Lecture 5: PRG Construction (Cont.)

Notes by Yael Kalai

MIT - 6.5620

Lecture 5 (September 17, 2025)

Warning: This document is a rough draft, so it may contain bugs. Please feel free to email me with corrections.

Recap

Last lecture we started to show how to construct a PRG from any OWP f.

1. We first showed that it suffices to construct a PRG with a single bit stretch, i.e. a PRG

$$G: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+1}.$$

This is the case since we showed that we can stretch any such PRG into one that has a polynomial stretch $k = \text{poly}(\lambda)$ by concatenating G k times

$$G^k: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+k}.$$

2. We then defined the notion of a hardcore predicate

Definition 1. $P: \{0,1\}^{\lambda} \to \{0,1\}$ is a hardcore predicate of f if for every poly-size \mathcal{A} there exists a negligible function μ such that for every $\lambda \in \mathbb{N}$,

$$\Pr_{x \leftarrow \{0,1\}^{\lambda}} [\mathcal{A}(f(x)) = P(x)] \le \frac{1}{2} + \mu(\lambda).$$

3. We showed that if the OWP f had a hardcore predict $P : \{0,1\}^{\lambda} \rightarrow \{0,1\}$ then the following function is a PRG:

$$G(x) = f(x) \circ P(x).$$

Thus, it remains to argue that every OWP has a hardcore predicate. Goldreich and Levin proved that every one-way function has a randomized hardcore predicate.

Goldreich-Levin Theorem

Theorem 2. [1] If f is a one-way function, then the following randomized predicate

$$P(x,r) := x \cdot r \mod 2 = \sum_{i \in \lambda} x_i r_i \mod 2$$

is a hardcore predicate for f. Namely, for every poly-size A there exists a *negligible function* $\mu : \mathbb{N} \to [0,1]$ *such that for every* $\lambda \in \mathbb{N}$

$$\Pr_{U_{\lambda} \leftarrow \{0,1\}^{\lambda}} [\mathcal{A}(f(U_{\lambda}), r) = P(U_{\lambda}, r))] \leq \frac{1}{2} + \mu(\lambda)$$

This theorem implies that

$$G(x,r) = f(x) \circ r \circ P(x,r)$$

is a PRG. In this lecture our focus is on proving Theorem 2.

Proof of Theorem 2 Suppose for contradiction that there exists a polysize adversary A and a non-negligible function $\epsilon: \mathbb{N} \to [0,1]$ such that for every $\lambda \in \mathbb{N}$,

$$\Pr_{U_{\lambda} \leftarrow \{0,1\}^{\lambda}} [\mathcal{A}(f(U_{\lambda}), r) = P(U_{\lambda}, r))] \ge \frac{1}{2} + \epsilon(\lambda)$$

We will show how to use A to construct an adversary B that breaks the one-wayness of f.

Since A is only assumed to predict with small advantage ϵ , we cannot expect \mathcal{B} to invert every given image y = f(x). Indeed, it may be that A always fails when given an input whose first λ -bits is y. So which y's can we hope to invert?

Define

GOOD =
$$\{x \in \{0,1\}^{\lambda} : \Pr[\mathcal{A}(f(x),r) = x \cdot r] \ge \frac{1}{2} + \frac{\epsilon(\lambda)}{2}$$

By Markov's inequality

$$\Pr_{\boldsymbol{x} \leftarrow U_{\boldsymbol{\lambda}}}[\boldsymbol{x} \in \mathsf{GOOD}] \geq \frac{\epsilon(\boldsymbol{\lambda})}{2}$$

To expand on this, denoting by

$$p = \Pr_{x \leftarrow U_{\lambda}}[x \in \mathsf{GOOD}],$$

it holds that

$$\begin{split} &\frac{1}{2} + \epsilon(\lambda) \leq \\ &\underset{x \leftarrow U_{\lambda}}{\Pr} \left[\mathcal{A}(f(x), r) = P(x, r) \right] = \\ &\underset{x \leftarrow \mathsf{GOOD}}{\Pr} \left[\mathcal{A}(f(x), r) = P(x, r) \right] \cdot \underset{x \leftarrow U_{\lambda}}{\Pr} \left[x \in \mathsf{GOOD} \right] + \underset{x \leftarrow \neg \mathsf{GOOD}}{\Pr} \left[\mathcal{A}(f(x), r) = P(x, r) \right] \cdot \underset{x \leftarrow U_{\lambda}}{\Pr} \left[x \notin \mathsf{GOOD} \right] = \\ &\underset{x \leftarrow \mathsf{GOOD}}{\Pr} \left[\mathcal{A}(f(x), r) = P(x, r) \right] \cdot p + \underset{x \leftarrow \neg \mathsf{GOOD}}{\Pr} \left[\mathcal{A}(f(x), r) = P(x, r) \right] \cdot (1 - p) \leq \\ &p + \frac{1}{2} + \frac{\epsilon(\lambda)}{2}, \end{split}$$

which implies that indeed $p \ge \frac{\epsilon(\lambda)}{2}$.

We will construct an algorithm \mathcal{B} that succeeds in inverting every f(x) for $x \in \mathsf{GOOD}$ with non-negligible probability.

Special case 1: A predicts P(x,r) perfectly for every $x \in GOOD$

As a warmup, suppose that A is a perfect predictor that for every $x \in \mathsf{GOOD}$ and every $r \in \{0,1\}^{\lambda}$

$$\mathcal{A}(f(x),r) = x \cdot r$$

With such a perfect predictor it is easy to invert the OWF f. Specifically, the inverter \mathcal{B} , given y = f(x) where $x \leftarrow U_{\lambda}$, does the follow-

- 1. For every $i \in [\lambda]$ compute $x'_i = \mathcal{A}(y, e_i)$.
- 2. Output $x = (x'_1, ..., x'_{\lambda})$.

By our assumption that A is a perfect predictor, it follows that

$$x_i' = x \cdot e_i = x_i$$

as desired.

Unfortunately, our predictor A may not be perfect. Next, we relax the perfect condition as follows.

Special case 2: There exists a non-negligible $\epsilon = \epsilon(\lambda)$ *such that for ev*ery $x \in GOOD$, A predicts P(x,r) with probability $3/4 + \epsilon$

We can use this predictor to construct an algorithm \mathcal{B} that for every $x \in \mathsf{GOOD}$, given f(x) finds an inverse with overwhelming probability (i.e., probability $1 - \mu$ for some negligible function μ). The inverter \mathcal{B} , given y = f(x) where $x \leftarrow U_{\lambda}$, does the following:

- 1. Set $k = \lambda/\epsilon^2$.
- 2. For every $i \in [\lambda]$, do the following:

- (a) Choose at random $r_{i,1}, \ldots, r_{i,k} \leftarrow \{0,1\}^{\lambda}$.
- (b) For every $j \in [k]$ compute $b_{i,j} = \mathcal{A}(y, r_{i,j})$ and $b'_{i,j} = \mathcal{A}(y, r_{i,j} \oplus e_i)$, and let $x_{i,j} = b_{i,j} \oplus b'_{i,j}$.
- (c) Let $x'_i = \text{majority}\{x_{i,1}, \dots, x_{i,k}\}$
- 3. Output $x' = (x'_1, ..., x'_{\lambda})$

Note that by our assumption for every $i \in [\lambda]$ and $j \in [k]$,

$$\begin{aligned} &\Pr_{r_{i,j} \leftarrow \{0,1\}^{\lambda}}[x'_{i,j} = x_i] \geq \\ &\Pr_{r_{i,j} \leftarrow \{0,1\}^{\lambda}}[\mathcal{A}(y,r_{i,j}) = x \cdot r_{i,j} \quad \wedge \quad \mathcal{A}(y,r_{i,j} \oplus e_i) = x \cdot (r_{i,j} \oplus e_i)] = \\ &1 - \Pr_{r_{i,j} \leftarrow \{0,1\}^{\lambda}}[\mathcal{A}(y,r_{i,j}) \neq x \cdot r_{i,j} \quad \vee \quad \mathcal{A}(y,r_{i,j} \oplus e_i) \neq x \cdot (r_{i,j} \oplus e_i)] \geq \\ &1 - \Pr_{r_{i,j} \leftarrow \{0,1\}^{\lambda}}[\mathcal{A}(y,r_{i,j}) \neq x \cdot r_{i,j}] - \Pr_{r_{i,j} \leftarrow \{0,1\}^{\lambda}}[\mathcal{A}(y,r_{i,j} \oplus e_i) \neq x \cdot (r_{i,j} \oplus e_i)] \geq \\ &1 - 1/2 + 2\epsilon = 1/2 + 2\epsilon \end{aligned}$$

Note that for every $i \in [\lambda]$ it holds that $x'_{i,1}, \dots, x'_{i,k}$ are independent Boolean random variables such that $\Pr[x'_{i,j} = x_i] \ge 1/2 + 2\epsilon$. Therefore, by the Chernoff bound

$$\Pr[\mathsf{majority}\{x_{i,1},\ldots,x_{i,\lambda}\} \neq x_i] \leq 2^{-O(\epsilon^2 \cdot k)}$$

Theorem 3 (Chernoff bound). Let X_1, X_2, \ldots, X_n be independent random variables taking values in $\{0,1\}$ (Bernoulli trials). Let

$$X = \sum_{i=1}^{n} X_i, \qquad \mu = \mathbb{E}[X].$$

For any $0 < \delta < 1$:

$$\Pr[X \ge (1+\delta)\mu] \le \exp\left(-\frac{\delta^2}{3}\mu\right)$$

and

$$\Pr[X \le (1 - \delta)\mu] \le \exp\left(-\frac{\delta^2}{2}\mu\right).$$

Thus, for every $i \in [\lambda]$

$$\Pr[\mathcal{B}(f(x)) = x' : x_i' \neq x_i] \le 2^{-O(\lambda)},$$

which together with the union bound implies that

$$\Pr[\mathcal{B}(f(x)) \neq x] \le \lambda \cdot 2^{-O(\lambda)} = \operatorname{negl}(\lambda).$$

Remark. Note that we could have chosen the same random $r_1, \ldots, r_k \leftarrow$ $\{0,1\}^{\lambda}$ for all the coordinates $i \in [\lambda]$. The reason is that we do not need independence for the union bound.

General case: There exists a non-negligible $\epsilon = \epsilon(\lambda)$ such that for every $x \in GOOD$, A predicts P(x,r) with probability $1/2 + \epsilon$

Note that in the above analysis the reason that we needed a success probability of greater than $\frac{3}{4}$ is because, in order to get a nonnegligible probability of guessing a single bit x_i we needed to combine *two* guesses for two bits $x \cdot r_{i,j}$ and $x \cdot (r_{i,j} \oplus e_i)$.

The Goldreich-Levin reduction starts with the following (ridiculous!) idea. Suppose that for each pair r and $r \oplus e_i$, we simply guess the bit $x \cdot r$ ourselves, and we only use the adversary A to guess the bit $x \cdot (r \oplus e_i)$. If we could somehow manage to always guess the bit $x \cdot r$ correctly then we could use the same argument as above since under this (ridiculous) assumption both bits $x \cdot r$ and $x \cdot (r \oplus e_i)$ are guessed correctly with probability at least $\frac{1}{2} + \epsilon$.

The problem is that we cannot guess $x \cdot r$ by ourselves with probability better than random. This is exactly the task that we needed \mathcal{A} to do in the first place! But we can guess each of these bits at random and have a success probability $\frac{1}{2}$. This seems useless since in the above procedure, for each $i \in [\lambda]$ we needed to choose a total of kdifferent values of $x \cdot r_i$, and if we guess each of them at random then we will guess all of them correctly only with probability 2^{-k} . But it turns out that this random guessing is actually really useful, due to the following clever idea: suppose that we happen to correctly guess $x \cdot s_1$ and $x \cdot s_2$. Then we can also guess correctly

$$x \cdot (s_1 \oplus s_2) = (x \cdot s_1) \oplus (x \cdot s_2)$$

More generally, suppose we guessed correctly

$$x \cdot r_1, x \cdot r_2, \ldots, x \cdot r_\ell$$

then we can use these ℓ bits to guess correctly

$$x \cdot (\bigoplus_{i \in I} r_i) = \bigoplus_{i \in I} (x \cdot s_i)$$

for every $I \subseteq [\ell]$. Since there are 2^{ℓ} such subsets we learned 2^{ℓ} inner products $x \cdot r_I$, where $r_I = \bigoplus_{i \in I} r_i$. Therefore, in order to learn k different inner products $x \cdot r_I$ we need to guess only $\ell = \log k$ many bits of the form $x \cdot r_i$! And we can guess all ℓ inner products correctly with probability $\frac{1}{k}$.

You may be concerned that now all these r_I 's are not independent. Indeed, they are not! For example, $r_{\{1,2\}} = r_1 \oplus r_2$. As a result we cannot use the Chernoff bound in the analysis. However, they are pairwise independent. Therefore, instead of Chernoff bound we can rely on Chebyshev's inequality which is a weaker concentration bound.

Theorem 4 (Chebyshev's inequality). Let Z_1, \ldots, Z_m be pairwise independent random variables obtaining values in $\{0,1\}$, such that for every $j \in [m] \Pr[Z_j = 1] = p$. Then, for every $\delta > 0$,

$$\Pr\left[\left|\frac{\sum_{j=1}^{m} Z_j}{m} - p\right| \ge \delta\right] \le \frac{1}{4\delta^2 m}$$

So, the inverter \mathcal{B} , given y = f(x), does the following:

- 1. Set $k = \lambda/\epsilon^2$.
- 2. For every $i \in [\lambda]$, do the following:
 - (a) Set $\ell \approx \log k$
 - (b) choose at random $r_1, \ldots, r_\ell \leftarrow \{0, 1\}^{\lambda}$.
 - (c) For every $j \in [\ell]$, choose at random $b_i \leftarrow \{0,1\}$.

¹ b_i is a guess for $x \cdot r_i$.

(d) For every $J \subseteq [\ell]$, let

$$r_I = \bigoplus_{i \in I} r_i$$
 and $b_I = \bigoplus_{i \in I} b_i$.

(e) Similarly, for every $J \subseteq [\ell]$, let

$$b'_{i,I} = \mathcal{A}(y, r_I \oplus e_i)$$
 and $x_{i,I} = b_I \oplus b'_{i,I}$.

- (f) Let $x'_i = \text{majority}\{x_{i,I}\}_{I \subset [\ell]}$
- 3. Output $x' = (x'_1, ..., x'_{\lambda})$

Suppose that all our ℓ guesses where correct, which happens with probability $2^{-\ell} = \text{poly}(k)$. In this case, as above for every $i \in [\lambda]$ and $J \in [\ell]$,

$$\Pr_{r_1,\dots,r_\ell \leftarrow \{0,1\}^{\lambda}}[x'_{i,J} = x_i] \ge \\ \Pr_{r_1,\dots,r_\ell \leftarrow \{0,1\}^{\lambda}}[\mathcal{A}(y,(r_J + e_i)) = x \cdot (r_J \oplus e_i)] = \\ 1 - \Pr_{r_1,\dots,r_\ell \leftarrow \{0,1\}^{\lambda}}[\mathcal{A}(y,r_J \oplus e_i) \ne x \cdot (r_J \oplus e_i)] \ge \\ 1/2 + \epsilon.$$

This seems great, except that now we cannot apply the Chernoff bound since the random variables $\{r_I\}_{I \subset [\ell]}$ are not independent! However, as mentioned above they are pairwise independent, and hence we can rely on Chebyshev's inequality to argue that for every $x \in \mathsf{GOOD}$ and every $i \in [\lambda]$,

$$\Pr[x_i' \neq x_i] \le \frac{1}{4\epsilon^2 k}$$

In particular, setting $k = \lambda \cdot \epsilon^{-2}$, we can take a union bound, and guarantee that for every $x \in \mathsf{GOOD}$,

$$\Pr[\mathcal{B}(f(x) = x] \ge \frac{1}{4},$$

contradicting the fact that f is a one-way function.

References

[1] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages 25-32, Seattle, Washington, USA, 1989.