and authenticity, and achieving the gold standard
of CCA security. But all this required a strong assumption: That Alice
and Bob share a secret key! What if they live in different countries
and cannot share a secret key?

At first, it might seem like a shared secret key is necessary. After
all, if Alice sends a message to Bob, and they don’t have a secret, then
what distinguishes the adversary from Bob? Nevertheless, we will
see we can get secrecy and authenticity (and CCA security) without
sharing a secret key!

Today

¢ Define the notion of a signature scheme, which is the public-
key analogue of a MAC.

¢ Construct a one-time secure signature scheme (Lamport’s
one-time signature scheme).

¢ Introduce the Hash-then-Sign paradigm.

Definition of a signature scheme

Definition 1. A signature scheme is associated with a message space
{M ) }ren and with three PPT algorithms (Gen, Sign, Ver), with the
following sytanx:

e Gen: Takes as input the security parameter 1! in unary and
outputs a pair (vk,sk) of a public verification key and a secret
signing key.

* Sign: Takes as input a secret signing key sk and a message
m € M) and outputs a signature .
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* Ver: Takes as input a verification key vk, a message m and a
signature ¢ and outputs 0/1, indicating accept or reject.

A signature scheme is required to satisfy the following complete-
ness guarantee: For every A € IN and every m € M,,

Pr[Ver(vk, m,Sign(sk,m)) =1] =1

where the probability is over (vk,sk) < Gen(1") and over the ran-
domness of Sign (if it is randomized).* * Ver is always deterministic.

Definition 2. A signature scheme (Gen, Sign, Ver) with message space
{M,}.ren is said to be existentially unforgeable against adaptive
chosen message attacks if for every poly-size A there exists a negli-
gible function y such that for every A € IN, A wins in the following
game with probability at most u(A):

1. The challenger samples (vk,sk) < Gen(1") and sends vk to .A.

2. A can choose a message m; € M, and obtain o; < Sign(sk, 11;).

This step can be repeated polynomially many times.
3. A outputs (m*,c*).
A wins if m* ¢ {m;} and Ver(vk, m*,c*) = 1.

Remark. A more concise way to state this security definition is to say
that for every poly-size A there exists a negligible function y such
that for every A € N,

Pr[ASEN (k) (vk) = (m*,0*) s.t. Ver(vk,m*,0*) =1 A m* ¢ Q] < u(A)

where Q denotes the set of all oracle calls that .4 makes to the oracle,
and the probability is over (vk,sk) < Gen(1") and over the random-
ness of Sign (if it is randomized).

Remark. Note that this definition is very similar to the security def-
inition we saw for MACs except that here the adversary is given the
public verification key vk.

Lamport’s One-Time Signatures

One of the magical things about signatures is that, even though they
are public-key objects they can be constructed from the minimal
assumption of one-way functions!

To see this, we will start by constructing a much simple object: a
one-time signature scheme. This is a signature scheme with a much
weaker security requirement. It is the same security requirement as
above, except that the adversary is allowed to make only a single
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oracle call to the signing oracle. This seems like too weak of a se-
curity guarantee, since why would the adversary see only a single
signature? Indeed, this will only serve as a stepping stone to our final
construction.

Lamport’s one-time signature scheme. Lamport constructed a very sim-
ple one-time secure signature scheme [1] from any one-way function

f:{0,1}* — {0,1}".
Let M, = {0,1}" be the message space.
* Gen(1%) does the following:
1. Sample at random x10, %11, - -, Xn0, X1 < {0, 1}
2. Foreveryi € [n] and b € {0,1} compute y;, = f(x;}).
3. Output vk = {y;p i peqo1} and sk = {xip }icn) pefoi}-
e Sign(sk,m) does the following:
1. Parse m = (myq,...,my)
2. Output o = (X1,my, .-, Xnmy,)-
e Ver(vk,m, o) does the following:
1. Parse 0 = (x},...,x}).
2. Output 1 if and only if for every i € [n] it holds that
Yim; = f(x)).
Theorem 3. This is a one-time secure signature scheme.

Proof. It is easy to see that it satisfies the completeness guarantee.
Hence we will focus on proving soundness. Suppose for contradic-
tion that there exists a poly-size A and a non-negligible € such that
forevery A € IN

Pr[ASEN (k) (vk) = (m*,0%) st. Ver(vk,m*,0*) =1 A m* #m] > e(A),

where m is the (single) query that .4 makes to its oracle, and where
the probability is over (vk,sk) < Gen(1%).

We will construct a poly-size B that inverts the one-way function f
with non-negligible probability. B on input y = f(x), for x € {0,1}*,
does the following:

1. Sample at random i* < [n] and b* < {0,1}.

2. Forevery (i,b) € ([n] x {0,1}) \ (i*, b*) sample at random x;; <
{0,1}* and let y;, = f(x;})-

3. Sety;pr = V.
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4 Let vk = {yip ticiu)pefon}-
5. Emulate A58"(sk") (vk) by simulating its oracle as follows:

e If A sends a message m = (mj,..., my) such that m;» = b*
then output L.

 Otherwise, output (x1,,, .., Xn,m,) which B knows since
it does not include x;+ 3+, which is the preimage of the
external y that B takes as input.

6. Let (m*,0*) be the output of A.
7. Output o7..
We next argue that
Pr(f(of) =y) > O

To this end, we first note that
Primj. # my N mj. =b*] >
By our assumption

Pr(f(07:) = Yirm:. ] > €(A)
Therefore

Primf. # mp AN mi =b" N f(0L) = Yppe] =

l>'F
Primf. # mp N mji =b*]-Pr[f(0}) = yjepe | mjx #mp N mjn =b*] >
1
2, € (A),
where the latter follows from the fact that (i*, b*) were sampled
uniformly at random, and the distribution of vk is independent of
(i*,b*), which in turn follows from the fact that y = f(x) for a uni-
formly chosen x < {0,1}".
O

We note that the above scheme is not only one-time secure, but
also the secret key is longer than the message to be signed. In what
follows we show how to convert this scheme into a one-time secure
one where the secret key is shorter than the message length. While
this may seem like a minor issue, it will be an important stepping
stone into constructing the final (many message secure) scheme.

Hash-then-Sign paradigm

One way to deal with long messages is to use a collision resistant hash
functions.



Definition 4. A hash family is a family of functions H = {Hp}
associated with a PPT key generation algorithm Genpg, such that the
following two conditions hold:

¢ Shrinking For every A € IN and every hk in the support of
GenH(lA)r
Hypy : {0,1}* — {0,1}M.

* Efficiency There exists a poly-time algorithm that given
hk € {0,1}* and x € {0,1}* outputs Hy ().

Definition 5. A hash family (H, Genp) is said to be collision resistant
for every poly-size A there exists a negligible function y such that

Pr[A(hk) = (x,x') s.t. x # x" and Hp,(x) = Hp(x')] < p(A)

Remark. Note that in the above definition, the hash key hk is public,
and we assume that it is known to the adversary. This is in contrast
to a PRF where the key must remain secret to ensure any kind of
security guarantees.

We next show how to use a collision resistant hash family to in-
crease the message space to be M, = {0,1}" for any n = poly(A).
Specifically, given any signature scheme (Gen, Sign, Ver) with message
space M = {0, 1}A, and given any collision resistant hash family
(H, Genp), consider the following signature scheme, denoted by
(Gen’, Sign’, Ver') with message space M = {0,1}":

e Gen’: On input 1%, do the following:
1. Sample (vk,sk) « Gen(1%).
2. Sample hk + Geng(1%).
3. Let vk’ = (vk, hk) and let sk’ = (sk, hk).
4. Output (vk/,sk’).
e Sign’: On input (sk’,m) do the following:
1. Parse sk’ = (sk, hk).
2. Output Sign(sk, Hy(m)).
e Ver’: On input (vk’, m, o) do the following:
1. Parse vk’ = (vk, hk).
2. Output Ver(vk, Hy(m), o).
Theorem 6. If (Gen, Sign, Ver) is a signature scheme with message space
{0,1}* that is existentially unforgeable against one-time (resp., many-
time) adaptive chosen message attacks then (Gen’,Sign’, Ver') is a signature

scheme with message space {0,1}" that is existentially unforgeable against
one-time (resp., many-time) adaptive chosen message attacks.
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Proof. Suppose for the sake of contradiction that there exists a poly-
size adversary A and a non-negligible function € such that for every
AeN,

Pr[ASEY (k) (k') = (m*,0%) s.t. Ver (vk',m*,0*) =1 A m* & Q] > (M)

where Q is the query set that A sends to its oracle.> Denote by Q = 2|Q| = 1 in the case of one-time
security and |Q| = poly(A) in the case

{mi}fﬂ- We distinguish between two cases: p t, P
- of many-time security.

e Case 1: There exists a non-negligible function ¢ such that for
every A € N,

Pr[Ji € [¢] s.t. H(m*) = H(m;)] > 6(A).

In this case we can use A to break the collision resistant
property of (H, Geng).

* Case 2: There exists a negligible function y such that for
every A € N,

Pr[Ji € [¢] s.t. H(m*) = H(m;)] < u(A).

In this case we can use A to break the security of the under-
lying signature scheme (Gen, Sign, Ver).
O
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