
Lecture 3: Pseudorandom Generators
Notes by Yael Kalai

MIT - 6.5620
Lecture 3 (September 10, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Recap

• Computationally secure encryption.

• negligible functions.

• One-way functions.

Definition 1. An encryption scheme (Enc,Dec), associated with key
space K = {Kλ}, message spaceM = {Mλ} and ciphertext space
C = {Cλ}, is computationally secure if for every polynomial size
adversary A there exists a negligible function µ such that for every
λ ∈N and every m0, m1 ∈ Mλ

Pr
k←Kλ ,b←{0,1}

[A[Enc(k, mb) = b] = 1/2 + µ(λ).

An equivalent formulation is using the following notion of compu-
tational indistinguishability.

Definition 2. Two distribution ensembles {D0,λ}λ∈N and {D1,λ}λ∈N

are said to be computationally indistinguishable, denoted by

{D0,λ}λ∈N ≈ {D1,λ}λ∈N,

if for every poly-size adversary A there exists a negligible function
µ : N→N such that for every λ ∈N

Pr
xb←Db,λ

[A(xb) = b] ≤ 1/2 + µ(λ).

Equivalently, for every poly-size adversary A there exists a negligible
function µ : N→N such that for every λ ∈N

| Pr
x0←D0,λ

[A(x0) = 1]− Pr
x1←D1,λ

[A(x1) = 1]| ≤ µ(λ)

Using this terminology, an equivalent way of stating Definition 1

is that for every sequence of messages {m0,λ} and {m1,λ}, where
m0,λ, m1,λ ∈ Mλ, it holds that

{Enc(k, m0,λ)} ≈ {Enc(k, m1,λ)}

lecture 3: pseudorandom generators 2

We next define the cryptographic tool that will allow us to con-
struct a computationally secure encryption scheme with keys k ∈
{0, 1}λ of size λ and messages m ∈ {0, 1}n of large size n = poly(λ).

Pseudorandom Generators

A pseudorandom generator (PRG) is a deterministic function G :
{0, 1}∗ → {0, 1}∗ that takes as input a (short) random seed s ←
{0, 1}λ and stretches it into a longer string G(s) ∈ {0, 1}n that “looks
random.”

Definition 3. An efficient (poly-time computable) deterministic
function G : {0, 1}∗ → {0, 1}∗ is said to be a pseudorandom generator
if the following two conditions hold:

• It is expanding in the sense that there exists an expansion
function n : N → N such that for every λ ∈ N it holds
that n(λ) > λ and G takes inputs in {0, 1}λ to outputs in
{0, 1}n(λ).

We often abuse notation and denote G : {0, 1}∗ → {0, 1}∗,
although G takes as input strings of arbitrary length.

• It is pseudorandom, i.e.

{G(Uλ)}λ∈N ≈ {Un(λ)}λ∈N,

where Uℓ is the uniform distribution over {0, 1}ℓ.

An equivalent definition of the pseudorandom property is follow-
ing next-bit unpredictability definition, which states that no poly-size
adversary can predict the i + 1’st bit of the output of a pseudoran-
dom generator with probability better than 1/2 + negl(λ), where
negl denotes a negligible function.

Definition 4 (Next-bit unpredictability). An expanding function G :
{0, 1}∗ → {0, 1}∗, with expansion n = n(λ), is next-bit unpredictable
if for every poly-size adversary A there exists a negligible function µ

such that for every λ ∈N and every i = i(λ) ∈ [n(λ)]

Pr
r←{0,1}λ

[A(G(r)[i]) = G(r)i+1] = 1/2 + µ(λ)

where G(r)[i] denotes the first i bits of G(r) and G(r)i+1 denotes the
i + 1’st bit of G(r).

Remark. An equivalent formulation of the above next-bit unpre-
dictability property is that for every poly-size adversary A there
exists a negligible function µ such that for every λ ∈ N and every
i = i(λ) ∈ [n(λ)]

| Pr
r←{0,1}λ

[A(G(r)[i+1]) = 1]− Pr
r←{0,1}λ ,u1←{0,1}

[A(G(r)[i], u1) = 1]| ≤ µ(λ).

lecture 3: pseudorandom generators 3

Theorem 5. An expanding function G : {0, 1}∗ → {0, 1}∗, with expansion
n = n(λ), is pseudorandom if and only if it is next-bit unpredictable.

Proof. The fact that pseudorandomness implies next-bit unpre-
dictability is trivial. Namely, breaking next-bit unpredictability im-
plies a break to the pseudorandomness: Simply try to predict the
next bit, if predicted correctly, then guess pseudorandom, and other-
wise guess random.

We will focus on the other direction, which follows from a hybrid
argument. Hybrid arguments are used a lot in cryptography! Let
G : {0, 1}λ → {0, 1}n(λ) be an expanding function that is next-bit un-
predictable. Suppose for contradiction that it is not pseudorandom.
Namely, there exists a poly-size adversary A and a non-negligible
function ϵ = ϵ(λ) such that for every λ ∈N

|Pr[A(G(Uλ)) = 1]− Pr[A(Un) = 1]| > ϵ(λ)

In what follows, denote by Hi the distribution where the first i bits
are distributed according to G(Uλ) and the rest are distributed uni-
formly at random. The equation above implies that for every λ ∈N

|Pr[A(Hn) = 1]− Pr[A(H0) = 1]| > ϵ(λ)

Note that for every λ ∈N

|Pr[A(Hn) = 1]− Pr[A(H0) = 1]| =∣∣∣∣∣∣ ∑
i∈[n]

(Pr[A(Hi) = 1]− Pr[A(Hi−1) = 1])

∣∣∣∣∣∣ ≤
∑

i∈[n]
|(Pr[A(Hi) = 1]− Pr[A(Hi−1) = 1])|

where the first equation follows from the fact that the sum is tele-
scopic, and the second equation follows from the triangle inequality.
This implies that for every λ ∈N there exists i = i(λ) ∈ [n] such that

|Pr[A(Hi) = 1]− Pr[A(Hi−1) = 1]| > ϵ(λ)/n

which breaks the next-bit unpredictability, since ϵ(λ)/n is also non-
negligible, since n = n(λ) ≤ poly(λ).

What is a PRG good for? It is the bread-and-butter of cryptogra-
phy! It is precisely what enables the encryption of long messages
using a short key!

Overcoming Shannon’s Conundrum using a PRG

Consider the following encryption scheme with Kλ = {0, 1}λ and
Mλ = Cλ = {0, 1}n(λ) where n(λ) > λ. The encryption scheme uses

lecture 3: pseudorandom generators 4

a PRG G : {0, 1}λ → {0, 1}n as a building block., and is defined by

Enc(k, m) = G(k)⊕m

and
Dec(k, c) = G(k)⊕ c.

Theorem 6. (Enc,Dec) is a (computationally) secure encryption scheme.

Proof. We prove that the two desired properties, correctness and
security are satisfied.

Correctness: For every m ∈ {0, 1}n and every k ∈ {0, 1}λ

Dec(k,Enc(k, m)) = G(k)⊕ (G(k)⊕m) = m.

Computational security: This is our first reduction! Suppose for
contradiction that there exists a poly-size adversary A and a non-
negligible ϵ = ϵ(λ) such that for every λ ∈ N there exist m0, m1 ∈
{0, 1}n such that

Pr[A(Enc(k, mb) = b] ≥ 1/2 + ϵ

Namely,
Pr[A(G(k)⊕mb) = b] ≥ 1/2 + ϵ

If we replace G(k) with a random string then A would succeed in
guessing only with probability 1/2 (by the security of the one-time
pad). We use this to break the security of the PRG, by constructing a
poly-size adversary B that on input r ∈ {0, 1}n distinguishes between
the case that r is random or pseudorandom as follows:

1. Choose at random b← {0, 1}.

2. Compute b′ = A(r⊕mb).

3. If b′ = b output 1 indicating that r is pseudorandom, and if b′ ̸= b
then output 0, indicating that r is random.

Notice that

Pr[B(G(Uλ)) = 1] = Pr[A(G(k)⊕mb) = b] ≥ 1/2 + ϵ,

while
Pr[B(Un) = 1] = Pr[r⊕mb = b] = 1/2.

Thus,
|Pr[B(G(Uλ)) = 1]− Pr[B(Un) = 1]| ≥ ϵ,

contradicting the pseudorandomness property of G.

lecture 3: pseudorandom generators 5

Do PRGs exist?

Theorem 7. PRGs exist assuming the existence of one-way functions.

We will prove an easier theorem

Theorem 8. PRGs exist assuming the existence of one-way permutations.

Next week we will construct a PRG assuming the existence of one-
way permutations.

References

	Recap
	Pseudorandom Generators
	Overcoming Shannon's Conundrum using a PRG
	Do PRGs exist?

