
Lecture 21: The GKR Protocol
Notes by Yael Kalai

MIT - 6.5620
Lecture 21 (November 24, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Warmup for the GKR protocol

• Low-degree Extension

• The GKR protocol

Recap

• Sumcheck protocol

• Doubly efficient interactive proofs

Sumcheck Protocol

For the sake of simplicity, we state the properties of the Sumcheck
protocol over the hypercube {0, 1}ℓ (as opposed to over Hℓ for an
arbitrary set H).

Theorem 1. There exists an interactive proof, called the Sumcheck protocol,
for proving that

∑
b1,...,bℓ∈{0,1}

f (b1, . . . , bℓ) = v

where f is an ℓ-variate polynomial of degree ≤ d in each variable. The veri-
fier is given only oracle access to f and the prover is given the description of
f . It has the following guarantees:

1. Completeness: The honest prover is accepted with probability 1.

2. Soundness: Every P∗ convinces V to accept a false statement with
probability ≤ m·d

|F| .

3. Complexity: The number of rounds is ℓ. The verifier makes a single
oracle access to the oracle f and runs in time ℓ · d · polylog(|F|). The
prover runs in time O(Tf · 2ℓ · ℓ).

lecture 21: the gkr protocol 2

Doubly Efficient Interactive Proofs

Definition 2 (Doubly-Efficient Interactive Proof (DE-IP)). A doubly-
efficient interactive proof for a language L ∈ DTIME(T(n)) is an
interactive proof such that:

1. The honest prover’s runtime is poly(T). In practice it is desirable that the
prover’s runtime is O(T).

2. The verifier’s runtime is much less, ideally polylog(T) + Õ(n),
where Õ omits polylog(n) factors.

Today we will see how to use the Sumcheck protocol to construct
a doubly efficient interactive proof for every bounded depth computa-
tion.

Theorem 3. For any circuit C of depth D and size S (that is log-space
uniform) there exists a doubly efficient interactive proof such that We will explain what the log-space

uniformity condition is when we
describe the GKR protocol• The number of rounds is D · polylog(S).

• The communication complexity is D · polylog(S).

• The verifier’s runtime is Õ(n) + D · polylog(S) where n is the
input length (assuming the circuit is log-space uniform)

• The prover’s runtime is poly(S).

The doubly efficient interactive proof that achieves this theorem
is called the GKR protocol [1]. The only ingredient used in the GKR
protocol is the Sumcheck protocol!

Intuition for the GKR protocol

Given a circuit C of depth D and size S, an input x ∈ {0, 1}n and an
output y, the prover needs to convince the verifier that C(x) = y. In
other words, the verifier wants to catch the prover if y is incorrect.
Here is a simple idea: The verifier will ask the prover for the value
of the two children corresponding to the output gate, and will check
consistency with y. Note that if the values are consistent and y is We assume throughout that the fanin of

every gate is ≤ 2.false, then the value of at lease one of its children must be false. The
verifier will guess which one is false randomly, and will continue
this process until a leaf xi is reached. Note that if y is false, and every
time the verifier guesses correctly who the false child is, then at the
end of this protocol the verifier will recieve a false value of xi and
thus the prover will be rejected!

This interactive proof is extremely simple, but its soundness guar-
antee is pathetic! The soundness is 1 − 2−D, since it will catch the
prover cheating only if in each and every layer it guesses correctly
who the false child is. This happens with probability 2−D. The GKR

lecture 21: the gkr protocol 3

protocol follows this blue-print but achieves better soundness since it
does this over an error correcting code.

Analogy to the Sumcheck protocol

Recall that in the Sumcheck protocol the prover convinces the verifier
that

∑
b1,...,bm∈{0,1}

f (b1, . . . , bm) = v.

One way to do this is to have the prover send the two values v0 and
v1 where

vb = ∑
b2,...,bm∈{0,1}

f (b, b2, . . . , bm).

The verifier will check that v = v0 + v1 and then will choose at ran-
dom b∗1 ←

R {0, 1} and will reduce it to a Sumcheck on ℓ− 1 variables
of the statement

vb∗1
= ∑

b2,...,bℓ∈{0,1}
f (b∗1 , b2 . . . , bℓ)

Note that if v is false then vb∗1
is false with probability 1

2 . Therefore,
this creates a large loss in soundness (similarly to the simplified GKR
protocol presented above).

The main idea behind the Sumcheck protocol is to use the fact
that f is of low degree, which intuitively allows the prover to check
that both the values in {0, 1} are correct simultaneously. Specifically,
the verifier chooses t ←R F and uses the fact that f is a low-degree
polynomial to argue that in each round the verifier chooses a “false”
ti with probability ≥ 1 − d

|F| . So, by relying on the fact that f is a
low-degree polynomial we managed to reduce the loss significantly!

At first it may be unclear how we use this for the GKR protocol
since we do not have any low-degree function f there. However, the
Sumcheck protocol can be used to prove that

∑
b1,...,bℓ∈{0,1}

f (b1, . . . , bℓ) = v.

for any f : {0, 1}ℓ → {0, 1}, that has no algebraic structure, as long
as the verifier is given oracle access to the multi-linear extension of f ,
defined below.1 1 Oracle access to any low-degree exten-

sion suffices, where the runtime grows
with the degree.

Multi-linear Extension

A multi-linear extension (MLE) of any function (not necessarily a
polynomial) f : {0, 1}m → {0, 1},2 is a polynomial function 2 One can think of f as an arbitrary

string of length 2m.

lecture 21: the gkr protocol 4

f̃ : Fm → F

that is linear in each variable that agrees with f on all inputs in
{0, 1}m; i.e., ∀x ∈ {0, 1}m, f̃ (x) = f (x), or more concisely f̃ |{0,1}m≡ f .
Notice that the domain of f̃ is Fm, a superset of {0, 1}m, hence the
name “extension.”

Theorem 4. Let f : {0, 1}m → {0, 1} be any function (i.e., an arbitrary
sequence of 2m bits). Let F be any finite field. Then there exists a unique
multi-linear function f̃ : Fm → F s.t. f̃ |{0,1}m≡ f . Moreover, f̃ can be
computed in time 2m · poly(m).

This theorem is a generalization of Langrange interpolation to the
multi-variate setting (though focusing on the linear setting).

Proof. Let

f̃ (x1, . . . , xm) = ∑
(b1,...,bm)∈{0,1}m

f (b1, . . . , bm) ·χ((b1, . . . , bm), (x1, . . . , xm))

where χ is a multi-linear function that satisfies that for every x1, . . . , xm ∈
{0, 1} and every b1, . . . , bm ∈ {0, 1},

χ((b1, . . . , bm), (x1, . . . , xm)) =

1 (x1, . . . , xm) = (b1, . . . , bm)

0 (x1, . . . , xm) ̸= (b1, . . . , bm)

χ is defined as follows:

χ((b1, . . . , bm), (x1, . . . , xm)) =
m

∏
i=1

χ(bi, xi)

where
χ(b, x) = 1− b− x + 2 · b · x (1)

To prove uniqueness we need to argue that if two multi-linear poly-
nomials on m variables agree on {0, 1}m then they must be equal.
Equivalently, we need to prove that if a mutli-linear polynomial on
m variables is 0 on the hypercube {0, 1}m then it must be the zero
polynomial. This can be proved by induction on m.

Base case: m = 1. A linear function is of the form f (x) = ax + b. It
is easy to see that f (0) = 0 implies that b = 0. Similarly f (1) = 0
implies that a + b = 0. Thus, f is identically 0.

The induction step: Suppose uniqueness holds for m − 1 variables
and we will prove that it holds for m variables. One can write

f (x1, . . . , xm) = A(x1, . . . , xm−1) + xm · B(x1, . . . , xm−1).

lecture 21: the gkr protocol 5

Note that for every x1, . . . , xm−1 ∈ {0, 1},

0 = f (x1, . . . , xm−1, 0) = A(x1, . . . , xm−1),

which by our induction hypothesis implies that A ≡ 0. In addition,
for every x1, . . . , xm−1 ∈ {0, 1},

0 = f (x1, . . . , xm−1, 1) = A(x1, . . . , xm−1)+ B(x1, . . . , xm−1) = B(x1, . . . , xm−1),

which by our induction hypothesis implies that B ≡ 0. Thus f ≡ 0, as
desired.

The GKR protocol

Fix boolean circuit C : {0, 1}n → {0, 1} of size (number of gates) S
and depth D. The GKR protocol is an interactive proof for the fact
that C(x) = 1. We assume that the verifier has a succinct description
of C. Formally, we assume that C is log-space uniform i.e. it can be
generated by some log-space Turing Machine M,3 and we assume 3 The need for this uniformity condition

will be explained belowthat the verifier has a description of M. Assume without loss of gen-
erality that C is layered which means that each gate belongs to a
layer, and each gate in layer i is connected by neighbors only in layer
i + 1. Let layer 0 denotes the output layer and D denotes the input
layer. One can always layer a circuit by

adding dummy intermediate gates.
This can be done while increasing the
depth to depth at most D2.

Recall the intuitive protocol above, where we reduce a claim about
the value of a gate in layer i to a claim about the value of a gate in
layer i + 1. The GKR protocol follows this blueprint. The protocol
consists of D-subprotocols, where a claim about the (joint) values of
gates in layer i is converted to a claim about the (joint) values of gates
in layer i + 1. Eventually, it will be reduced to a claim about the input
layer (layer D), which is known to the verifier.

Detailed description of the protocol

Step 1: Arithmetize C. Convert C to a (layered) arithmetic circuit
(over GF[2]) with fan-in 2. Arithmetic circuit (over GF[2]) means that
it consists only of gates of the form ADD and MULT (where addition
and multiplication are done modulo 2). We can convert any Boolean
circuit, with gates ∧ and ¬, into an arithmetic circuit, by converting
a gate ∧ into a gate MULT, and converting a gate ¬ into a gate ADD

where we add a constant 1 as an input to the gate.

Step 2: We assume for simplicity, and without loss of generality, that
each layer has exactly S gates and that S is a power of 2, i.e., S = 2m

for some integer m. This can be done by adding dummy gates.

lecture 21: the gkr protocol 6

We can give each of the S gates in a given layer a unique label
encoded in {0, 1}m.

Step 3: The prover computes the values of all gates in every layer of
the circuit. For layer i, define the function Vi : {0, 1}m → {0, 1} as
the mapping from an encoding of a gate label to the value of the gate.
Let Ṽi : Fm → F be its multi-linear extension (MLE), which is the
unique multi-linear function that agrees with Vi on inputs in {0, 1}m.

The Protocol: The protocol consists with D “reduction” protocols,
where each reduction protocol reduces a claim of the form Ṽi(zi) = vi

about layer i to a claim of the form Ṽi+1(zi+1) = vi+1 about about
layer i + 1. We start with the output layer where the prover claims Actually, the reduction protocol will

reduce checking two such claims about
layer i to two such claims about layer
i + 1.

that Ṽ0(z0) = v0 = 1 where z0 ∈ {0, 1}m is the label of the only
non-dummy gate in layer 0 that holds the output of the circuit. At
the end of these D reduction protocols, we will be left with a claim of
the form Ṽd(zd) = vd. The verifier can check this on its own since it
knows Vd from its input values and thus can compute its multi-linear
extension on its own.

The reduction protocol

For every i ∈ [D] we define two functions ADDi,MULTi : ({0, 1}m)3 →
{0, 1} as follows:

ADDi(p, w1, w2) =

1 gate p in layer i is an ADD gate connecting w1 and w2 in layer i + 1

0 Otherwise

MULTi is defined similarly with ADD replaced with MULT in the
definition. Let

ÃDDi, M̃ULTi : F3m → F

be the multi-linear extensions of ADDi and MULTi, respectively.
We can expand out the MLE definition and rewrite the claim

Ṽi(zi) = vi as

vi = Ṽi(zi) = ∑
p∈{0,1}m

Vi(p) · χ(p, zi)

Then we can further express Vi(p) as a combination of ÃDDi, M̃ULTi:

vi = ∑
p∈{0,1}m

∑
w1,w2∈{0,1}m

[
ÃDDi(p, w1, w2)(Ṽi+1(w1) + Ṽi+1(w2))+

M̃ULTi(p, w1, w2)(Ṽi+1(w1) · Ṽi+1(w2))
]
χ(p, zi)

lecture 21: the gkr protocol 7

This is exactly a claim that one can run Sumcheck on.
Denote the polynomial inside the sum by

f (p, w1, w2) =
[
ÃDDi(p, w1, w2)(Ṽi+1(w1) + Ṽi+1(w2))+

M̃ULTi(p, w1, w2)(Ṽi+1(w1) · Ṽi+1(w2))
]
χ(p, zi)

Thus after the last round in Sumcheck for

vi = ∑
p,w1,w2∈Hm

f (p, w1, w2),

the verifier must be able to compute f (z0, z1, z2) for some random
z0, z1, z2 ∈ Fm chosen by the verifier. We assume for now that the
verifier can compute on its own ÃDDi and M̃ULTi. This is precisely
where we use the log-space uniformity condition of the underlying
circuit C.

So we reduced checking the value vi in layer i to checking the
value of two elements in round i + 1. It seems like if we continue in
this way the number of elements we will need to check will grow
exponentially! However, surprisingly this is not the case! We can re-
duce checking two elements in round i + 1 to checking two elements
in round i + 2.

The idea is to run two Sumcheck protocols (one for each element)
but where the verifier uses the same randomness in both these Sum-
check protocols! This will convert checking two elements in round i
to checking two elements in round i + 1.

References

[1] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum.
Delegating computation: interactive proofs for muggles. In Cyn-
thia Dwork, editor, Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May
17-20, 2008, pages 113–122. ACM, 2008.

	Outline
	Recap
	Sumcheck Protocol
	Doubly Efficient Interactive Proofs
	Intuition for the GKR protocol
	Analogy to the Sumcheck protocol
	Multi-linear Extension
	The GKR protocol
	Detailed description of the protocol
	The reduction protocol

