Lecture 4: PRG Construction

Notes by Yael Kalai

MIT - 6.5620

Lecture 4 (September 15, 2025)

Warning: This document is a rough draft, so it may contain bugs. Please feel free to email me with corrections.

Recap

Last lecture we covered the following:

1. We defined the notion of a pseudorandom generator.

Definition 1. An efficient (poly-time computable) deterministic function $G: \{0,1\}^{\lambda} \to \{0,1\}^{n(\lambda)}$ is said to be a pseudorandom generator if the following two conditions hold:

- It is expanding; i.e., $n(\lambda) > \lambda$.
- It is pseudorandom, i.e.

$$\{G(U_{\lambda})\}_{\lambda\in\mathbb{N}}\approx\{U_{n(\lambda)}\}_{\lambda\in\mathbb{N}},$$

where U_{ℓ} is the uniform distribution over $\{0,1\}^{\ell}$.

2. We proved that pseudorandomenss is equivalent to the following "next-bit unpredictability" property.

Definition 2. An expanding function $G: \{0,1\}^{\lambda} \to \{0,1\}^{n(\lambda)}$ is next-bit unpredictable if for every poly-size adversary \mathcal{A} there exists a negligible function μ such that for every $\lambda \in \mathbb{N}$ and every $i \in [n(\lambda)]$

$$\Pr_{U \leftarrow \{0,1\}^{\lambda}} [\mathcal{A}(G(U_{\lambda})_{[i-1]}) = G(U_{\lambda})_i] = 1/2 + \mu(\lambda)$$

where $G(U_{\lambda})_{[i-1]}$ denotes the first i-1 bits of $G(U_{\lambda})$ and $G(U_{\lambda})_i$ denotes the i'th bit of $G(U_{\lambda})$.

3. We proved that if there exists a PRG $G:\{0,1\}^{\lambda} \to \{0,1\}^{n(\lambda)}$ then there exists a computationally secure encryption scheme with key space $\mathcal{K}_{\lambda} = \{0,1\}^{\lambda}$ and message space $\mathcal{M}_{\lambda} = \{0,1\}^{n(\lambda)}$, defined by

$$\operatorname{Enc}(k,m) = G(k) \oplus m$$

and

$$Dec(k,c) = G(k) \oplus c$$
.

Today:

In this lecture (and next), our goal is to construct a PRG

$$G: \{0,1\}^{\lambda} \to \{0,1\}^{n(\lambda)}$$

for an arbitrary polynomial expanding function $n : \mathbb{N} \to \mathbb{N}$.

We will focus on constructing a PRG *G* that expands by a single bit; i.e,

$$G: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+1}$$

This is enough since we can generically increase the stretch of a PRG.

Stretching a PRG

One can increase the stretch of a PRG by applying a PRG to the output of the PRG. Namely, given a PRG

$$G: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+1}$$

one can construct a PRG

$$G^k: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+k}$$

where

$$G^k(U_\lambda) = G(G(\ldots G(U_\lambda)\ldots)).$$

Theorem 3. [2] If G is a PRG then for every polynomial $k = k(\lambda)$, G^k is a PRG.

Proof. Fix a polynomial $k = k(\lambda) \ge 1$. We need to prove that G^k is a PRG. The fact that G^k is stretching and efficiently computable follows from the fact that G satisfies these properties, together with the fact that $k(\lambda) \le \text{poly}(\lambda)$.

It is tempting to prove that it is pseudorandom by induction on k, as follows:

Base case: k = 1. By assumption

Induction step: Suppose $G^{k-1}: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+k-1}$ is pseudorandom, and we will prove that $G^k: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+k}$ is pseudorandom. Fix a poly-size adversary \mathcal{A} . Then for every $\lambda \in \mathbb{N}$

$$\begin{split} &|\Pr[\mathcal{A}(G^{k}(U_{\lambda}))=1] - \Pr[\mathcal{A}(U_{\lambda+k})=1]| = \\ &|\Pr[\mathcal{A}[G(G^{k-1}(U_{\lambda}))=1] - \Pr[\mathcal{A}(U_{\lambda+k})=1]| = \\ &|\Pr[\mathcal{A}[G(G^{k-1}(U_{\lambda}))=1] - \Pr[\mathcal{A}[G(U_{\lambda+k-1})=1] + \Pr[\mathcal{A}[G(U_{\lambda+k-1})=1] - \Pr[\mathcal{A}(U_{\lambda+k})=1]| \le \\ &|\Pr[\mathcal{A}[G(G^{k-1}(U_{\lambda}))=1] - \Pr[\mathcal{A}[G(U_{\lambda+k-1})=1]| + |\Pr[\mathcal{A}[G(U_{\lambda+k-1})=1] - \Pr[\mathcal{A}(U_{\lambda+k})=1]| \stackrel{\Delta}{=} \\ &|\mu_{k-1}(\lambda) + \mu_{1}(\lambda). \end{split}$$

Note that μ_{k-1} is a negligible function by the induction hypothesis, and μ_1 is a negligible function by assumption that G is a PRG, and the sum of negligible functions is negligible.

Why is this argument flawed? Induction only works for a constant k! The "correct" way to prove this is via a hybrid argument, as follows:

$$\begin{split} &|\Pr[\mathcal{A}(G^{k}(U_{\lambda}))=1] - \Pr[\mathcal{A}(U_{\lambda+k})=1]| = \\ &|\sum_{i=0}^{k-1} \Pr[\mathcal{A}(G^{k-i}(U_{\lambda+i}))=1] - \Pr[\mathcal{A}(G^{k-(i-1)}U_{\lambda+i-1})=1]| \leq \\ &|\sum_{i=0}^{k-1} |\Pr[\mathcal{A}(G^{k-i}(U_{\lambda+i}))=1] - \Pr[\mathcal{A}(G^{k-(i-1)}U_{\lambda+i-1})=1]| \leq \\ &|\sum_{i=0}^{k-1} \mu_{i}(\lambda) = \operatorname{negl}(\lambda). \end{split}$$

where the fact that each μ_i is negligible follows from the induction hypothesis.

The above theorem implies that it suffices to construct a PRG that has a single bit stretch. The following remarkable theorem is known.

Theorem 4. [2] Pseudorandom generators exist assuming the existence of one-way functions.

This theorem has a beautiful but very complicated proof. We will prove a simplified version that assumes the existence of one-way permutations, defined below.

Definition 5. A function $f: \{0,1\}^* \to \{0,1\}^*$ is a permutation if it is length preserving and bijective; namely, for every $\lambda \in \mathbb{N}$ and for every $x \in \{0,1\}^{\lambda}$ it holds that $f(x) \in \{0,1\}^{\lambda}$, and for every $y \in \{0,1\}^{\lambda}$ there is a unique $x \in \{0,1\}^{\lambda}$ such that f(x) = y.

Definition 6. A one-way permutation (OWP) $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is a one-way function that is also a permutation.

We prove the following theorem.

Theorem 7. Pseudorandom generators exist assuming the existence of a OWP.

By Theorem 3, to prove Theorem 7 it suffices to construct a PRG that stretches by a single bit assuming the existence of a OWP.

PRG Construction with a Single Bit Stretch

Let $f: \{0,1\}^* \to \{0,1\}^*$ be a one-way permutation. Suppose that f has a hardcore predicate $P: \{0,1\}^* \to \{0,1\}$.

Definition 8. $P: \{0,1\}^* \to \{0,1\}$ is a *hardcore predicate* of $f: \{0,1\}^* \to \{0,1\}^*$ if it is efficiently computable and for every polysize \mathcal{A} there exists a negligible function $\mu: \mathbb{N} \to [0,1]$ such that for every $\lambda \in \mathbb{N}$,

$$\Pr[\mathcal{A}(f(U_{\lambda})) = P(U_{\lambda})] \leq \frac{1}{2} + \mu(\lambda).$$

Given a one-way permutation f with a hardcore predicate P, let

$$G(U_{\lambda}) = f(U_{\lambda}) \circ P(U_{\lambda})$$

Theorem 9. *G* is a pseudorandom generator.

Proof. G is expanding by definition, and the fact that it is efficiently computable follows from the fact that both f and P are efficiently computable. Thus, it remains to prove that G is pseudorandom, or equivalently that G satisfies the next-bit unpredictability property.

To this end fix any poly-size adversary \mathcal{A} . We need to prove that there exists a negligible function μ such that for every $\lambda \in \mathbb{N}$ and every $i \in [\lambda + 1]$

$$\Pr[\mathcal{A}(G(U)_{[i-1]}) = G(U)_i] \le \frac{1}{2} + \mu(\lambda)$$

The fact that f is a one-way permutation implies that for every $i \le \lfloor \lambda \rfloor$

$$\Pr[\mathcal{A}(G(U)_{[i-1]}) = G(U)_i] = \frac{1}{2}.$$

For $i = \lambda + 1$, the fact that P is a hardcore predicate of f implies that there exists a negligible function μ such that

$$\Pr[\mathcal{A}(G(U)_{[\lambda]}) = G(U)_{\lambda+1}] = \Pr[\mathcal{A}(f(U_{\lambda})) = P(U_{\lambda})] \le \frac{1}{2} + \mu(\lambda),$$
as desired.

In theorem 7 we assumed there exists a one-way permutation but we did not assume that it has a hardcore predicate. Thankfully, Goldreich and Levin proved that every one-way function has a hardcore predicate!

Theorem 10. [1] If f is a one-way function, then the following randomized predicate

$$P(x,r) := x \cdot r \mod 2 = \sum_{i \in \lambda} x_i r_i \mod 2$$

is a hardcore predicate for f. Namely, for every poly-size A there exists a negligible function $\mu: \mathbb{N} \to [0,1]$ such that for every $\lambda \in \mathbb{N}$

$$\Pr_{U_{\lambda} \leftarrow \{0,1\}^{\lambda}} [\mathcal{A}(f(U_{\lambda}), r) = P(U_{\lambda}, r))] \le \frac{1}{2} + \mu(\lambda)$$

References

- [1] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages 25-32, Seattle, Washington, USA, 1989.
- [2] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator from any one-way function. SIAM Journal on Computing, 28(4):1364-1396, 1999.