Lecture 4: PRG Construction
Notes by Yael Kalai

MIT - 6.5620
Lecture 4 (September 15, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Recap

Last lecture we covered the following:
1. We defined the notion of a pseudorandom generator.

Definition 1. An efficient (poly-time computable) deterministic
function G : {0,1}* — {0,1}"() is said to be a pseudorandom
generator if the following two conditions hold:

e Itis expanding;ie., n(A) > A.

e It is pseudorandom, i.e.

{G(UN) tren = {Uz) bren,

where Uy is the uniform distribution over {0, 1}¢.

2. We proved that pseudorandomenss is equivalent to the following
“next-bit unpredictability” property.

Definition 2. An expanding function G : {0,1}* — {0,1}")
is next-bit unpredictable if for every poly-size adversary A there
exists a negligible function u such that for every A € IN and every
i€ [n(A)]
Pr [A(G(U))ji—1)) = G(Ur)i] = 1/2+ pu(A)

U«{0,1}*
where G(U,)(i_q] denotes the first i — 1 bits of G(U) and G(U,);
denotes the i'th bit of G(U,).

3. We proved that if there exists a PRG G : {0,1}* — {0,1}"Y) then
there exists a computationally secure encryption scheme with key
space K, = {0,1}* and message space M, = {0,1}"(), defined
by

Enc(k,m) = G(k) ®m
and
Dec(k,c) = G(k) D c.

Today:
In this lecture (and next), our goal is to construct a PRG
G:{0,1}" - {0,1}"W

for an arbitrary polynomial expanding function # : N — IN.
We will focus on constructing a PRG G that expands by a single
bit; i.e,
G:{0,1}" = {0,1}!

This is enough since we can generically increase the stretch of a PRG.

Stretching a PRG

One can increase the stretch of a PRG by applying a PRG to the out-
put of the PRG. Namely, given a PRG

G:{0,1}" = {0, 1}
one can construct a PRG
GF:{0,1}* = {0,1}*F
where
GHU,) = G(G(...G(Uy)...)).

Theorem 3. [2] If G is a PRG then for every polynomial k = k(A), G* is a
PRG.

Proof. Fix a polynomial k = k(A) > 1. We need to prove that G¥ is a
PRG. The fact that G* is stretching and efficiently computable follows
from the fact that G satisfies these properties, together with the fact
that k(A) < poly(A).

It is tempting to prove that it is pseudorandom by induction on k,
as follows:

Base case: k = 1. By assumption

Induction step: Suppose G¥~1 : {0,1}* — {0,1}***~1 is pseudoran-
dom, and we will prove that G* : {0,1}* — {0,1}*** is pseudoran-
dom. Fix a poly-size adversary .A. Then for every A € N

| Pr[A(GH(Uy)) = 1] = PrlA(Upsp) = 1]| =
| PrLA[G(G* ' (Uy)) PrlA(Upi) = 1] =
[PrIA[G(G ()

| PrLA[G(G* ' (Uy))

Pe—-1(A) + p1(A).

LECTURE 4: PRG CONSTRUCTION

1] -
1] = PrlA[G(Upjk—1) = 1] + Pr[A[G(Upjk—1) = 1] = PrlA(Upr) = 1]| <
1] = PrlA[G(Upryx-1) = 1] + [Pr[A[G(Uprsk-1) = 1] = PrlA(Up1x) = 1]|

A

LECTURE 4: PRG CONSTRUCTION

Note that py_q is a negligible function by the induction hypothesis,
and pq is a negligible function by assumption that G is a PRG, and
the sum of negligible functions is negligible.

Why is this argument flawed? Induction only works for a con-
stant k! The "correct" way to prove this is via a hybrid argument, as
follows:

| Pr[A(GH(Up)) = 1] = Pr[A(Upyx) = 1]| =
k=1

| Y Pr[A(GH T (Upyi)) = 1] = PrlA(GF DUy 4 y) = 1] <
i=0
k-1 ,
| Pr[A(GH(Upi)) = 1] = PrlA(GF DUy 4 q) = 1] <
i=0
k-1
- #i(A) = negl(A)

where the fact that each y; is negligible follows from the induction
hypothesis.
O

The above theorem implies that it suffices to construct a PRG that
has a single bit stretch. The following remarkable theorem is known.

Theorem 4. [2] Pseudorandom generators exist assuming the existence of
one-way functions.

This theorem has a beautiful but very complicated proof. We will
prove a simplified version that assumes the existence of one-way
permutations, defined below.

Definition 5. A function f : {0,1}* — {0,1}* is a permutation if
it is length preserving and bijective; namely, for every A € IN and
for every x € {0,1}" it holds that f(x) € {0,1}*, and for every
y € {0,1}* there is a unique x € {0, 1}" such that f(x) = y.

Definition 6. A one-way permutation (OWP) f : {0,1}* — {0,1}*
is a one-way function that is also a permutation.

We prove the following theorem.

Theorem 7. Pseudorandom generators exist assuming the existence of a
OWP.

By Theorem 3, to prove Theorem 7 it suffices to construct a PRG
that stretches by a single bit assuming the existence of a OWP.

PRG Construction with a Single Bit Stretch

Let f : {0,1}* — {0,1}" be a one-way permutation. Suppose that f
has a hardcore predicate P : {0,1}* — {0,1}.

LECTURE 4: PRG CONSTRUCTION

Definition 8. P : {0,1}* — {0,1} is a hardcore predicate of f :
{0,1}* — {0,1}* if it is efficiently computable and for every poly-
size A there exists a negligible function y : N — [0, 1] such that for
every A € N,

PrIA(f(Un)) = P(Uy)] < 7 + p(A).
Given a one-way permutation f with a hardcore predicate P, let
G(Uy) = f(Up) o P(Uy)
Theorem 9. G is a pseudorandom generator.

Proof. G is expanding by definition, and the fact that it is efficiently
computable follows from the fact that both f and P are efficiently
computable. Thus, it remains to prove that G is pseudorandom, or
equivalently that G satisfies the next-bit unpredictability property.

To this end fix any poly-size adversary .A. We need to prove that
there exists a negligible function u such that for every A € IN and
every i € [A +1]

The fact that f is a one-way permutation implies that for every i <
[A]

PrA(G(U) ;1)) = G(U);] = 5.
For i = A + 1, the fact that P is a hardcore predicate of f implies that

there exists a negligible function u such that

PrlA(G(U)) = G(U)r41] = Pr[A(f(Uy)) = P(Uy)] < %ﬂt(?\)r
as desired. O

In theorem 7 we assumed there exists a one-way permutation but
we did not assume that it has a hardcore predicate. Thankfully, Gol-
dreich and Levin proved that every one-way function has a hardcore
predicate!

Theorem xo0. [1] If f is a one-way function, then the following randomized
predicate
P(x,r):=x-r mod2=) x;r; mod?2
€A
is a hardcore predicate for f. Namely, for every poly-size A there exists a
negligible function y : N — [0, 1] such that for every A € IN
1

Pr [A(f(Up),r) = P(Up,71))] <

- A
U, {0,131+ 2 +rd)

4

LECTURE 4: PRG CONSTRUCTION 5

References

[1] Oded Goldreich and Leonid A. Levin. A hard-core predicate
for all one-way functions. In Proceedings of the 215t Annual ACM
Symposium on Theory of Computing (STOC), pages 25-32, Seattle,
Washington, USA, 1989.

[2] Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael
Luby. A pseudorandom generator from any one-way function.
SIAM Journal on Computing, 28(4):1364-1396, 1999.

	Recap
	Today:
	Stretching a PRG
	PRG Construction with a Single Bit Stretch

