
Lecture 8: Authenticated Encryption and CCA Secu-
rity
Notes by Yael Kalai

MIT - 6.5620
Lecture 8 (September 29, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Recap

• Last class we proved the security of the GGM construction,
which constructs a PRF from any PRG.

• We defined the notion of a message authentication code
(MAC), and constructed a MAC from any PRF.

The construction is extremely simple: Given any PRF : Kλ ×
Mλ → {0, 1}λ, let

MAC(k, m) := PRF(k, m).

Today

• Prove the security of the MAC construction.

• Construct an Authenticated Encryption scheme.

• Define CCA-secure encryption.

• Prove that an authenticated encryption is CCA-secure.

Security of the MAC Construction

Theorem 1. The above MAC is existentially unforgeable against adaptive
chosen message attacks.

Proof. Fix any poly-size A. By the security of the PRF it holds that
there exists a negligible µ such that for every λ ∈N,

Pr[AMAC(k,·)(1λ) = (m∗, τ∗) : τ∗ = MAC(k, m∗) ∧ m∗ /∈ Q] ≤

Pr[ARλ(·)(1λ) = (m∗, τ∗) : τ∗ = Rλ(m∗) ∧ m∗ /∈ Q] + µ(λ),

lecture 8: authenticated encryption and CCA security 2

where Rλ :Mλ → {0, 1}λ is a truly random function. It is easy to see
that

Pr[ARλ(·)(1λ) = (m∗, τ∗) : τ∗ = Rλ(m∗) ∧ m∗ /∈ Q] = 2−λ.

Thus, we conclude that for every λ ∈N,

Pr[AMAC(k,·)(1λ) = (m∗, τ∗) : τ∗ = MAC(k, m∗) ∧ m∗ /∈ Q] ≤ µ(λ)+ 2−λ

which is negligible.

MACing Long Messages

Suppose we are given a PRF that takes as input messages in {0, 1}n

and we want to MAC messages in {0, 1}2n? In particular, suppose
we want to MAC the message m1||m2 where m1, m2 ∈ {0, 1}n. It is
tempting to let

MAC(k, m1||m2) = MAC(k, m1)||MAC(k, m2).

However, this will not be secure, since the adversary can “mix-and-
match”. Specifically, given

MAC(k, m1||m2) = MAC(k, m1)||MAC(k, m2)

the adversary can compute

MAC(k, m2||m1) = MAC(k, m2)||MAC(k, m1).

Moreover, given

MAC(k, m1||m2) = MAC(k, m1)||MAC(k, m2)

and
MAC(k, m′1||m′2) = MAC(k, m′1)||MAC(k, m′2),

the adversary can generate

MAC(k, m1||m′2) = MAC(k, m1)||MAC(k, m′2).

Remark. Note that this is in contrast to CPA secure encryption, where
there concatenation preserves security!

So what if we want to MAC a long message? Well, there are several
ways to solve this problem. One way is to construct a PRF for mes-
sages of arbitrary length by making the GGM tree deeper. Recall that
the depth of the tree determines the length of the message. We will
talk about other ways in the next lecture.

lecture 8: authenticated encryption and CCA security 3

Authenticated Encryption

Often in application we want both secrecy and authenticity! So, what
should we do? Thankfully, we already constructed a CPA-secure
encryption scheme (Enc,Dec), and we also constructed a MAC. But
how do we put them together?

Take 1:

1. Alice and Bob first share a random secret key k ← {0, 1}λ .

2. Every time Alice sends a message m ∈ Mλ to Bob, she should
encrypt her message

ct ← Enc(k, m).

3. Then, since she wishes to send this ciphertext in an authenticated
way, she computes τ = MAC(k, ct).

4. She sends (ct, τ).

Upon receiving (ct, τ), Bob first checks that indeed τ = MAC(k, ct),
and if this is not the case it discards this message! If the check passes,
then he knows that this ciphertext was indeed sent by Alice, and then
he decrypts it to retrieve the message m = Dec(k, ct). Is this secure?
Not necessarily!

Lesson: Never use the same secret key for different applications!
This can leak the secret key entirely! The issue is that both a MAC

and a ciphertext may leak information about the secret key, and these
leakages may not play nicely with each other!

The correct way to communicate securely, is to share two secret
keys, one for the encryption and one for the MAC.

Our authenticated encryption scheme. Given a CPA-secure encryption
(Enc, Dec) and given a MAC scheme MAC, we define an authenti-
cated encryption scheme, denoted by (Enc′ , Dec′), as follows:

• First, Alice and Bob share two random secret key kEnc , kMAC ←
{0, 1}λ .

• Enc′((kMAC , kEnc), m):

1. Compute c ← Enc(kEnc , m).

2. Compute τ = MAC(kMAC , c).

3. Output ct = (c, τ).

• Dec((kMAC , kEnc), ct):

1. Parse ct = (ct, τ).

lecture 8: authenticated encryption and CCA security 4

2. Check if τ = MAC(kMAC , c). If this is not the case then
output ⊥.

3. Output m = Dec(kEnc , c)

Question: Why do we first encrypt and then MAC? Why don’t we
first MAC and then encrypt – namely, send Enc(kEnc , (m, MAC(KMAC , m)))?

The reason is that if we Encrypt-then-Mac (as is done above) then
our resulting scheme is secure against adaptive chosen ciphertext attacks
(CCA), defined below. CCA-security is the golden standard security
notion.

Definition 2. An encryption scheme (Enc′ , Dec′) is CCA-secure if
for every poly-size A there exists a negligible function µ such that
for every λ ∈ N, A wins in the game below with probability at most
1
2 + µ(λ):

1. The challenger chooses a key k ← Kλ .

2. The adversary A given 1λ can choose a message mi ∈ Mλ and
receive cti ← Enc′(k, mi).

Alternatively, he can choose a ciphertext cti and receive mi =

Dec′(k, cti).

This step can be repeated polynomially many times, where A can
query Enc′(k, ·) and Dec′(k, ·) polynomially many times.

3. The adversary A chooses m0 , m1 ∈ Mλ .

4. The challenger chooses a random bit b ← {0, 1}, generates ctb ←
Enc′(k, mb), and sends the ciphertext ctb to the adversary.

5. Again A is given oracle access to Enc′(k, ·) and Dec′(k, ·), but he
is not allowed to send the query ctb to the decryption oracle (but
it can send any other ciphertext, even one obtained by changing a
single bit of ctb).

6. The adversary outputs a bit b ′ .

We say that A wins if b ′ = b.

Claim 1. Fix any MAC that is existentially unforgeable against adap-
tive chosen message attacks, and any CPA-secure encryption scheme
(Enc, Dec). Then the authenticated encryption scheme Enc-then-
MAC, defined above, is CCA-secure.

Remark. Note that if we change the authenticated encryption scheme
to be MAC-then-Enc the resulting scheme would not necessarily be
CCA-secure.

lecture 8: authenticated encryption and CCA security 5

Proof. Fix any MAC that is existentially unforgeable against adap-
tive chosen message attacks, and any CPA-secure encryption. Sup-
pose there exists a poly-size adversary A that wins in the CCA

game with non-negligible probability ϵ. Denote by m1 , . . . , mℓ

all the queries that A sent to its encryption oracle, and denote by
(c1 , τ1), . . . , (cℓ , τℓ) the answers it obtains. Denote all the queries
that A sends to the decryption oracle by ct′1 , . . . , ct′ℓ , and for every
i ∈ [ℓ] parse ct′i = (c ′i , τ ′i).

For every λ denote by

δ(λ) := Pr[∃i ∈ [ℓ] :
(
MAC(kMAC , c ′i) = τ ′i

)
∧

(
c ′i /∈ {c1 , . . . , cℓ}

)
],

(1)
where the probability above is over the randomness of the CCA

game.
We distinguish between two cases:

• Case 1: δ is a non-negligible function. In this case we can use
A to break the security of the MAC scheme.

Specifically, we construct a poly-size adversary B and prove
that it wins in the MAC security game with probability ≥ δ

ℓ ,
which is non-negligible. B does the following:

1. Sample a random key kEnc ← {0, 1}λ for the CPA-secure
encryption scheme.

2. Emulate A’s oracles, i.e., the encryption and decryption
oracles corresponding to the authenticated encryption,
using kEnc and the oracle to MAC(kMAC , ·).

3. Denote by ct′1 , . . . , ct′ℓ the oracle calls that A makes to its
decryption oracle.

4. Choose at random i ← [ℓ], and parse ct′i = (c ′i , τ ′i).

5. Output (c ′i , τ ′i)

By Equation (1) it holds that with probability ≥ δ
ℓ both τ ′i is a

valid tag of c ′i and B didn’t send c ′i as an oracle query.

• Case 2: δ is a negligible function. In this case, we argue that
the decryption algorithm is useless, in the sense that we
can simulate the decryption algorithm without knowing
the secret key. Formally, we show how to convert A into a
poly-size adversary B that breaks the CPA security of the
underlying encryption scheme (Enc, Dec).

B emulates A, as follows:

1. a set S = ∅.

2. Sample kMAC ← {0, 1}λ .

lecture 8: authenticated encryption and CCA security 6

3. Every time that A queries its encryption oracle with a
message m ∈ Mλ , B does the following:

(a) Send m to the encryption oracle to obtain c ← Enc(kEnc , m).

(b) Compute τ = MAC(kMAC , c).

(c) Let S = S ∪ {(m, c, τ)}.

4. Every time that A queries its decryption oracle with a
ciphertext ct = (c, τ), B does the following:

(a) Check if there exists m such that (m, c, τ) ∈ S. If so,
emulate the decryption oracle by outputting m.

(b) Otherwise, output ⊥.

5. Once A chooses the two challenge messages m0 , m1 ∈
Mλ , B forwards these challenge messages m0 , m1 to the
challenger.

6. Upon receiving cb ← Enc(kEnc , mb) for a random
b ← {0, 1}, B proceeds to simulate the encryption and
decryption oracles of A as above, and finally it outputs the
guess b ′ that A outputs.

The fact that we are in Case 2 implies that there exists a negligible
function δ such that for every λ ∈ N,

Pr[b ′ = b] ≥ ϵ(λ) − δ(λ),

contradicting the assumption that (Enc, Dec) is CPA-secure.

References

	Recap
	Today
	Security of the Construction
	MACing Long Messages
	Authenticated Encryption

