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Recap

Last lecture we started to show how to construct a PRG from any
OWP f.

1. We first showed that it suffices to construct a PRG with a single bit
stretch, i.e. a PRG

G:{0,1}* = {0,1}*L.

This is the case since we showed that we can stretch any such PRG
into one that has a polynomial stretch k = poly(A) by concatenat-
ing G k times

GF:{0,1}" — {0, 1}

2. We then defined the notion of a hardcore predicate

Definition 1. P: {0,1}* — {0,1} is a hardcore predicate of f if for
every poly-size A there exists a negligible function u such that for
every A € IN,

1
B MG ) = PO < 5+ ).

3. We showed that if the OWP f had a hardcore predict P : {0,1}* —
{0,1} then the following function is a PRG:

G(x) = f(x) o P(x).

Thus, it remains to argue that every OWP has a hardcore predicate.
Goldreich and Levin proved that every one-way function has a ran-
domized hardcore predicate.
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Goldreich-Levin Theorem

Theorem 2. [1] If f is a one-way function, then the following randomized
predicate
P(x,r):=x-r mod2= )Y x; mod 2
i€eA
is a hardcore predicate for f. Namely, for every poly-size A there exists a
negligible function y : N — [0,1] such that for every A € N

Pr  [A(F(Uy)r) = P(Uy, )] < 5 + (M)
U, «{0,1}*

This theorem implies that
G(x,r) = f(x)oroP(x,r)

is a PRG. In this lecture our focus is on proving Theorem 2.

Proof of Theorem 2 Suppose for contradiction that there exists a poly-
size adversary A and a non-negligible function € : IN — [0, 1] such
that for every A € N,

Pr AU, = P(ULD)] = 5 +€(d)
Up {0,134 2

We will show how to use A to construct an adversary B that breaks

the one-wayness of f.

Since A is only assumed to predict with small advantage €, we
cannot expect B to invert every given image y = f(x). Indeed, it may
be that A always fails when given an input whose first A-bits is y. So
which y’s can we hope to invert?

Define

GOOD = {x € {0,1}* : Pr[A(f(x),r) =x-1] >
By Markov’s inequality

Pr [x € GOOD] > —=

e(A)
XFUA 2
To expand on this, denoting by

p= Pr [x € GOOD],

XFU)\

2
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it holds that

% +e(A) <
P [AG(),7) = Pl =
xggcr)OD[A(f(x),r) = P(x,7)] ~x£{h[x € GOOD] + xeﬁlérOOD[A(f(x),r) = P(x,7)] -xE{IA[x ¢ GOOD] =
P (A = P+ Pr AGFG)) = P (1-p) <
1 €e(A)
p+ P + T
which implies that indeed p > %A)

We will construct an algorithm B that succeeds in inverting every
f(x) for x € GOOD with non-negligible probability.

Special case 1: A predicts P(x, r) perfectly for every x € GOOD

As a warmup, suppose that A is a perfect predictor that for every
x € GOOD and every r € {0,1}*

A(f(x),r)=x-r

With such a perfect predictor it is easy to invert the OWF f. Specifi-
cally, the inverter B, given y = f(x) where x < U,, does the follow-

ing:

1. For every i € [A] compute x} = A(y, ¢;).

2. Output x = (x,...,x}).

By our assumption that A is a perfect predictor, it follows that
Xj=x-¢=x;,

as desired.
Unfortunately, our predictor .4 may not be perfect. Next, we relax
the perfect condition as follows.

Special case 2: There exists a non-negligible € = €(A) such that for ev-
ery x € GOOD, A predicts P(x,r) with probability 3/4 + €

We can use this predictor to construct an algorithm B that for every

x € GOOD, given f(x) finds an inverse with overwhelming probabil-
ity (i.e., probability 1 — u for some negligible function y). The inverter
B, given y = f(x) where x < U}, does the following:

1. Setk = A/€2.

2. For every i € [A], do the following:

3
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(a) Choose at random 7;1,...,7;x < {0,1}".

(b) For every j € [k] compute b;; = A(y,r;;) and bl{/]- = A(y, 1 Dei),
and let Xij = bi,j S5) b:,]

(c) Let x; = majority{x;1..., %}
3. Output x' = (x},...,x})
Note that by our assumption for every i € [A] and j € [k],

Pr xho=x;] >
ri,]'%{O,l}/\[ i,j l]

Pr  [A(y,rij) =x-rij N Ay, rij@e)=x-(r;®e)] =

}’1‘/]%—{0,1}/\

1—  Pr [A(y,rij) #x-rij V A(y,rij©e;) #x-(rijde)] >
t’l‘,j<—{0,1}/\

1= ri,jelzf),l}A[A(y’ rij) # X1l = rf,jeﬁg,l}A[A(y’ rij ®ei) £ (rij@ei)] 2

1-1/24+2e=1/2+2¢

Note that for every i € [A] it holds that x],, ..., x]  are independent
Boolean random variables such that Pr[x;,j = x;] > 1/2+ 2e.
Therefore, by the Chernoff bound

Pr[majority{xill, ey xi,;\} # xi] < 2—O(eZ~k)

Theorem 3 (Chernoff bound). Let X1, X, ..., X, be independent
random variables taking values in {0, 1} (Bernoulli trials). Let

X = fxi, u =E[X].
i=1

1

Forany 0 <J < 1:

Pr[X > (1+6)u] < eXP(_%‘) '

and
2
Pr[X < (1-9)u] < exp(—%y) .

Thus, for every i € [A]
Pr[B(f(x)) = x': x| #x;] <2700,
which together with the union bound implies that
Pr(B(f(x)) # ] < A-2700) = negl(1).

Remark. Note that we could have chosen the same random rq, ...,y <
{0,1}* for all the coordinates i € [A]. The reason is that we do not
need independence for the union bound.
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General case: There exists a non-negligible e = €(A) such that for ev-
ery x € GOOD, A predicts P(x,r) with probability 1/2 + €

Note that in the above analysis the reason that we needed a suc-
cess probability of greater than % is because, in order to get a non-
negligible probability of guessing a single bit x; we needed to com-
bine two guesses for two bits x - 7; ; and x - (ri,]' Dej).

The Goldreich-Levin reduction starts with the following (ridicu-
lous!) idea. Suppose that for each pair r and r @ e;, we simply guess
the bit x - r ourselves, and we only use the adversary A to guess the
bit x - (r @ e;). If we could somehow manage to always guess the bit
x - r correctly then we could use the same argument as above since
under this (ridiculous) assumption both bits x - ¥ and x - (r & ¢;) are
guessed correctly with probability at least % +e.

The problem is that we cannot guess x - ¥ by ourselves with prob-
ability better than random. This is exactly the task that we needed
A to do in the first place! But we can guess each of these bits at ran-
dom and have a success probability 3. This seems useless since in the
above procedure, for each i € [A] we needed to choose a total of k
different values of x - 7, and if we guess each of them at random then
we will guess all of them correctly only with probability 2~*. But it
turns out that this random guessing is actually really useful, due to
the following clever idea: suppose that we happen to correctly guess
x -s1 and x - sp. Then we can also guess correctly

x-(s1®s2) = (x-51) D (x-52)
More generally, suppose we guessed correctly
X-T1, XT3, ., X1y
then we can use these ¢ bits to guess correctly
X (@ierri) = Dier(x - s;)

for every I C [/]. Since there are 2! such subsets we learned 2¢
inner products x - r;, where ¥; = @;¢r;. Therefore, in order to learn
k different inner products x - ¥; we need to guess only { = logk
many bits of the form x - r;! And we can guess all £ inner products
correctly with probability %

You may be concerned that now all these 7;’s are not independent.
Indeed, they are not! For example, (15} = 71 & r2. As a result
we cannot use the Chernoff bound in the analysis. However, they
are pairwise independent. Therefore, instead of Chernoff bound we
can rely on Chebyshev’s inequality which is a weaker concentration
bound.
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Theorem 4 (Chebyshev’s inequality). Let Z1, ..., Z;, be pairwise
independent random variables obtaining values in {0, 1}, such that for
every j € [m] Pr[Z; = 1] = p. Then, for every & > 0,

m
mn 7.
=14

Pr H]m —-p

So, the inverter 5, given y = f(x), does the following:

~ 46%2m

25]<

1. Setk = A/€2.
2. For every i € [A], do the following:

(a) Set{ ~logk

(b) choose at random 1, ...,r, < {0,1}.

(c) Forevery j € [(], choose at random b; < {0,1}."
(d) Forevery J C [4], let

1y = Djeyrj and b] = @je]bj-
(e) Similarly, for every J C [/], let
ng = .A(y,?’] EBei) and Xij = b] D b{,]'

(f) Let x] = majority{x;};c[g
3. Output ¥’ = (xi/“"xlA)

Suppose that all our ¢ guesses where correct, which happens with
probability 27¢ = poly(k). In this case, as above for every i € [A] and

] €4,

/
T X1 =Xi| >
}’1,...,7'1;%{0,1})‘[ l] l]

Pr Ay, (rj+e)) =x-(rj@e)] =

1, {0,1}7

1— Pr [Alyrj@e) #x-(rjde)] =2

1’1,...,1’;;(*{0,1}/\

1/2+e.

This seems great, except that now we cannot apply the Chernoff
bound since the random variables {r;} jc[) are not independent!
However, as mentioned above they are pairwise independent, and
hence we can rely on Chebyshev’s inequality to argue that for every
x € GOOD and every i € [A],

1
Prlx} # x| < 1k

' bj is a guess for x - 7;.
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In particular, setting k = A - €2, we can take a union bound, and
guarantee that for every x € GOOD,

Pr{B(f(x) =x] > 1,

contradicting the fact that f is a one-way function.
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