Lecture 20: The Sum-Check Protocol
Notes by Yael Kalai

MIT - 6.5620
Lecture 20 (November 19, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

e Motivation

* Sumcheck protocol

Motivation

Suppose we store our data on a (possibly untrusted) platform and
then request the platform to perform computations on our data.
Recall that FHE allows us to carry out this task while ensuring the
secrecy of our data. We now ask how do we ensure the integrity of
the result? Specifically, how do we know that indeed the platform is
doing the instructed computation? In other words, can we efficiently
verify that a computation was done correctly? Namely, is there a succinct
and efficiently verifiable proof that we can append to the output of a
computation attesting to the fact that this output is indeed correct?
This is the topic of the next two lectures.

We would like to have a proof of correctness for any time T
computation that can be verified in time << T (say time T¢ or
even polylog(T)). Unfortunately, we do not believe that every T-
computable language has a proof (or a “witness”) of size << T.

As you learned by now, cryptography is an art of overcoming
such barriers. We overcome this barrier by considering interactive
proofs (as opposed to classical proofs, which are deterministic and
non-interactive) and by making use of some cryptographic magic!

Interactive Proofs (Recap)

Proof systems have been studied by mathematicians for thousands
of years, starting from Euclid (300 BCE). Yet, until recently, all proof
systems were of a somewhat similar form which is simply a list of
formulas that follow from a set of inference rules and axioms. This

LECTURE 20: THE SUM-CHECK PROTOCOL 2

changed in the mid eighties when Goldwasser, Micali and Rackoff
defined the notion of a zero-knowledge proof [2] (which we talked
about the last two lectures). They realized that zero-knowledge can-
not be achieved using classical proofs, and to bypass this barrier they
defined the notion of interactive proofs which completely changed the
way we think about proofs.

In the next two lectures, we will learn about the power of interac-
tive proofs, and their impact on how proofs are designed today. We
will show how to use interactive proofs, together with cryptographic
magic, to construct “succinct proofs.” Specifically, we will show how
given a Turing machine M, an input x and a time-bound T, one can
compute the output y = M(x) together with a “succinct proof”
7t that certifies that indeed M on input x outputs y within T steps.
More generally, we will show how to convert a long proof w that cer-
tifies the correctness of a statement x € L into a “succinct proof” 7

that certify its correctness. Think of L as an NP language, where
every x € L has a polynomial size

. . . witness w. We will see how to use cryp-
teractive proof. Note that NP C IP but IP may contain additional tography to shrink w into a “succinct

The class IP is the set of all languages L that have such an in-

languages. In a celebrated result, Shamir [3] gave a characterization proof” 7.
of the class IP by proving that IP = PSPACE, which means that and

every language L in PSPACE has an interactive proof and every lan-

guage L that has an interactive proof is in PSPACE (the latter is quite
straightforward, but the former is highly non-trivial).

Sumcheck Protocol

We start by demonstrating the power of interactive proofs via the
Sumcheck protocol, which is an interactive proof for a statement
that we do not know how to prove succinctly using a classical proof.
Intuitively, the Sumcheck protocol proves the value of the sum of a
multivariate polynomial on exponentially many values. Specifically,
let F be a finite field. One can think of F = GF[p] which consists of
the elements {O, 1,...,p— l} where addition and multiplication are
modulo p.

Definition 1 (Sumcheck Problem). Given a polynomial f : F" — T of

degree < d in each variable and a fixed set H C [F,' compute * Often, H is fixed to be H = {0,1}.
B = Z f(hy, ..., hm).
hl,...,hmeH

We will show an interactive proof for the Sumcheck problem,
where the verifier runs in time poly(m, |H|,d,log|FF|) given oracle
access to f. While at first, this problem seems very specific (and pos-
sibly not interesting), it turns out that this is an important building
block in many of our succinct proofs. In particular, it is the main

LECTURE 20: THE SUM-CHECK PROTOCOL

building block in Shamir’s celebrated IP = PSPACE result [3], and is
the main building block in the GKR protocol [1] which we will learn
about in the next lecture.

The Sumcheck protocol proceeds as follows:

1. The prover computes and sends

gi(x)= Y. f(xhy... hm).

hz,...,hmGH

This is a unvariate degree < d polynomial where the first variable
to f is a free variable.

2. The verifier checks that g1 (x) is a univariate polynomial of degree
<dand that }7, ¢y g1(h1) = B. (Reject if either check fails.)

3. The verifier sends a uniformly sampled #; < IF.

4. The prover sends
gz(x) = Z f(tl/xrh?)/'--/hm)-
h3,...,hm€H

This is again a univariate degree < d polynomial, where the first
variable of f has been fixed and the second variable is a free vari-
able.

5. The verifier checks that g>(x) is degree < d and that }_;,,cy §2(h2) =

81(t).
6. The verifier sends a uniformly sampled t, < IF.

7. The prover replies with

g3(x) = Z f(t1,to, %, ha,y ...).
h4,...,hm€H

8. The verifier checks that g3(x) is degree < d and that };,,cy 83(h3) =

$2(t2).

9. Repeat this procedure on all other variables. The final check will
be as follows:

10. The prover sends gm(x) = f(t1,t2, ..., tm—1,%).

11. The verifier samples a uniform t,, < FF and checks that gy () =
f(t1,t2, ...,) using its oracle access to f. It Accepts if and only if
all the checks have passed.

Analysis of the Sumcheck protocol

Completeness. The completeness of this protocol is straightforward
so we will focus on soundness.

3

LECTURE 20: THE SUM-CHECK PROTOCOL

Soundness. The soundness analysis is “round-by-round". Suppose
that the instance is false. Namely suppose the instance is f : F" — [F
of degree < d in each variable, a set H C FF and an element p € F
such that

Y., flu,....hm) #B.

h],...,hmEH
Fix any cheating prover P* that tries convince the verifier to accept
this false statement. We argue that for each round i, if we start with a
false claim of the form

gialtic)= Y, ft... ticahi... hy) (1)

hi;~-~/hm €eH

(where g5 = B), then the next round claim, which is of the form

gi(t) = Yoo f(tetihiga, e), (2)
hH,l,...,hmEH
is also false with with probability > 1 — % (assuming the verifier

does not reject g7 (-)). Thus, by a union bound, at the end of the

Sumcheck protocol the verifier will reject P* with probability > 1 —
il
T
round-by-round soundness holds note that if g ,(f;_1) is false then

So we get “good” soundness if |F| >> dm. To see why the

g/ must also be false or else the verifier will reject it. This is the case
since the verifier checks that

Y gi (h) =gy (tio).

heH
If g7 is false and is of degree d then it agrees with the true polyno-
mial on at most d points, and thus g7 (¢) on a random ¢ < IF remains
incorrect with probability 1 — ﬁ.
Communication complexity. The protocol has m rounds of commu-
nication, one for each variable of f. In each round, the prover sends
one degree-d polynomial, which is represented by d field elements;
and the verifier sends one field element ¢;. Therefore the communica-
tion complexity is O(dm log |F|).
Runtime. In each of the m rounds, the verifier evaluates a degree-d
polynomial on |H| points; so the verifier runtime is O(m - |H| - d -
polylog |F|). The prover runs in time O(m - [H|™ - Tf), where T¢
denotes the time to compute f.

Remark. The Sum-Check protocol has the desirable property that

the verifier only sends uniformly sampled field elements in each

round (each field element constitutes log |F| random bits), namely it

is a public-coin protocol.> Public-coin protocols are of great interest 2 Recall that the ZK proofs that we saw
because as we discussed during the last lecture, we use cryptography are also public coin.
to eliminate interaction from such protocols using the Fiat-Shamir

transform.

LECTURE 20: THE SUM-CHECK PROTOCOL

Why do we care about the Sumcheck protocol?

Beyond being a proof of concept that interactive proofs are power-
ful, the Sumcheck protocol is extremely important in the design of
succinct proof systems. Indeed, the Sumcheck protocol was used
by Shamir [4] to construct an interactive proof for any language in
PSPACE. We will not show Shamir’s protocol, rather we will show an
alternative protocol (the GKR protocol [1]) that has efficiency advan-
tages and is conceptually simpler. The main drawback of Shamir’s
protocol is that to prove the correctness of a time T space-S computa-
tion, the runtime of the prover is > 25087, which may be exponential
in T. The runtime of the verifier is proportional to S. This raises the
following fundamental question:

Is proving necessarily harder than computing?

Doubly Efficient Interactive Proofs

So far we placed no restriction on the prover’s runtime, and restricted
only the verifier’s runtime. Indeed, when interactive proofs were
original defined they referred to the prover as Merlin (an all powerful
wizard). In reality, however, we do care about the computational
power of the prover. Of course, we still need to allow the prover more
computational power than the verifier, as otherwise the prover is not
helpful.

Definition 2 (Doubly-Efficient Interactive Proof (DE-IP)). A doubly-
efficient interactive proof for a language L € DTIME(T(n)) is an
interactive proof such that:

1. The honest prover’s runtime is poly(T).

2. The verifier’s runtime is much less, ideally polylog(T) + O(n),
where O omits polylog(n) factors.

We will show how to use the Sumcheck protocol to construct a
doubly efficient interactive proof for every bounded depth computa-
tion.

Theorem 3. [1] For any circuit C of depth D and size S (that is log-space
uniform) there exists a doubly efficient interactive proof such that

 The number of rounds is D - polylog(S).
* The communication complexity is D - polylog(S).

e The verifier’s runtime is O(n) + D - polylog(S) where n is the
input length (assuming the circuit is log-space uniform)

* The prover’s runtime is poly(S).

In practice it is desirable that the
prover’s runtime is O(T).

We will explain what the log-space
uniformity condition is when we
describe the GKR protocol

LECTURE 20: THE SUM-CHECK PROTOCOL 6

The doubly efficient interactive proof that achieves this theorem is
referred to in the literature as the GKR protocol. The only ingredient
used in the GKR protocol is the Sumcheck protocol!

Intuition for the GKR protocol

Given a circuit C of depth D and size S, an input x € {0,1}" and an
output y, the prover needs to convince the verifier that C(x) = y. In
other words, the verifier wants to catch the prover if y is incorrect.
Here is a simple idea: The verifier will ask the prover for the value
of the two children corresponding to the output gate, and will check
consistency with y. Note that if the values are consistent and y is We assume throughout that the fanin of
false, then the value of at lease one of its children must be false. The every gate is < 2.
verifier will guess which one is false randomly, and will continue
this process until a leaf x; is reached. Note that if y is false, and every
time the verifier guesses correctly who the false child is, then at the
end of this protocol the verifier will recieve a false value of x; and
thus the prover will be rejected!
This interactive proof is extremely simple, but its soundness guar-
antee is pathetic! The soundness is 1 — 27, since it will catch the
prover cheating only if in each and every layer it guesses correctly
who the false child is. This happens with probability 2~. The GKR
protocol follows this blue-print but achieves better soundness since it
does this over an error correcting code.

Analogy to the Sumcheck protocol

Recall that in the Sumcheck protocol the prover convinces the verifier
that
Y. f(hy,... hw) =B
hy,...hm€H
One way to do this is to have the prover send the |H| values 1),
where

Bun= Y F(hha ... h).

hz,---,hmEH

The verifier will check that f = } 7,y B1, and then will choose at
random hi‘ & H and will reduce it to a Sumcheck on m — 1 variables
of the statement

Buw:=), f(hiha... hm)=p

hz,...,hmeH

Note that if B is false then B is false with probability |1ﬁ There-

fore, this creates a large loss in soundness (similarly to the simplified
GKR protocol presented above). The main idea behind the Sumcheck

LECTURE 20: THE SUM-CHECK PROTOCOL

protocol is to use the fact that f is of low degree, which intuitively
allows the prover to check that all the values in H are correct simulta-
neously. Specifically, the verifier chooses t < F and uses the fact that
f is a low-degree polynomial to argue that in each round the verifier
chooses a “false” t; with probability > 1 — ‘%‘.
fact that f is a low-degree polynomial we managed to reduce the loss

So, by relying on the

significantly!

At first it may be unclear how we use this for the GKR protocol
since we do not have any low-degree function f there. However, the
Sumcheck protocol can be used to prove that

Y. fh, .. hw) =B

h],‘..,hmGH

for any f : H" — H, where f is not necessarily low degree. Namely,
we can use the Sumcheck protocol to prove that for any function
f:+H™ — H it holds that

Y. f(hi,.. hw) =B

st €H

This can be done using the concept called low-degree extension.

References

[1] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum.
Delegating computation: interactive proofs for muggles. In Cyn-
thia Dwork, editor, Proceedings of the 4oth Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May
17-20, 2008, pages 113—122. ACM, 2008.

[2] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems (extended abstract).
In Robert Sedgewick, editor, Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence,
Rhode Island, USA, pages 291-304. ACM, 1985.

[3] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612—
613, 1979.

[4] Adi Shamir. Ip=pspace. In 315t Annual Symposium on Foundations
of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990,
Volume I, pages 11-15. IEEE Computer Society, 1990.

It may be helpful to focus on the case
H={0,1}.

	Outline
	Motivation
	Interactive Proofs (Recap)
	Sumcheck Protocol
	Analysis of the Sumcheck protocol
	Why do we care about the Sumcheck protocol?
	Doubly Efficient Interactive Proofs
	Intuition for the GKR protocol
	Analogy to the Sumcheck protocol

