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Recap

• Last class we defined the notion of a CPA secure encryption
and the notion of a pseudorandom function (PRF).

Definition 1 (Pseudorandom function). A PRF F = {Fλ}λ∈N,
where for every λ ∈ N, Fλ : Kλ ×Xλ → Yλ, has the property
that for every poly-size A there exists a negligible function µ

such that for every λ ∈N,

| Pr
k←Kλ

[AFλ(k,·)(1λ) = 1]− Pr
Rλ

[ARλ(·)(1λ) = 1]| ≤ µ(λ)

where Rλ is truly random function Rλ : Kλ ×Xλ → Yλ. For
concreteness, we think of X = {0, 1}n and Y = {0, 1}.

• We constructed a CPA secure encryption from any PRF.

• We constructed a PRF from any PRG (the GGM construction).

Today

• Prove security of the GGM construction.

• Define Message Authentication Codes (MAC)

• Construct a MAC from any PRF.

Recall the GGM PRF Construction

Suppose we are given a length doubling PRG

G : {0, 1}λ → {0, 1}2λ.

Denote by
G(x) = (G0(x)), G1(x))
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where for every b ∈ {0, 1}

Gb : {0, 1}λ → {0, 1}λ.

Similarly, for every b1, b2 ∈ {0, 1} denote by

Gb1,b2 : {0, 1}λ → {0, 1}λ

the function
Gb1,b2(x) = Gb2(Gb1(x)).

More generally, for every b1, . . . , bi ∈ {0, 1} denote by

Gb1,...,bi
: {0, 1}λ → {0, 1}λ

the function
Gb1,...,bi

(x) = Gbi
(. . . (Gb1(x)) . . .).

Goldreich–Goldwasser–Micali PRF

Construction: Let G(s) = G0(s) ∥G1(s) where G0(s) and G1(s) are
both λ bits.

k

G0(k)

G0(G0(k)) G1(G0(k))

G1(k)

G0(G1(k)) G1(G1(k))

G0
(
G0(· · ·G0(k))

)
Gxλ

(
Gxλ−1(· · · Gx1 (k))

)
G1

(
G1(· · ·G1(k))

)

Depth λ

Each path/leaf labeled by x ∈ {0, 1}λ corresponds to F(k, x).

Theorem 2. The GGM construction is a PRF.

The proof of this theorem makes use of the following lemma.

Lemma 3. If G : {0, 1}λ → {0, 1}n(λ) is a PRG then for every polynomial
ℓ : N→N it holds that

{G(k1), . . . , G(kℓ(λ))}λ∈N ≈ {Un(λ)·ℓ(λ)}λ∈N

where k1, . . . , kℓ(λ) ← {0, 1}λ.

The proof of this lemma follows from a standard hybrid argument.
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Proof of Lemma 3 Fix any poly-size A. For every λ ∈ N, and for
every i ∈ {0, 1, . . . , ℓ(λ)}, denote by

Hλ,i = (G(k1), . . . , G(ki), Un(λ)·(ℓ(λ)−i)).

Then

|Pr[A(G(k1), . . . , G(kℓ(λ)) = 1]− Pr[A(Un(λ)·ℓ(λ)) = 1]| =

|Pr[A(Hλ,ℓ) = 1]− Pr[A(Hλ,0) = 1] =

|
ℓ

∑
i=1

Pr[A(Hλ,i) = 1]− Pr[A(Hλ,i−1) = 1]| ≤

ℓ

∑
i=1
|Pr[A(Hi) = 1]− Pr[A(Hi−1) = 1]| ≤

negl(λ),

where the latter inequality follows from the fact that G is a PRG

together with the fact that ℓ = poly(λ).
We next show how to use Lemma 3 to prove Theorem 2.

Proof of Theorem 2 The proof is via a hybrid argument on the layers
of the tree. Suppose there exists a poly-size A and a non-negligible ϵ

such that for every λ ∈ N

| Pr[AF(k,·)(1λ) = 1] − Pr[ARλ (1λ) = 1]| ≥ ϵ

In what follows, we denote by F0 = F(k, ·). Let F1 be the function
that is similar to F0 except that it replaces the first layer of the tree
(from the root) with a uniform layer. Namely, (G0(k), G1(k)) is
replaced with truly random (k0 , k1). By the security of the PRG there
exists a negligible function µ1

| Pr[AF0 (k,·)(1λ) = 1] − Pr[AF1 (k,·)(1λ) = 1]| ≤ µ1 .

More generally, let Fi be the function that replaces the i’th layer of the
tree (from the root) with truly random values. Note that Fλ = R(·).
By a hybrid argument there exists i ∈ [λ] such that for every λ ∈ N

| Pr[AFi−1 (1λ) = 1] − Pr[AFi (1λ) = 1]| ≥ ϵ

λ

We argue that this contradicts Lemma 3.
Note that the number of nodes in the ith layer is 2i , which may

be super-polynomial. Thus we cannot contradict Lemma 3 with ℓ =

2i (indeed, this lemma is false with super-polynomial ℓ!). Instead,
rather than assigning a string to each node in the i’th layer, we will
only assign strings to nodes that are queried by A.
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Specifically, let q = q(λ) be an upper bound on the number of
oracle calls that A makes. We construct a poly-size adversary B such
that for every λ ∈ N,

Pr[B(G(k1), . . . , G(kq)) = 1] − Pr[B(Un(λ)·2q(λ)) = 1]| ≥ ϵ

λ
. (1)

B on input (x1,0 , x1,1 , . . . , xq,0 , xq,1) emulates A(1λ) as follows:

1. Upon receiving the j’th oracle call from A do the following:

(a) Denote the oracle query by r ∈ {0, 1}λ .

(b) Denote by r [i−1] ∈ {0, 1}i−1 the first i − 1 bits of r. Similarly
denote by r [i] ∈ {0, 1}i the first i bits of r.

(c) If kr[i−1] ,0 and kr[i−1] ,1 have not been previously defined, then set
kr[i−1] ,0 = x j,0 and kr[i−1] ,1 = x j,1

2. Output y = Grλ
(Grλ−1 (. . . (kr[i] ) . . .)).

It is easy to see that if (x1,0 , x1,1 , . . . , xq,0 , xq,1) is uniformly dis-
tributed in {0, 1}λ·2q then

Pr[B(x1,0 , x1,1 , . . . , xq,0 , xq,1) = 1] = Pr[AFi (1λ) = 1]

On the other hand, if (x1,0 , x1,1 , . . . , xq,0 , xq,1) is distributed as
(G(k1), . . . , G(kq)) for random k1 , . . . , kq ← {0, 1}λ , then

Pr[B(x1,0 , x1,1 , . . . , xq,0 , xq,1) = 1] = Pr[AFi−1 (1λ) = 1].

Thus, by Equation (1), we conclude that

| Pr[B(G(k1), . . . , G(kq)) = 1] − Pr[B(Uλ·2q) = 1]| ≥ ϵ

λ

contradicting Lemma 3.

PRF for Authentication

So far we were focused on encryption, the task of communicating in
a secret manner. We spent three weeks figuring out how to do this.
We showed how to use a OWP to construct a PRG,1 how to use a 1 As mentioned, it is known how to

construct a PRF from any OWF, which
is a minimal assumption [1], but this
proof is much more involved.

PRG to construct a PRF, and finally how to use a PRF to construct a
CPA-secure encryption (i.e., a scheme that remains secure even if the
adversary gets to see ciphertexts of any messages of its choice, which
he can choose adaptively).

Next, we will tackle a different problem: Suppose Bob has received
a message claimed to be sent by Alice, but he is worried that perhaps
an adversary sent the message and claims it is from Alice. Even if the
message was encrypted using a CPA-secure encryption scheme with a
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secret key that only Alice and Bob hold, this does not guarantee that
the message was actually sent by Alice.

Until now, we were only concerned with the secrecy of their com-
munication, the guarantee that nobody else can read Alice and Bob’s
messages. But we have not been concerned at all with the authen-
ticity of their communication, the guarantee that nobody can forge
a message in a way that makes it look like it was sent by Alice. This
will be our focus next.

One solution that may come to mind, is to have Alice “sign” her
message, i.e., add a (ridiculous) scribble to the end of her message.
This of course does not work! An attacker can take a message “At-
tack at dawn” with Alice’s scribble, and change it by only changing
the word “dawn” to “dusk.” Not to mention that it is quite easy

to copy these scribbles! It is surpris-
ing that it works reasonably well in
practice.

A much much better solution would be for Alice to produce a
signature that somehow depends on the message she is signing. In
other words, for different messages, Alice should produce different
signatures that the receiver is convinced that indeed it was Alice who
sent the message, and the message was not altered by an adversary.

Message Authentication Codes (MACs)

Definition 4. A MAC corresponding to a key space K = {Kλ}λ∈N
2 2 We typically assume that Kλ =

{0, 1}λ.and a message spaceM = {Mλ}λ∈N is a poly-time computable
function

MAC : Kλ ×Mλ → {0, 1}∗

that satisfies the following security guarantee, referred to as existential
unforgeability against adaptive chosen message attacks:
Security:3 For every poly-size adversary A there exists a negligible 3 This security notion should sound

familiar :-)function µ such that for every λ ∈ N the adversary wins in the
following game with probability ≤ µ(λ):

1. The challenger chooses a random key k← Kλ.

2. The adversary sends the challenger a message mi ∈ Mλ and
receives a “tag” τi = MAC(k, mi).

This step can be repeated polynomially many times.

3. The adversary outputs (m∗, τ∗)

4. The adversary wins if m∗ /∈ {mi}, where {mi} is the set of mes-
sages the adversary requested tags for, and if τ∗ = MAC(k, m∗).

Remark. A more concise way of writing the above security definition
is as follows: For every poly-size A there exists a negligible µ such
that for every λ ∈N

Pr[AMAC(k,·)(1λ) = (m∗, τ∗) : τ∗ = MAC(k, m∗) ∧ m∗ /∈ Q] ≤ µ(λ),
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where Q denotes all the oracle queries that A sends its oracle.

Remark. There are many variants of this security definition. For ex-
ample, a weaker security guarantee is random unforgeability against
adaptive chosen message attacks, where the adversary wins if it gen-
erates a valid tag τ = MAC(k, r) for a random message r ← Mλ

chosen by the challenger, after seeing polynomially many tags for
messages of its choice (chosen before r was given). Another, even
weaker, security notion is random unforgeability against random
chosen message attacks, where the adversary wins if it generates a
valid tag τ = MAC(k, r) for a random message r ← Mλ chosen
by the challenger, after seeing tags for polynomially many random
messages r1 , . . . , rt ← Mλ , where r∗ /∈ {ri}i∈[t] .

Remark. Often a MAC is associated with a verification algorithm.
With our definition, a tag τ on a message m is verified by checking
that τ = MAC(k, m). Separating the task of verifying a tag from the
task of generating one, allows the task of verification to be possibly
more efficient than the task of computing a MAC. In practice (and in
our theoretical constructions) verification is done by recomputing the
MAC.

Also, as with an encryption scheme, a MAC is often associated
with a key generation algorithm. We assume for simplicity, without
loss of generality, that the key is uniformly sampled from the key
spaces.

MAC Construction from any PRF

The construction is extremely simple: Take any PRF : Kλ ×Mλ →
{0, 1}λ. Define:

MAC(k, m) = PRF(k, m).

Theorem 5. The above MAC is existentially unforgeable against adaptive
chosen message attacks.

Proof. Fix any poly-size A. By the security of the PRF it holds that
there exists a negligible µ such that for every λ ∈N,

Pr[AMAC(k,·)(1λ) = (m∗, τ∗) : τ∗ = MAC(k, m∗) ∧ m∗ /∈ Q] ≤

Pr[ARλ(·)(1λ) = (m∗, τ∗) : τ∗ = MAC(k, m∗) ∧ m∗ /∈ Q] + µ(λ),

where Rλ :Mλ → {0, 1}λ is a truly random function. It is easy to see
that

Pr[ARλ(·)(1λ) = (m∗, τ∗) : τ∗ = MAC(k, m∗) ∧ m∗ /∈ Q] = 2−λ.
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Thus, we conclude that for every λ ∈N,

Pr[AMAC(k,·)(1λ) = (m∗, τ∗) : τ∗ = MAC(k, m∗) ∧ m∗ /∈ Q] ≤ µ(λ)+ 2−λ

which is negligible.
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