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Recap

¢ Last week we constructed a PRG, which stretches A bits of
random bits to poly(A) bits of pseudorandom bits, assuming
the existence of a OWP.

¢ Our construction used the Goldreich-Levin (GL) Hardcore
predicate, and we proved the GL theorem (which is used a
lot in cryptography, complexity theory and coding theory)!

* The week before we showed that PRG can be used to encrypt
a long message given a short key, by expanding the key using
the PRG and using it as a one-time pad.

Today

* Define an encryption scheme that is secure even if arbitrary
polynomially many messages are exchanged.

* Define the notion of a pseudo random function (PRF) which is
the main cryptographic tool used in the construction.

* Construct a PRF from any PRG (and thus from any OWF).

Next class we will prove security of this PRF and move onto the topic
of authentication.

Encryption Scheme with Many-Message Security

We next define the notion of multi-message security of an encryp-
tion scheme, which guarantees security even if the adversary sees
arbitrarily (polynomially) many ciphertexts. Note that each cipher-
text Enc(k, m) may leak some information about the secret key k, and
hence we need to ensure that if the adversary sees many ciphertexts

It is known that a PRG can be con-
structed from any OWF but the proof is
much more complication.

A PREF is a generalization of a PRG.



LECTURE 6: CPA SECURE ENCRYPTION AND PSEUDO RANDOM FUNCTIONS.

he does not learn enough information about k that makes the scheme
insecure.

Continuing with the philosophy that we should be prepared
against a worse-case adversary (never underestimate the power of
your adversary!), we would like to ensure security even if the adver-
sary gets to choose the messages that are encrypted.

Definition 1. An encryption scheme is said to be many-message
secure if for every polynomial / : IN — IN and every poly-size
adversary A there exists a negligible function u such that for every

A € IN and for every two sequence of messages mj,...,my € M, and
my,...,my; € M,

| Pr[A (Enc(k,my),...,Enc(k,my)) = 1] — Pr[A (Enc(k, m}),. .., Enc(k,m})) = 1]| < %—i—y(/\).
(1)

We actually consider an even stronger definition, which allows the
adversary to choose the messages adaptively based on previously seen
ciphertexts. This is called security against adaptively chosen plaintext
attacks

Definition 2. An encryption scheme (Enc, Dec) is said to be secure
against adaptively chosen plaintext attacks (CPA secure) if for every
PPT adversary A there exists a negligible function y such that for
every A € N, A wins in the following game with probability at most
3+ p(A):

* The challenger chooses a key k < K,.

¢ The adversary A given 1* chooses a message m; € M, and
receives ¢; <— Ency (k, m;).

This step can be repeated polynomially many times.
¢ The adversary A chooses mg, my € M.

* The challenger chooses a random bit b < {0,1}, generates
¢ < Enc(k, my), and sends the ciphertext c to the adversary.

e The adversary given ¢ outputs a bit V.
We say that A wins if b’ = b.

Remark. Note that it suffices to construct a CPA secure encryption
scheme for single bit messages; i.e., for M = {0,1}. The reason is
that we can encrypt arbitrarily long messages bit-by-bit. Therefore,
for simplicity, in what follows we focus on constructing a CPA secure
encryption scheme with M = {0,1}.
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Constructing a CPA-Secure Encryption Scheme

We first observe that if we could expand the secret key to an arbi-
trarily long pad then we could use it to encrypt all our messages,
each time using a fresh part of the pad. This scheme would result in
a stateful scheme since we need to remember which part of the pad
was already used.

It turns out that this is inherent! Specifically, there does not ex-
ist a CPA secure encryption scheme where the encryption algo-
rithm is deterministic (unless it is stateful)! The reason is that it
is always easy to distinguish between (Enc(k, m), Enc(k, m)) and
(Enc(k,m), Enc(k, m")) for randomly chosen m, m’ € M. Indeed,
in all our CPA secure encryption schemes the encryption algorithm is
randomized.

Continuing with our intuition above, if we could expand our secret
key to an extremely long pad, then each time we encrypt a message,
we can use a random part of the pad, and hope that the pad is long
enough that we never reuse the same part. The question is how can
we expand our secret key into such a long pad efficiently?

Suppose we could magically expand the secret key k into a func-
tion F : {0,1}* — {0, 1} that is efficiently computable and at the
same time indistinguishable from a truly random function. Then we
could encrypt a message m € {0,1} by:

Enc(F,m) = (r, F(r) @ m),
and decrypt the resulting ciphertext by:
Dec(F, (r,c)) = F(r) @c.

As long as we encrypt significantly less than 2*/2 messages we do
not expect to see a collision (i.e., the same r used twice) and hence
security follows from the one-time security of the one-time pad.

Pseudorandom Functions (PRF)

Using the magic of cryptography we construct efficiently computable
functions that look like truly random ones! Such functions are called
pseudorandom functions.

Definition 3 (Pseudorandom function). A pseudorandom function
F = {F\} en, where for every A € IN, F : K, x X} — Y, has the
property that for every poly-size A there exists a negligible function
u such that for every A € IN,

| Pr [AREI @) = 1] - P ARO (1) = 1] < p(2)
FIC/\ R/\
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where R, is truly random function R, : K, x X} — V,. For concrete-
ness, we think of X = {0,1}" and Y = {0,1}.

CPA-Secure Encryption Construction from any PRF Family
Let F = {F)} en be any PRF family where
Fy:{0,1}* x {0,1}* — {0,1}.

We use F to construct a symmetric encryption scheme where the key-
space is {0,1}*, the message space is {0,1}, and the ciphertext space
is {0,1}* x {0,1}. Specifically,

Ency(k,m;r) = (r,m® F(k,7))
where r <& {0,1}7.
Dec(k, (r,c)) = F(k,r) ®c.

Theorem 4. The encryption scheme defined above is CPA secure assuming
the underlying function F is a PRF.

Proof. The CPA security follows immediately from the definition of a
PRF. Specifically, suppose there exists a poly-size A and there exists
a non-negligible € such that A wins in the CPA game with probability
at least  + €(A). We construct a poly-size B that breaks the PRF
security of F.

BO(1") distinguishes between the case that O = F, (k, -) and the
case that O = R, as follows:

1. Run the adversary A in the CPA game, while emulating the “chal-
lenger” in the security game, as follows:

(a) Every time A requests an encryption of a message m; € {0,1},
sample a random 7; < {0,1}* and return the ciphertext
(ri, O(ri) © m;).
(b) When A sends the two challenge ciphertexts mg, m; € {0,1}
choose a random b < {0,1} and send ¢ = (r,O(r) & my).
2. Denote the output of A by b'.

3. If b’ = b then guess pseudorandom (say output 1) and otherwise
guess random (say output o).

By definition of B, and by our assumption that .A wins the security
game with probability 3 + €(A), we conclude that

pr[BRk) (11) = 1] > % +e(A),
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On the other hand, we argue that there exists a negligible function u
such that for every A € N

Pr[BM (1Y) = 1] = % +u(A).

For the latter, denote by E the event that the challenge ciphertext
(r,cp) encrypting m;, satisfies that r is different from all the random
strings {r;} used to encrypt the messages {m;} chosen by A. Then

Pr[BR (11) = 1] =

Pr[BRr (1) = 1] E] - Pr[E] + Pr[BR®(11) = 1| —E] - Pr[-E] <
Pr[BRy(1%) = 1] E] - Pr[E] 4+ u(A) <

Pr(BR (1Y) = 1| E] + pu(A) =

2 r(A)

PRF Construction

We next show how to construct a PRF from any PRG. This is a beau-
tiful construction proposed by Goldreich, Goldwasser and Micali

[1].

Note that PRFs and PRGs are very similar objects. They both take
a short random seed k «+ {0,1}* and generate many pseudorandom
bits out of it. The difference is that a PRG expands A bits to n(A) <
poly(A) bits whereas a PRF can in principle expand by 2% bits:

One can think of a PRF as a PRG with random access.

The GGM Construction Recall that last week we showed how to
increase the stretch of a PRG

G:{0,1}* = {0,1}M!
into a PRG with arbitrary stretch
GF:{0,1}* — {0, 1}k

The problem is that accessing the A + ith bit of G¥(x) takes time > i.
The reason is that this construction increases expansion via a line. .

Let G(s) = Go(s) || G1(s) where Go(s) is 1 bit and G;(s) is A
bits.
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Go(G(K))

Go(Gi (k)

AN

The idea of GGM is to use a tree structure as opposed to a line
structure to have a more efficient random access. Suppose we are
given a length doubling PRG

G:{0,1}* — {0,1}*\.

Denote by
G(x) = (Go(x)), Gi(x))

where for every b € {0,1}
Gy: {0,1}* — {0,1}M.
Similarly, for every by, by € {0,1} let
Gp, b, - {0,13" = {0, 1}

defined by
Gb],hz (x) = sz (Ghl (x) ) °

More generally, for every by, ...,b; € {0,1} let
Gy, : {0, 1} = {0, 1}*
defined by
Gb1 ..... bi(x) :Gbi(---(Gbl(x))-'-)-

.Goldreich—-Goldwasser—-Micali PRF

Construction: Let G(s) = Gg(s) || G1(s) where Gy(s) and Gy (s) are

both A bits.
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/\
o

Go(Go(- -~ Go(k))) Gy (Gry (- Gy (K))) G1(G1(- -~ Gi(K)))

Depth A

Gol(Go () Gr (ggx(k))

Each path/leaf labeled by x € {0,1}" corresponds to F(k, x).
Theorem 5. The GGM construction is a PRF.

We will see the proof next class.
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