Lecture 3: Pseudorandom Generators
Notes by Yael Kalai

MIT - 6.5620
Lecture 3 (September 10, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Recap

¢ Computationally secure encryption.
* negligible functions.
* One-way functions.

Definition 1. An encryption scheme (Enc, Dec), associated with key
space L = {K, }, message space M = {M,} and ciphertext space
C = {C,}, is computationally secure if for every polynomial size
adversary A there exists a negligible function y such that for every
A € N and every mg, m; € M)

kagf_{Oll}[A[Enc(k,) = IS 124)

An equivalent formulation is using the following notion of compu-
tational indistinguishability.
Definition 2. Two distribution ensembles {D » }xen and {D1 1 }ren
are said to be computationally indistinguishable, denoted by

{Dor}ren = {DiptreN,

if for every poly-size adversary A there exists a negligible function
:IN — IN such that for every A € IN

Pr [A(x,) = b] < 1/2+ p(A).

xb<—Db’)\

Equivalently, for every poly-size adversary A there exists a negligible
function u : N — IN such that for every A € N

| Pr [A(xo) =1]— Pr [A(x)=1][<p(})

x0<Do x1¢Dy

Using this terminology, an equivalent way of stating Definition 1
is that for every sequence of messages {1y, } and {m; ,}, where
mo,, M1\ € M,, it holds that

{Enc(k,mgy)} ~ {Enc(k,my)}

LECTURE 3: PSEUDORANDOM GENERATORS

We next define the cryptographic tool that will allow us to con-
struct a computationally secure encryption scheme with keys k €
{0,1}* of size A and messages m € {0,1}" of large size n = poly(A).

Pseudorandom Generators

A pseudorandom generator (PRG) is a deterministic function G :
{0,1}* — {0,1}* that takes as input a (short) random seed s <
{0,1}* and stretches it into a longer string G(s) € {0,1}" that “looks
random.”

Definition 3. An efficient (poly-time computable) deterministic
function G : {0,1}* — {0,1}"* is said to be a pseudorandom generator
if the following two conditions hold:
¢ [t is expanding in the sense that there exists an expansion
function n : IN — IN such that for every A € NN it holds
that n(A) > A and G takes inputs in {0,1}* to outputs in
{0,130,
We often abuse notation and denote G : {0,1}* — {0,1}*,
although G takes as input strings of arbitrary length.

e It is pseudorandom, i.e.

{G(Ur) Faen = {Uyn) bren,
where Uy is the uniform distribution over {0,1}*.

An equivalent definition of the pseudorandom property is follow-
ing next-bit unpredictability definition, which states that no poly-size
adversary can predict the i + 1’st bit of the output of a pseudoran-
dom generator with probability better than 1/2 + negl(A), where
negl denotes a negligible function.

Definition 4 (Next-bit unpredictability). An expanding function G :
{0,1}* — {0,1}*, with expansion n = n(A), is next-bit unpredictable
if for every poly-size adversary A there exists a negligible function u
such that for every A € N and every i = i(A) € [n(A)]
Pr [A(G(r)) =G(1)ix] =1/24+u(A

Pr JAGE)) = ()l =172+ (M)
where G(r)(; denotes the first i bits of G(r) and G(r);;1 denotes the
i+ 1’st bit of G(r).

Remark. An equivalent formulation of the above next-bit unpre-
dictability property is that for every poly-size adversary A there
exists a negligible function y such that for every A € IN and every
i=i(A) € [n(A)]

| Pr [A(G()ji1) = 1] —

re {01 [A(G(r)g,u1) =1]| < u(A).

Pr
r<{0,1}M,u;+{0,1}

2

LECTURE 3: PSEUDORANDOM GENERATORS

Theorem 5. An expanding function G : {0,1}* — {0,1}*, with expansion
n = n(A), is pseudorandom if and only if it is next-bit unpredictable.

Proof. The fact that pseudorandomness implies next-bit unpre-
dictability is trivial. Namely, breaking next-bit unpredictability im-
plies a break to the pseudorandomness: Simply try to predict the
next bit, if predicted correctly, then guess pseudorandom, and other-
wise guess random.

We will focus on the other direction, which follows from a hybrid
argument. Hybrid arguments are used a lot in cryptography! Let
G :{0,1}* = {0,1}"M) be an expanding function that is next-bit un-
predictable. Suppose for contradiction that it is not pseudorandom.
Namely, there exists a poly-size adversary A and a non-negligible
function € = €(A) such that for every A € N

| PrlA(G(Uy)) = 1] = PrlA(Uyx) = 1]| > e(A)

In what follows, denote by H; the distribution where the first i bits
are distributed according to G(U,) and the rest are distributed uni-
formly at random. The equation above implies that for every A € N

| Pr[A(H,) = 1] - PrlA(Hy) = 1]| > e(A)
Note that for every A € IN

| PrlA(Hy) = 1] = Pr[A(Hp) = 1][=

Y (Pr[A(H;) = 1] = PrlA(H;_1) =1])| <

i€n]
Y |(Pr[A(H;) = 1] — Pr[A(H;_1) = 1])]

ie(n]

where the first equation follows from the fact that the sum is tele-
scopic, and the second equation follows from the triangle inequality.
This implies that for every A € IN there exists i = i(A) € [n] such that

| Pr[A(H;) = 1] = PrlA(Hj—1) = 1][> e(A)/n

which breaks the next-bit unpredictability, since €(A)/n is also non-
negligible, since n = n(A) < poly(A). O

What is a PRG good for? It is the bread-and-butter of cryptogra-
phy! It is precisely what enables the encryption of long messages
using a short key!

Overcoming Shannon’s Conundrum using a PRG

Consider the following encryption scheme with K, = {0,1}" and
M, = Cy = {0,1}") where n(A) > A. The encryption scheme uses

LECTURE 3: PSEUDORANDOM GENERATORS

aPRG G : {0,1}* — {0,1}" as a building block., and is defined by
Enc(k,m) = G(k) & m

and
Dec(k,c) = G(k) ®c.

Theorem 6. (Enc, Dec) is a (computationally) secure encryption scheme.
Proof. We prove that the two desired properties, correctness and

security are satisfied.

Correctness: For every m € {0,1}" and every k € {0,1}*

Dec(k,Enc(k,m)) = G(k) & (G(k) & m) = m.

Computational security: This is our first reduction! Suppose for
contradiction that there exists a poly-size adversary .4 and a non-
negligible € = €(A) such that for every A € N there exist mg, m; €
{0,1}" such that

Pr[A(Enc(k,my) =b] >1/2+€

Namely,
Pr[A(G(k) &my) =b] >1/2+¢€

If we replace G(k) with a random string then A would succeed in
guessing only with probability 1/2 (by the security of the one-time
pad). We use this to break the security of the PRG, by constructing a
poly-size adversary B that on input r € {0,1}" distinguishes between
the case that r is random or pseudorandom as follows:

1. Choose at random b + {0,1}.
2. Compute V' = A(r & my).

3. If ¥’ = b output 1 indicating that r is pseudorandom, and if b’ # b
then output 0, indicating that r is random.

Notice that
Pr[B(G(Uy)) = 1] =Pr[A(G(k) @my) =b] > 1/2+¢,

while
Pr[B(U,) =1] =Pr[r&m, =b] =1/2.

Thus,
|Pr[B(G(Uy)) = 1] = Pr[B(Un) = 1]| > ¢,

contradicting the pseudorandomness property of G. O

4

LECTURE 3: PSEUDORANDOM GENERATORS §

Do PRGs exist?

Theorem 7. PRGs exist assuming the existence of one-way functions.
We will prove an easier theorem
Theorem 8. PRGs exist assuming the existence of one-way permutations.

Next week we will construct a PRG assuming the existence of one-
way permutations.

References

	Recap
	Pseudorandom Generators
	Overcoming Shannon's Conundrum using a PRG
	Do PRGs exist?

