
Lecture 22: SNARGs for NP
Notes by Yael Kalai

MIT - 6.5620
Lecture 21 (November 26, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Succinct Interactive Arguments for NP.

• SNARGs for NP.

• Secret Sharing.

Recap

Last lecture we saw the GKR protocol for bounded depth computa-
tions.

Overcoming the Low-Depth Restriction in the GKR protocol

We can use the GKR blueprint to construct doubly efficient protocols
for any computation where the verifier’s runtime and the number of
rounds do not grow with the depth of the computation! Rather they
grow only poly-logarithmically with the size. The basic idea is to
“flatten” the circuit. Namely, suppose the prover wishes to prove to
the verifier that C(x) = y where C is of size S. The idea is for the Assume that S is the number of wires

in C.prover and verifier to consider a new shallow circuit C′ that takes as
input an S-bit string, which corresponds to the values of all the wires
of C, and checks that all the gates of C are satisfied. Importantly, note
that C′ is very shallow and is of depth O(log S). So, the idea is to run
the GKR protocol on the shallow circuit C′.

The problem is that the verifier does not know the input to C′

since he cannot compute all the gates of C on its own – this is pre-
cisely the work we are trying to offload to the prover! As a result,
the verifier cannot verify the GKR protocol, since to verify it the ver-
ifier needs to compute on its own a random point in the multi-linear
extension of the input to C′.

lecture 22: SNARGs for NP 2

Cryptography to the rescue

To overcome this problem we have the prover “commit” to the mul-
tilinear extension Ṽ0 of the input to C′, using a special commitment
which is referred to as a “polynomial commitment.” Then the prover
and verifier run the GKR protocol on the flattened circuit C′, at the
end at which the verifier needs to check the validity of Ṽ0(z0) = v0.
This is done by the prover “opening” the commitment at the point z0.

A more detailed description follows.

1. The prover does the following:

(a) Compute the string V0 which corresponds to all the wires in
C(x).

(b) Compute Ṽ0 which is the multilinear extension of V0.

(c) Send to the verifier a succinct “polynomial commitment”of Ṽ0 A polynomial commitment is a succinct
and binding commitment of Ṽ0 that
allows the prover to ”open” to any
evaluation of Ṽ0 succinctly.

2. The prover and verifier run the interactive GKR protocol w.r.t. C′

on input V0.

To verify this protocol the verifier needs to check a claim of the
form Ṽ0(z) = t for given z ∈ Fm and t ∈ F.

3. The prover will “open” the polynomial commitment of Ṽ0 at the
point z.

We will not elaborate on how polynomial commitments are con-
structed. In the PSet, there is a polynomial commitment construction
for a univariate polynomial.

Succinct Interactive Proofs for NP

Note that the above protocol gives a succinct interactive proof for NP.

1. First the prover sends a polynomial commitment to the multilinear
extension of the NP witness w, which is denoted by W̃ : Fm → F.

2. Run the GKR protocol with respect to the verification circuit that
has the input x hardwired, and on input w outputs 1 if and only if
w is a valid witness corresponding to x.

To verify the GKR interactive proof the verifier needs to check the
value of W̃ at a single point z ∈ Fm.

3. The prover will send an opening to the polynomial commitment at
point z.

lecture 22: SNARGs for NP 3

Succinct Non-Interactive Arguments (SNARGs) for NP

Finally, we note that since the GKR protocol is a public-coin proto-
col (i.e., a protocol where all the verifier’s messages are random bits
(corresponding to random field elements), we can eliminate interac-
tion from these protocols by using the Fiat-Shamir paradigm! As a Recall that this paradigm replaces the

random messages of the verifier with
the hash value of the transcript so far.

result we are able to convert any NP witness w into a succinct crypto-
graphic witness π, where as opposed to w, a succinct witness π exists
even for instances x that are not in the language, but are hard to find
(under some hardness assumption on the Fiat-Shamir hash function
and assuming the polynomial commitments are indeed binding).

Secret Sharing

Intuitively, a secret sharing scheme allows a dealer to share a secret s
among n parties P1 , . . . , Pn such that any authorized subset of parties
can use all their shares to reconstruct the secret, while any other
(non-authorized) subset learns nothing about the secret from their
shares. Secret sharing has some direct applications, where we need to
distribute a secret to several parties/servers, in order to distribute the
required trust, as well as to allow reconstruction even if some of the
parties fail.

Additionally, secret sharing is a useful tool in many larger crypto-
graphic systems, notably, secure multi-party computation which will be
the topic of the upcoming lectures.

In a secret sharing scheme we want to ensure that no informa-
tion whatsoever is leaked to any unauthorized subset of parties. For
example, simply giving some of the bits of the secret to each party
certainly reveals information.

Secret sharing can be defined with respect to any access structure
that specifies the set of authorized subsets, as long as that access
structure is monotone (namely, if a subset is authorized, any larger
subset should also be authorized). We will focus on a common access
structure which is t-out-of-n or threshold secret sharing, where au-
thorized subsets are all those of size at least t, while sets of size less
than t are not authorize.

Definition

Definition 1. A t-out-of-n secret sharing scheme scheme over mes-
sage space M consists of a pair of efficient algorithms (Share, Reconstruct)
such that:

• Share is a randomized algorithm that takes as input a mes-
sage m ∈ M and outputs a n-tuple of shares (s1 , ..., sn).

lecture 22: SNARGs for NP 4

• Reconstruct is a deterministic algorithm that given a t-tuple
of shares {(i, si)}i∈ I for | I | = t, outputs a message m ∈ M.

The following two properties are required to be satisfied.

Correctness: For every m ∈ M and every I ⊆ {1, . . . , n} of size t,

Pr
(s1 ,...,sn)←Share(m)

[Reconstruct({(i, si)}i∈ I) = m] = 1

Security: For every m, m ′ ∈ M and for every I ⊆ [n] such that
| I | < t,

(si)i∈ I ≡ (s ′i)i∈ I

where (si)i∈[n] ← Share(m) and (s ′i)i∈[n] ← Share(m′).

n-out-of-n Secret Sharing Scheme

Suppose n parties wish to share a secret m ∈ {0, 1}ℓ.

Share(m): Choose at random s1, . . . , sn ∈ {0, 1}ℓ such that ⊕n
i=1si =

m, and output (s1, . . . , sn).

Reconstruct(s1, . . . , sn) outputs ⊕n
i=1si.

Note that the correctness property follows from the construction,
and the security property follows from the fact that an equivalent
way to compute Share(m) is to choose at random {si}i ̸=j and set
sj = m⊕ (⊕i ̸=jsi), which implies that any set of shares that excludes
at least one share, are randomly distributed, independently of m.

t-out-of-n Secret Sharing Scheme

Take 1: For simplicity, suppose that t = 2. Then to share a secret m,
for every pair of distinct parties (i, j) in {1, . . . , n} generate 2-out-of-2
shares of m. Then give each party all the shares generated for that
party. Note that each party has n− 1 shares.

Problem: If we use this approach to construct a t-out-of-n secret
sharing scheme this will result with shares of size (n

t−1).

Shamir’s idea [1]: Use polynomials! Suppose we wish to share a mes-
sage m ∈ {0, 1}. If we want to share ℓ bits we will use the single-bit
secret sharing scheme ℓ times, one for each bit. Choose a prime p
such that p > n.

Share(m): Choose a random degree t − 1 polynomial f : GF[p] →
GF[p] such that f (0) = m. This can be done by choosing a1, . . . , at−1 Recall that GF[p] denotes the field

with elements {0, 1, , p− 1} where
addition and multiplication are done
modulo p.

lecture 22: SNARGs for NP 5

at random in GF[p], setting a0 = m and letting

f =
t−1

∑
i=0

aixi.

For every i ∈ [n] let si = f (i) and output (s1 , . . . , sn). The shares can be the value of f on any
n distinct points in the field GF[p] as
long as none of these points is 0.Reconstruct({(αj, sαj)}j∈J): Solve t linear equations in t variables.

The variables are a0, a1, . . . , at−1 and each player Pαj holds a linear
questions:

∑ ai(αj)
i = sj

We note that these t linear equations are always independent (this
is a Vandermonde matrix, which is known to be invertible).

We emphasize that these t players can jointly recover not only the
secret m, but also the entire degree t− 1 polynomial that the dealer
chose, by computing:

f (x) =
t

∑
i=1

fi(x) · si

where fi is the unique degree t − 1 polynomial that satisfies that
fi(x) = 1 if x = αi and fi(x) = 0 for every x ∈ {αj}j∈[t]\{i}.
Namely,

fi(x) = ∏
j∈[t]\{i}

αj − x
αj − αi

Connection to Reed-Solomon Codes

Shamir’s secret-sharing scheme is very similar to the Reed-Solomon
error-correcting codes (1960), which is a beautiful coding scheme! In
a Reed-Solomon code a message m = (m0, m1, . . . , mt−1) ∈ {0, 1}t is
viewed as the unique degree t− 1 polynomial fm such that fm(i) =

mi for every i ∈ {0, 1, . . . , t− 1}. The codeword corresponding to the
message m is the evaluation of the polynomial f corresponding to m
on all the points in the field:

ECC(m) = (fm(0), fm(1), . . . , fm(p− 1)).

What we have seen above is that this codeword can be uniquely
decoded even if all but t of the coordinates in the codeword were
erased.

It is also known how to decode if less than p−t+1
2 of the coordi-

nates were maliciously corrupted, and this is known to be optimal! The main disadvantage of the Reed-
Solomon ECC is that it is over a large
alphabet. Often people want an ECC
over the binary alphabet. For the
application of cryptography and secret-
sharing this is good enough.

Decoding from malicious corruptions is slightly trickier than decod-
ing from erasure, but it is not too hard (and is explained beautifully

lecture 22: SNARGs for NP 6

in these Lecture notes by Anup Rao). This means that in Shamir’s se-
cret sharing scheme if a secret is shared among n parties and then the
n parties jointly try to decode, even if some of the parties try to foil
the outcome and give malicious shares, still the parties will be able to
jointly recover the secret, as long as less than n−t+1

2 of the parties are
corrupted.

Remark. In the next two classes we will see how to use Shamir’s
secret-sharing scheme to do secure multi-party computation, where a
set of parties wish to jointly compute a function of their secret in-
puts (such as the average of their salaries) without revealing their
secret inputs. Shamir’s secret sharing scheme will be used as a key
ingredient. Typically, in the setting of secure multi-party computa-
tion, two types of adversarial behaviors are considered: The first is
honest-but-curious, where the parties are assumed to follow the pro-
tocol honestly but they are curious and are trying to learn anything
they can about the secret inputs of the other players (by possibly col-
luding and sharing information). The second is adversarial where a
malicious party can deviate from the protocol in arbitrary ways.

We will see a protocol for the honest-but-curious setting. For that
setting Shamir’s secret sharing scheme is used and security with era-
sures is all we need. For the malicious case, which we will not cover
in this class, we use the fact that Shamir’s secret sharing scheme has
the stronger property that one can decode even if some of the shares
are faulty.

References

[1] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–
613, 1979.

https://homes.cs.washington.edu/~anuprao/pubs/codingtheory/lecture4.pdf

	Outline
	Recap
	Overcoming the Low-Depth Restriction in the GKR protocol
	Cryptography to the rescue
	Succinct Interactive Proofs for NP
	Succinct Non-Interactive Arguments (SNARGs) for NP
	Secret Sharing
	Definition
	n-out-of-n Secret Sharing Scheme
	t-out-of-n Secret Sharing Scheme
	Connection to Reed-Solomon Codes

