Lecture 3: Pseudorandom Generators

Notes by Yael Kalai

MIT - 6.5620

Lecture 3 (September 10, 2025)

Warning: This document is a rough draft, so it may contain bugs. Please feel free to email me with corrections.

Recap

- Computationally secure encryption.
- negligible functions.
- One-way functions.

Definition 1. An encryption scheme (Enc, Dec), associated with key space $\mathcal{K} = \{\mathcal{K}_{\lambda}\}$, message space $\mathcal{M} = \{\mathcal{M}_{\lambda}\}$ and ciphertext space $\mathcal{C} = \{\mathcal{C}_{\lambda}\}$, is computationally secure if for every polynomial size adversary \mathcal{A} there exists a negligible function μ such that for every $\lambda \in \mathbb{N}$ and every $m_0, m_1 \in \mathcal{M}_{\lambda}$

$$\Pr_{k \leftarrow \mathcal{K}_{\lambda}, b \leftarrow \{0,1\}}[\mathcal{A}[\mathsf{Enc}(k, m_b) = b] = 1/2 + \mu(\lambda).$$

An equivalent formulation is using the following notion of computational indistinguishability.

Definition 2. Two distribution ensembles $\{\mathcal{D}_{0,\lambda}\}_{\lambda\in\mathbb{N}}$ and $\{\mathcal{D}_{1,\lambda}\}_{\lambda\in\mathbb{N}}$ are said to be computationally indistinguishable, denoted by

$$\{\mathcal{D}_{0,\lambda}\}_{\lambda\in\mathbb{N}}\approx\{\mathcal{D}_{1,\lambda}\}_{\lambda\in\mathbb{N}},$$

if for every poly-size adversary $\mathcal A$ there exists a negligible function $\mu:\mathbb N\to\mathbb N$ such that for every $\lambda\in\mathbb N$

$$\Pr_{x_b \leftarrow \mathcal{D}_{b,\lambda}} [\mathcal{A}(x_b) = b] \le 1/2 + \mu(\lambda).$$

Equivalently, for every poly-size adversary \mathcal{A} there exists a negligible function $\mu: \mathbb{N} \to \mathbb{N}$ such that for every $\lambda \in \mathbb{N}$

$$|\Pr_{x_0 \leftarrow \mathcal{D}_{0,\lambda}}[\mathcal{A}(x_0) = 1] - \Pr_{x_1 \leftarrow \mathcal{D}_{1,\lambda}}[\mathcal{A}(x_1) = 1]| \le \mu(\lambda)$$

Using this terminology, an equivalent way of stating Definition 1 is that for every sequence of messages $\{m_{0,\lambda}\}$ and $\{m_{1,\lambda}\}$, where $m_{0,\lambda}, m_{1,\lambda} \in \mathcal{M}_{\lambda}$, it holds that

$$\{\operatorname{Enc}(k, m_{0,\lambda})\} \approx \{\operatorname{Enc}(k, m_{1,\lambda})\}$$

We next define the cryptographic tool that will allow us to construct a computationally secure encryption scheme with keys $k \in$ $\{0,1\}^{\lambda}$ of size λ and messages $m \in \{0,1\}^n$ of large size $n = \text{poly}(\lambda)$.

Pseudorandom Generators

A pseudorandom generator (PRG) is a deterministic function G: $\{0,1\}^* \rightarrow \{0,1\}^*$ that takes as input a (short) random seed $s \leftarrow$ $\{0,1\}^{\lambda}$ and stretches it into a longer string $G(s) \in \{0,1\}^n$ that "looks random."

Definition 3. An efficient (poly-time computable) deterministic function $G: \{0,1\}^* \to \{0,1\}^*$ is said to be a pseudorandom generator if the following two conditions hold:

• It is expanding in the sense that there exists an expansion function $n : \mathbb{N} \to \mathbb{N}$ such that for every $\lambda \in \mathbb{N}$ it holds that $n(\lambda) > \lambda$ and G takes inputs in $\{0,1\}^{\lambda}$ to outputs in $\{0,1\}^{n(\lambda)}$.

We often abuse notation and denote $G: \{0,1\}^* \to \{0,1\}^*$, although *G* takes as input strings of arbitrary length.

• It is pseudorandom, i.e.

$$\{G(U_{\lambda})\}_{\lambda\in\mathbb{N}}\approx\{U_{n(\lambda)}\}_{\lambda\in\mathbb{N}},$$

where U_{ℓ} is the uniform distribution over $\{0,1\}^{\ell}$.

An equivalent definition of the pseudorandom property is following next-bit unpredictability definition, which states that no poly-size adversary can predict the i + 1'st bit of the output of a pseudorandom generator with probability better than $1/2 + \text{negl}(\lambda)$, where negl denotes a negligible function.

Definition 4 (Next-bit unpredictability). An expanding function *G* : $\{0,1\}^* \to \{0,1\}^*$, with expansion $n = n(\lambda)$, is next-bit unpredictable if for every poly-size adversary A there exists a negligible function μ such that for every $\lambda \in \mathbb{N}$ and every $i = i(\lambda) \in [n(\lambda)]$

$$\Pr_{r \leftarrow \{0,1\}^{\lambda}} [\mathcal{A}(G(r)_{[i]}) = G(r)_{i+1}] = 1/2 + \mu(\lambda)$$

where $G(r)_{[i]}$ denotes the first *i* bits of G(r) and $G(r)_{i+1}$ denotes the i + 1'st bit of G(r).

Remark. An equivalent formulation of the above next-bit unpredictability property is that for every poly-size adversary A there exists a negligible function μ such that for every $\lambda \in \mathbb{N}$ and every $i = i(\lambda) \in [n(\lambda)]$

$$|\Pr_{r \leftarrow \{0,1\}^{\lambda}}[\mathcal{A}(G(r)_{[i+1]}) = 1] - \Pr_{r \leftarrow \{0,1\}^{\lambda}, u_{1} \leftarrow \{0,1\}}[\mathcal{A}(G(r)_{[i]}, u_{1}) = 1]| \leq \mu(\lambda).$$

Theorem 5. An expanding function $G: \{0,1\}^* \to \{0,1\}^*$, with expansion $n = n(\lambda)$, is pseudorandom if and only if it is next-bit unpredictable.

Proof. The fact that pseudorandomness implies next-bit unpredictability is trivial. Namely, breaking next-bit unpredictability implies a break to the pseudorandomness: Simply try to predict the next bit, if predicted correctly, then guess pseudorandom, and otherwise guess random.

We will focus on the other direction, which follows from a hybrid argument. Hybrid arguments are used a lot in cryptography! Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{n(\lambda)}$ be an expanding function that is next-bit unpredictable. Suppose for contradiction that it is not pseudorandom. Namely, there exists a poly-size adversary A and a non-negligible function $\epsilon = \epsilon(\lambda)$ such that for every $\lambda \in \mathbb{N}$

$$|\Pr[\mathcal{A}(G(U_{\lambda})) = 1] - \Pr[\mathcal{A}(U_n) = 1]| > \epsilon(\lambda)$$

In what follows, denote by H_i the distribution where the first i bits are distributed according to $G(U_{\lambda})$ and the rest are distributed uniformly at random. The equation above implies that for every $\lambda \in \mathbb{N}$

$$|\Pr[\mathcal{A}(H_n) = 1] - \Pr[\mathcal{A}(H_0) = 1]| > \epsilon(\lambda)$$

Note that for every $\lambda \in \mathbb{N}$

$$\begin{aligned} &|\Pr[\mathcal{A}(H_n) = 1] - \Pr[\mathcal{A}(H_0) = 1]| = \\ &\left| \sum_{i \in [n]} \left(\Pr[\mathcal{A}(H_i) = 1] - \Pr[\mathcal{A}(H_{i-1}) = 1] \right) \right| \leq \\ &\sum_{i \in [n]} |\left(\Pr[\mathcal{A}(H_i) = 1] - \Pr[\mathcal{A}(H_{i-1}) = 1] \right)| \end{aligned}$$

where the first equation follows from the fact that the sum is telescopic, and the second equation follows from the triangle inequality. This implies that for every $\lambda \in \mathbb{N}$ there exists $i = i(\lambda) \in [n]$ such that

$$|\Pr[\mathcal{A}(H_i) = 1] - \Pr[\mathcal{A}(H_{i-1}) = 1]| > \epsilon(\lambda)/n$$

which breaks the next-bit unpredictability, since $\epsilon(\lambda)/n$ is also nonnegligible, since $n = n(\lambda) \le \text{poly}(\lambda)$.

What is a PRG good for? It is the bread-and-butter of cryptography! It is precisely what enables the encryption of long messages using a short key!

Overcoming Shannon's Conundrum using a PRG

Consider the following encryption scheme with $K_{\lambda} = \{0,1\}^{\lambda}$ and $\mathcal{M}_{\lambda} = \mathcal{C}_{\lambda} = \{0,1\}^{n(\lambda)}$ where $n(\lambda) > \lambda$. The encryption scheme uses a PRG $G: \{0,1\}^{\lambda} \to \{0,1\}^n$ as a building block, and is defined by

$$\operatorname{Enc}(k,m) = G(k) \oplus m$$

and

$$Dec(k, c) = G(k) \oplus c$$
.

Theorem 6. (Enc, Dec) is a (computationally) secure encryption scheme.

Proof. We prove that the two desired properties, correctness and security are satisfied.

Correctness: For every $m \in \{0,1\}^n$ and every $k \in \{0,1\}^{\lambda}$

$$\mathsf{Dec}(k,\mathsf{Enc}(k,m)) = G(k) \oplus (G(k) \oplus m) = m.$$

Computational security: This is our first reduction! Suppose for contradiction that there exists a poly-size adversary ${\cal A}$ and a nonnegligible $\epsilon = \epsilon(\lambda)$ such that for every $\lambda \in \mathbb{N}$ there exist $m_0, m_1 \in$ $\{0,1\}^n$ such that

$$\Pr[\mathcal{A}(\mathsf{Enc}(k, m_b) = b] \ge 1/2 + \epsilon$$

Namely,

$$\Pr[\mathcal{A}(G(k) \oplus m_b) = b] \ge 1/2 + \epsilon$$

If we replace G(k) with a random string then A would succeed in guessing only with probability 1/2 (by the security of the one-time pad). We use this to break the security of the PRG, by constructing a poly-size adversary \mathcal{B} that on input $r \in \{0,1\}^n$ distinguishes between the case that r is random or pseudorandom as follows:

- 1. Choose at random $b \leftarrow \{0,1\}$.
- 2. Compute $b' = A(r \oplus m_h)$.
- 3. If b' = b output 1 indicating that r is pseudorandom, and if $b' \neq b$ then output 0, indicating that r is random.

Notice that

$$\Pr[\mathcal{B}(G(U_{\lambda}))=1]=\Pr[\mathcal{A}(G(k)\oplus m_b)=b]\geq 1/2+\epsilon,$$

while

$$\Pr[\mathcal{B}(U_n) = 1] = \Pr[r \oplus m_h = b] = 1/2.$$

Thus,

$$|\Pr[\mathcal{B}(G(U_{\lambda}))=1]-\Pr[\mathcal{B}(U_n)=1]| \geq \epsilon$$

contradicting the pseudorandomness property of *G*.

Do PRGs exist?

Theorem 7. PRGs exist assuming the existence of one-way functions.

We will prove an easier theorem

Theorem 8. PRGs exist assuming the existence of one-way permutations.

Next week we will construct a PRG assuming the existence of oneway permutations.

References