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Recap

Last lecture we started to show how to construct a PRG from any
OWP f .

1. We first showed that it suffices to construct a PRG with a single bit
stretch, i.e. a PRG

G : {0, 1}λ → {0, 1}λ+1.

This is the case since we showed that we can stretch any such PRG

into one that has a polynomial stretch k = poly(λ) by concatenat-
ing G k times

Gk : {0, 1}λ → {0, 1}λ+k.

2. We then defined the notion of a hardcore predicate

Definition 1. P : {0, 1}λ → {0, 1} is a hardcore predicate of f if for
every poly-size A there exists a negligible function µ such that for
every λ ∈N,

Pr
x←{0,1}λ

[A( f (x)) = P(x)] ≤ 1
2
+ µ(λ).

3. We showed that if the OWP f had a hardcore predict P : {0, 1}λ →
{0, 1} then the following function is a PRG:

G(x) = f (x) ◦ P(x).

Thus, it remains to argue that every OWP has a hardcore predicate.
Goldreich and Levin proved that every one-way function has a ran-
domized hardcore predicate.
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Goldreich-Levin Theorem

Theorem 2. [1] If f is a one-way function, then the following randomized
predicate

P(x, r) := x · r mod 2 = ∑
i∈λ

xiri mod 2

is a hardcore predicate for f . Namely, for every poly-size A there exists a
negligible function µ : N→ [0, 1] such that for every λ ∈N

Pr
Uλ←{0,1}λ

[A( f (Uλ), r) = P(Uλ, r))] ≤ 1
2
+ µ(λ)

This theorem implies that

G(x, r) = f (x) ◦ r ◦ P(x, r)

is a PRG. In this lecture our focus is on proving Theorem 2.

Proof of Theorem 2 Suppose for contradiction that there exists a poly-
size adversary A and a non-negligible function ϵ : N → [0, 1] such
that for every λ ∈N,

Pr
Uλ←{0,1}λ

[A( f (Uλ), r) = P(Uλ, r))] ≥ 1
2
+ ϵ(λ)

We will show how to use A to construct an adversary B that breaks
the one-wayness of f .

Since A is only assumed to predict with small advantage ϵ, we
cannot expect B to invert every given image y = f (x). Indeed, it may
be that A always fails when given an input whose first λ-bits is y. So
which y’s can we hope to invert?

Define

GOOD = {x ∈ {0, 1}λ : Pr[A( f (x), r) = x · r] ≥ 1
2
+

ϵ(λ)

2

By Markov’s inequality

Pr
x←Uλ

[x ∈ GOOD] ≥ ϵ(λ)

2

To expand on this, denoting by

p = Pr
x←Uλ

[x ∈ GOOD],
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it holds that

1
2
+ ϵ(λ) ≤

Pr
x←Uλ

[A( f (x), r) = P(x, r)] =

Pr
x←GOOD

[A( f (x), r) = P(x, r)] · Pr
x←Uλ

[x ∈ GOOD] + Pr
x←¬GOOD

[A( f (x), r) = P(x, r)] · Pr
x←Uλ

[x /∈ GOOD] =

Pr
x←GOOD

[A( f (x), r) = P(x, r)] · p + Pr
x←¬GOOD

[A( f (x), r) = P(x, r)] · (1− p) ≤

p +
1
2
+

ϵ(λ)

2
,

which implies that indeed p ≥ ϵ(λ)
2 .

We will construct an algorithm B that succeeds in inverting every
f (x) for x ∈ GOOD with non-negligible probability.

Special case 1: A predicts P(x, r) perfectly for every x ∈ GOOD

As a warmup, suppose that A is a perfect predictor that for every
x ∈ GOOD and every r ∈ {0, 1}λ

A( f (x), r) = x · r

With such a perfect predictor it is easy to invert the OWF f . Specifi-
cally, the inverter B, given y = f (x) where x ← Uλ, does the follow-
ing:

1. For every i ∈ [λ] compute x′i = A(y, ei).

2. Output x = (x′1, . . . , x′λ).

By our assumption that A is a perfect predictor, it follows that

x′i = x · ei = xi,

as desired.
Unfortunately, our predictor A may not be perfect. Next, we relax

the perfect condition as follows.

Special case 2: There exists a non-negligible ϵ = ϵ(λ) such that for ev-
ery x ∈ GOOD, A predicts P(x, r) with probability 3/4 + ϵ

We can use this predictor to construct an algorithm B that for every
x ∈ GOOD, given f (x) finds an inverse with overwhelming probabil-
ity (i.e., probability 1− µ for some negligible function µ). The inverter
B, given y = f (x) where x ← Uλ, does the following:

1. Set k = λ/ϵ2.

2. For every i ∈ [λ], do the following:
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(a) Choose at random ri,1, . . . , ri,k ← {0, 1}λ.

(b) For every j ∈ [k] compute bi,j = A(y, ri,j) and b′i,j = A(y, ri,j⊕ ei),
and let xi,j = bi,j ⊕ b′i,j.

(c) Let x ′i = majority{xi,1 . . . , xi,k}

3. Output x ′ = (x ′1 , . . . , x ′λ)

Note that by our assumption for every i ∈ [λ] and j ∈ [k],

Pr
ri, j←{0,1}λ

[x ′i, j = xi ] ≥

Pr
ri, j←{0,1}λ

[A(y, ri, j) = x · ri, j ∧ A(y, ri, j ⊕ ei) = x · (ri, j ⊕ ei)] =

1 − Pr
ri, j←{0,1}λ

[A(y, ri, j) ̸= x · ri, j ∨ A(y, ri, j ⊕ ei) ̸= x · (ri, j ⊕ ei)] ≥

1 − Pr
ri, j←{0,1}λ

[A(y, ri, j) ̸= x · ri, j ] − Pr
ri, j←{0,1}λ

[A(y, ri, j ⊕ ei) ̸= x · (ri, j ⊕ ei)] ≥

1 − 1/2 + 2ϵ = 1/2 + 2ϵ

Note that for every i ∈ [λ] it holds that x ′i,1 , . . . , x ′i,k are independent
Boolean random variables such that Pr[x ′i, j = xi ] ≥ 1/2 + 2ϵ.
Therefore, by the Chernoff bound

Pr[majority{xi,1 , . . . , xi,λ} ̸= xi ] ≤ 2−O(ϵ2 ·k)

Theorem 3 (Chernoff bound). Let X1 , X2 , . . . , Xn be independent
random variables taking values in {0, 1} (Bernoulli trials). Let

X =
n

∑
i=1

Xi , µ = E[X ].

For any 0 < δ < 1:

Pr[X ≥ (1 + δ)µ] ≤ exp
(
− δ2

3 µ
)

,

and
Pr[X ≤ (1 − δ)µ] ≤ exp

(
− δ2

2 µ
)

.

Thus, for every i ∈ [λ]

Pr[B( f (x)) = x ′ : x ′i ̸= xi ] ≤ 2−O(λ) ,

which together with the union bound implies that

Pr[B( f (x)) ̸= x] ≤ λ · 2−O(λ) = negl(λ).

Remark. Note that we could have chosen the same random r1 , . . . , rk ←
{0, 1}λ for all the coordinates i ∈ [λ]. The reason is that we do not
need independence for the union bound.
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General case: There exists a non-negligible ϵ = ϵ(λ) such that for ev-
ery x ∈ GOOD, A predicts P(x, r) with probability 1/2 + ϵ

Note that in the above analysis the reason that we needed a suc-
cess probability of greater than 3

4 is because, in order to get a non-
negligible probability of guessing a single bit xi we needed to com-
bine two guesses for two bits x · ri,j and x · (ri,j ⊕ ei).

The Goldreich-Levin reduction starts with the following (ridicu-
lous!) idea. Suppose that for each pair r and r ⊕ ei , we simply guess
the bit x · r ourselves, and we only use the adversary A to guess the
bit x · (r ⊕ ei). If we could somehow manage to always guess the bit
x · r correctly then we could use the same argument as above since
under this (ridiculous) assumption both bits x · r and x · (r ⊕ ei) are
guessed correctly with probability at least 1

2 + ϵ.
The problem is that we cannot guess x · r by ourselves with prob-

ability better than random. This is exactly the task that we needed
A to do in the first place! But we can guess each of these bits at ran-
dom and have a success probability 1

2 . This seems useless since in the
above procedure, for each i ∈ [λ] we needed to choose a total of k
different values of x · r j , and if we guess each of them at random then
we will guess all of them correctly only with probability 2−k . But it
turns out that this random guessing is actually really useful, due to
the following clever idea: suppose that we happen to correctly guess
x · s1 and x · s2. Then we can also guess correctly

x · (s1 ⊕ s2) = (x · s1) ⊕ (x · s2)

More generally, suppose we guessed correctly

x · r1 , x · r2 , . . . , x · rℓ

then we can use these ℓ bits to guess correctly

x · (⊕i∈ I ri) = ⊕i∈ I (x · si)

for every I ⊆ [ℓ]. Since there are 2ℓ such subsets we learned 2ℓ

inner products x · r I , where r I = ⊕i∈ I ri . Therefore, in order to learn
k different inner products x · r I we need to guess only ℓ = log k
many bits of the form x · r j! And we can guess all ℓ inner products
correctly with probability 1

k .
You may be concerned that now all these r I ’s are not independent.

Indeed, they are not! For example, r{1,2} = r1 ⊕ r2. As a result
we cannot use the Chernoff bound in the analysis. However, they
are pairwise independent. Therefore, instead of Chernoff bound we
can rely on Chebyshev’s inequality which is a weaker concentration
bound.
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Theorem 4 (Chebyshev’s inequality). Let Z1 , . . . , Zm be pairwise
independent random variables obtaining values in {0, 1}, such that for
every j ∈ [m] Pr[Z j = 1] = p. Then, for every δ > 0,

Pr

[∣∣∣∣∣ ∑m
j=1 Z j

m
− p

∣∣∣∣∣ ≥ δ

]
≤ 1

4δ2m

So, the inverter B, given y = f (x), does the following:

1. Set k = λ/ϵ2.

2. For every i ∈ [λ], do the following:

(a) Set ℓ ≈ log k

(b) choose at random r1 , . . . , rℓ ← {0, 1}λ .

(c) For every j ∈ [ℓ], choose at random b j ← {0, 1}.1 1 bj is a guess for x · rj.

(d) For every J ⊆ [ℓ], let

rJ = ⊕j∈Jrj and bJ = ⊕j∈Jbj.

(e) Similarly, for every J ⊆ [ℓ], let

b′i,J = A(y, rJ ⊕ ei) and xi,J = bJ ⊕ b′i,J .

(f) Let x′i = majority{xi,J}J⊆[ℓ]

3. Output x′ = (x′1, . . . , x′λ)

Suppose that all our ℓ guesses where correct, which happens with
probability 2−ℓ = poly(k). In this case, as above for every i ∈ [λ] and
J ∈ [ℓ],

Pr
r1,...,rℓ←{0,1}λ

[x′i,J = xi] ≥

Pr
r1,...,rℓ←{0,1}λ

[A(y, (rJ + ei)) = x · (rJ ⊕ ei)] =

1− Pr
r1,...,rℓ←{0,1}λ

[A(y, rJ ⊕ ei) ̸= x · (rJ ⊕ ei)] ≥

1/2 + ϵ.

This seems great, except that now we cannot apply the Chernoff
bound since the random variables {rJ}J⊆[ℓ] are not independent!
However, as mentioned above they are pairwise independent, and
hence we can rely on Chebyshev’s inequality to argue that for every
x ∈ GOOD and every i ∈ [λ],

Pr[x′i ̸= xi] ≤
1

4ϵ2k
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In particular, setting k = λ · ϵ−2, we can take a union bound, and
guarantee that for every x ∈ GOOD,

Pr[B( f (x) = x] ≥ 1
4

,

contradicting the fact that f is a one-way function.

References

[1] Oded Goldreich and Leonid A. Levin. A hard-core predicate
for all one-way functions. In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing (STOC), pages 25–32, Seattle,
Washington, USA, 1989.


	Recap
	Goldreich-Levin Theorem

