
Lecture 2: Computational Secrecy
Notes by Yael Kalai

MIT - 6.5620
Lecture 2 (September 8, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Recap

Recall that in the last lecture we covered the following:

1. Defined the notion of a perfect secure encryption scheme. We saw
two equivalent security definitions:

• Shannon security: For any probability distribution M over
the plaintext spaceM and every plaintext m ∈ M and
ciphertext c ∈ C,

Pr[M = m] = Pr
k←K

[M = m|Enc(k, M) = c].

• Perfect indistinguishability: For every message m0, m1 ∈
M and every ciphertext c ∈ C

Pr
k←K

[Enc(k, m0) = c] = Pr
k←K

[Enc(k, m1) = c].

Equivalently, for every m0, m1 ∈ M and for every adver-
sary A,

Pr[A(Enc(k, mb) = b] = 1/2.

2. Presented the One-Time Pad construction which achieves this
definition. In this construction

K =M = C = {0, 1}n

and
Enc(k, m) = k⊕m and Dec(k, c) = k⊕ c.

3. We argued that this scheme is only one-time secure, since given
Enc(k, m0) and Enc(k, m1) one can learn m0 ⊕m1.

This is a security breach since if the adv happened to know m0

then he automatically learns m1.1 1 This is not only a theoretical attack,
but actually similar attacks have been
executed in reality.4. Proved Shannon’s theorem: Any scheme that achieves this defini-

tion has the drawback that |K| ≥ |M|; namely, the key must grow
with the number of bits encrypted!

lecture 2: computational secrecy 2

Overcoming Shannon’s Conundrum

Recall that Shannon’s theorem was proved by showing that if |K| <
|M| then there is an attack on the perfect security of the scheme, but
this attack takes time roughly |K|, which is huge!2 2 Recall that in the attack given a cipher-

text ct, we computed all the possible
messages it could have encrypted, i.e.
{Dec(ct, k)}k∈K , and checked if m0 or
m1 was in this set. If both were in the
set then we guessed randomly, but if
only mb is in the set then we guessed b.

Key idea: Consider only computationally bounded adversaries!
One option is to limit the runtime of the adversary by, say at most
2256 bit operations, and construct an encryption scheme where the
key consists of much more than 256 bits. Such a definition is per-
fectly reasonable, and in fact, this is how practitioners think about
security. But it turns out that to provide theoretical guarantees, it is
much easier to work with an asymptotic definition. Indeed, in com-
plexity theory the notion of efficiency is asymptotic (efficient ≡ poly-
nomial time). So, instead of trying to design schemes that have some
concrete level of security, we design schemes whose security level is
governed by a parameter known as the security parameter, which we
will denote by λ.3 The idea is that the security of the scheme should 3 Often the security parameter is also

denoted by n.increase with a larger security parameter.
For now, we will think of the secret key as being a random λ-

bit value, i.e., k ← {0, 1}λ. Later we will disentangle the security
parameter from the secret key, and also allow the key to be structured
and generated via a “key generation algorithm.”

We restrict our adversaries to run in probabilistic polynomial
time (PPT) in the security parameter λ, following the philosophy in
complexity theory that polynomial-time algorithms are “feasible”
while any super-polynomial-time algorithm is “infeasible.”4 More 4 Of course, this notion of “feasible” is

far from what is feasible in reality!generally, we model our adversaries as polynomial-size circuits,
which are equivalent to polynomial-time Turing machines with non-
uniform advice. This is more general than PPT adversaries since the
non-uniformity allows us to hardwire the “best” randomness for the
adversary. Sometimes, we refer to poly-size adversaries as “efficient
adversaries.”5 5 We note that in practice, people are

concerned with concrete efficiency
where the security parameter is fixed
to say λ = 256 and the adversary is
restricted to perform at most 2128 bit
operations.

Our cryptographic schemes will also be restricted to run in time
polynomial in the security parameter (as otherwise they will be con-
sidered infeasible to implement). We always consider adversaries
that are more powerful than the honest players. For example, we may
consider honest players that run in time λ2 but require security to
hold against all PPT adversaries.

Definition 1 (Take 1:). A computationally secure encryption scheme is
associated with a key space K = {Kλ}λ∈N, a message spaceM =

{Mλ}λ∈N, and a ciphertext space C = {Cλ}λ∈N, where there exists
a polynomial ℓ : N → N such that for every k ∈ Kλ, m ∈ Mλ and
c ∈ Cλ it holds that |k|, |m|, |c| ≤ ℓ(λ).6 6 Often Kλ = {0, 1}λ. In addition,

oftenMλ does not depend on λ. For
example, as we will see, for some of our
schemesM = {0, 1}, independent of λ.

lecture 2: computational secrecy 3

It is also associated with two polynomial time algorithms Enc =

{Encλ}λ∈N and Dec = {Decλ}λ∈N, such that:

1. Encλ : Kλ ×Mλ → Cλ.

2. Decλ : Kλ × Cλ →Mλ.

It satisfies the following two properties:

1. Correctness: For every λ ∈N, every k ∈ Kλ, and every m ∈ Mλ

Decλ(k,Encλ(k, m)) = m.

2. Computational security: For every poly-size adversary A, every
λ ∈N and every m0, m1 ∈ Mλ,

Pr[A(Encλ(k, mb)) = b] = 1/2.

Remark. We often omit the security parameter from Encλ and Decλ, as
we can assume without loss of generality that it can be inferred from
the key k.

Remark. Notice that the security definition requires security to hold
for every two messages m0, m1 ∈ Mλ, even adversarially chosen. We
let the adversary have control of as many things as possible to make
our security definition as strong as possible.

Is this definition achievable for |Mλ| > |Kλ|? It turns out that the
it is not! In fact, it is subject to the same Shannon impossibility result!
Namely, the adversary A given a ciphertext c ∈ Cλ will choose a
random k ← Kλ, and compute m = Dec(k, c). If there exists b ∈ {0, 1}
such that m = mb then output b, and otherwise output a random
b′ ← {0, 1}. This adversary will guess b correctly with probability
≥ 1/2 + 2−λ, as long as

{Enc(k, m0) : k ∈ {0, 1}λ} ̸= {(Enc(k, m1) : k ∈ {0, 1}λ}

and by the correctness of the encryption scheme, and assuming that
|Mλ| > |Kλ|, there must exist m0, m1 ∈ Mλ that satisfy the equation
above.

To get around this impossibility result we just need to allow the
adversary to have a tiny advantage.

Definition 2. A function µ : N → N is said to be negligible if for
every polynomial p : N → N there exists Λ ∈ N such that for every
λ ≥ Λ,

µ(λ) <
1

p(λ)
.

Intuitively, an event that occurs with negligible probability looks to
a poly-time algorithm like it never occurred.

lecture 2: computational secrecy 4

Examples

1. µ(λ) = 2−λ is negligible.

2. µ(λ) = 1/λ2 is non-negligible.

Definition 3. A computationally secure encryption scheme is defined
as above but where computational security is defined as follows:

Computational security: For every poly-size adversary A there exists a
negligible function µ : N → N such that for every λ ∈ N, every
m0, m1 ∈ Mλ,

Pr[A(Enc(k, mb) = b] ≤ 1/2 + µ(λ).

Remark. We often refer to µ, which is the difference between the ad-
versary’s success probability and 1/2, as the adversary’s advantage.

Notice that the runtime and success probability are measured as a
function of the security parameter. Importantly:

• Honest algorithms run in fixed polynomial time in λ.

• Adversaries may run in (arbitrary) polynomial time in λ, and
should have only negligible advantage.

• Honest algorithms are uniform, whereas the adversary is
allowed to be non-uniform.

Can we construct an encryption scheme that achieves this defini-
tion??7 7 We will construct an encryption

scheme that achieves an even stronger
definition, where the messages
(mb,1, . . . , mb,ℓ) can be chosen adap-
tively depending on the ciphertexts.
Namely, We allow the adversary to
have black-box access to Enc(k, ·) and
guarantee that for every m0, m1 that the
adversary did not query it still holds
that he cannot distinguish between
Enc(k, m0) and Enc(k, m0), even with
all the ciphertexts it obtained from the
oracle.

Not if NP = P! So, if we construct a computationally secure en-
cryption scheme it will immediately imply that NP ̸= P, so this seems
out of reach. Instead, we will construct such a scheme and prove that
it is secure under some computational assumption. Namely, we will
only prove conditional security.

One could hope to prove the security of our scheme under the as-
sumption that NP ̸= P. We do not know how to that. But we do have
schemes that are secure assuming the existence of one-way functions,
which is known to be equivalent to the existence of a computation-
ally secure encryption scheme.

One-way functions

Intuitively, a one-way function is a function that is easy to compute,
but hard to invert. Namely, you can compute it in one direction, but
not the other.

Definition 4. A function f {0, 1}∗ → {0, 1}∗ is one-way if it satisfies
the following two conditions:

lecture 2: computational secrecy 5

• Easy to compute: There exists a poly-time algorithm B such
that for every x ∈ {0, 1}∗, B(x) = f (x).

• Hard to invert: For every poly-size adversary A there exists a
negligible function µ such that for every λ ∈N

Pr
x←{0,1}λ

[A(f (x)) = x′ s.t. f (x′) = f (x)] ≤ µ(λ)

Our first cryptographic tool: Pseudo Random Generator (PRG)

Our goal is to encrypt messages of length n with a key of length
λ << n. Suppose that we lived in a magical world where we could
take one secret key k ← {0, 1}λ and stretch it into a random key of
length n! Then we could use this stretched key as a one-time pad,
and hence securely encrypt a message of length n!

You may think that it is impossible to generate randomness out
of thin air! But using cryptographic magic it is possible! This is one
of the most beautiful and magical gifts that cryptography bestowed
upon us.

	Recap
	Overcoming Shannon's Conundrum
	Our first cryptographic tool: Pseudo Random Generator (PRG)

