Lecture 19: Commitment Shchemes and Non-Interactive
Zero-Knowledge (NIZK)

Notes by Yael Kalai

MIT - 6.5620
Lecture 19 (November 17, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Recap

In the last class, we constructed the zero-knowledge proof for the
language 3COL, and hence for all of NP, assuming the existence of
physical safes.

Outline

e Show how to implement physical safes using the notion of
commitment schemes. We will see definitions and construc-
tions.

* Define non-interactive zero-knowledge.

e Construct NIZK for NP in the Random Oracle Model, or
assuming the soundness of the Fiat-Shamir paradigm.

Commitment Schemes

Definition 1. A commitment scheme corresponding to a message
space M consists of a pair of algorithms (Gen, Com):

* Genis a PPT algorithm that takes as input the security pa-
rameter 1! and outputs public parameters, denoted by
pp € {0, 1}POY(Y),

* Com is a polynomial-time computable function that takes an
input public parameters pp, a message m € M and random-
ness r <% {0,1}* and outputs a commitment Com(pp, m, 7).

The following two properties are required to hold:

e Hiding: For every mgy, m; € M,

(pp/ Com(pp/ my, 7’0)) ~ (pp/ Com(pp/ my, 7’1))

One can think of both Gen and Com as
randomized algorithms. We chose to
explicitly include the randomness of
Com, and hence think of it as being de-
terministic since when the commitment
is opened the randomness is revealed

LECTURE 19: COMMITMENT SHCHEMES AND NON-INTERACTIVE ZERO-KNOWLEDGE (NIZK)

for pp <— Gen(1%) and g, 7, & {0,1}*.

¢ Binding: For every (even all-powerful) adversary .A:

Pr [A(pp) = (mp,r9,my,11) s.t. mg # my A Com(pp, mg,ty) = Com(pp,myp,r9)] = negl(A).
pp+Gen(11)

Remark. If the hiding property holds for every pp, then we can replace
each physical safe with a commitment to the relevant color, w.r.t.
pp randomly chosen and sent by the verifier. In this case, the ZK
protocol above becomes a computational ZK protocol, due to the
computational hiding guarantee. It still has same completeness and
soundness guarantees, up to a negligible loss in soundness due to the
fact that there is a negligible probability that pp is sampled in a way
that does not bind the cheating prover.

If the hiding property holds only for a random pp (as opposed to
every pp), then we cannot let a (possibly malicious) verifier sample
it. Nevertheless, jumping ahead, a hiding guarantee for random pp
is useful for NIZK where there is a trusted common referenced string
which may contain pp.

Remark. In the above definition, the hiding requirement is compu-
tational and the binding is statistical. One can define a commitment
scheme to be statistically hiding and only computationally binding (as
you will see in the HW). If we replace our opaque boxes with such
a commitment, that is statistically hiding for every pp, then we ob-
tain statistical ZK (due to the statistical hiding property of the com-
mitment scheme), but get soundness only against computationally
bounded cheating provers since an all-powerful cheating prover can
break the binding of the commitment scheme. We will talk more
about such computational soundness guarantee in the upcoming
lectures.

Constructing a Commitment Scheme

It is known how to construct a commitment scheme from the mini-
mal assumption that one-way functions exist. We will see two con-
structions: The first assumes the existence of one-way functions. The
second assumes the existence of injective one-way functions, but does
not need any public parameters!

Construction from OWFs: Let G : {0,1}* — {0,1}* be a pseudo-

random generator (PRG) that takes inputs of length A bit string and

outputs a length 3A bit string. Recall that we know how to construct

such a PRG from any OWEF [6]. We saw a construction from any OWP.

e Gen(1*) outputs a uniformly random string u < {0,1}3".

LECTURE 19: COMMITMENT SHCHEMES AND NON-INTERACTIVE ZERO-KNOWLEDGE (NIZK)

e Com(u,b,r)=G(r)®b-u.
Hiding (for every pp = u) follows from the assumption that G(r) is
indistinguishable from uniform in {0,1}3*, which in turn implies that
for every u € {0,1}3*,
G(r)®u=~G(r).

Binding follows from the fact that
Pr [3r,7 € {0,1}*:G(r)eu=G()] =
u+{0,1}34

Pr [3rr €{0,1}":G(r)®G() =u] <
u+{0,1}34

g —n A
231 ’
Construction from injective OWF without pp: We will see a simple
construction from injective one-way functions. This construction does
not need pp.
Fix an injective one-way function f : {0,1}* — {0,1}*. Let P be a
(randomized) hardcore predicate corresponding to f. Define

Com(b, (r,s)) = (f(r),s,P(r,s) ®b)

Note that this scheme has no public parameters. Computational
hiding follows from the fact that P is a hardcore predicate of f, which
by definition implies that

(f(r),s, P(r,s)) = (f(r),s,U)

where U < {0,1} is a uniformly random bit.
Binding follows from the fact that f is injective.

Non-Interactive ZK (NIZK)

Definition 2. A NIZK for a language £ € NP consists of three (non-
interactive) PPT algorithms (Gen, P, V):

1. Gen: Takes as input the security parameter 1* and outputs crs.

2. Prover P: Takes as input crs and an instance x and a corresponding
witness w, and outputs a proof 7.

3. Verifier V: Takes as input crs an instance x and a proof 7 and
outputs a bit 0 or 1, indicating whether it rejects or accepts the
proof.

The following three properties are required to hold:

3

LECTURE 19: COMMITMENT SHCHEMES AND NON-INTERACTIVE ZERO-KNOWLEDGE (NIZK)

e Completeness: There exists a negligible function u such that
for every A € N and every (x,w) € R,

Pr[(V(ers, x, P(crs, x,w)) =1] > 1 —pu(A)

where the probability is over crs < Gen(1") and over the
randomness of the prover P.

* (Adaptive) Soundness: For every poly-size (cheating) prover
P* there exists a negligible function y such that for every
A €N,

Pr[P*(crs) = (x, 1) : x ¢ L A V(ers,x,) =1] < pu(A)

where the probability is over crs < Gen(1%).

* (Non-Adaptive) Zero-knowledge: For every PPT V* there
exists a PPT simulator S, such that for every polynomial time
instance generator algorithm Z, that on input 1* outputs
(x,w) € R,

(crs, x, P(crs, x,w)) ~ S(1*, x)
where crs < Gen(1!) and (x,w) = Z(1).

Remark. One can strengthen the above zero-knowledge condition

to be multi-theorem ZK which asserts that there exists a simulator
that simulates multiple proofs (as opposed to only one). Indeed, this
would be a more meaningful definition. One can also strengthen
the definition by considering an adaptive version, where the in-
stance generator algorithm 7 takes as input crs and may generate
the instances (x, w) as a function of crs. Indeed, this adaptive multi-
instance ZK version is the desired one.

NIZK Construction in the Random Oracle Model

The Random Oracle Model (ROM) assumes that the parties have
oracle access to a hash function H that is truly random. Note that
black-box access to a pseudorandom function is indistinguishable
from a ROM.

The NIZK construction in the ROM is the following: Parallel re-
peat the ZK construction for 3COL, denoted by (P, V). This is no
longer ZK but it is honest-verifier ZK (HVZK), since parallel repeti-
tion preserves HVZK. Next convert this three message protocol into a
non-interactive one by replacing the message sent by the verifier with
a Random Oracle (RO) H. Specifically, the NIZK scheme, denoted by
(Gen, Pnizk, Vinizk) is defined as follows:

4

LECTURE 19: COMMITMENT SHCHEMES AND NON-INTERACTIVE ZERO-KNOWLEDGE (NIZK) 5

e Gen(1") generates a RO H and pp for the underlying commit-
ment scheme.

* Pyizk(crs, x, w) repeats the ZK protocol in parallel k =
poly(A, |G|) times as follows:

1. Generate a = (ay,...,ax), where each g; is generated by
independently running P would compute its first message.

2. Compute ¢ = H(a), where e = (61, e, ek) S {0, 1}k.1 * We assume for simplicity, and without
. loss of generality, that H outputs
3. Compute the COrrespOndlng answers z = (Zl, ceey Zk), elements in {O, 1}k ThlS iS WLOG since
where each z; is generated using the underlying prover P if H outputs only one bit, then we can

to complete the i’th execution. run H on each input (4,1), for i € [k].

4. Output 7 = (a,¢,z).
* Vaizk(crs, x, r) does the following:
1. Parse 7w = (g,¢,2).
2. Check that e = H(a). If this does not hold then output 0.
3. Parsea = (ay,...,a;),e=(e1,...,e) and z = (z1,...,2;).

4. Output 1 if and only if for every i € [K]
V(x,ai e, z;) = 1.

Completeness follows immediately from the completeness of the
underlying ZK proof. Soundness follows from the fact that parallel
repetition in proof systems reduces soundness to negligible, and from
the fact that H is a random oracle, and hence “communicating with
H is similar to communicating with V.” ZK follows from the fact

that one can program the RO. Specifically, first use the simulator for
an honest verifier, to generate a simulated transcript (a,¢,z). Then
program the RO H to one such that H(a) = e. Note that since we can
program H on many inputs, we get ZK for many instances.

Replacing ROM with an Explicit Hash Function

In general, we do not know how to prove the security of the NIZK
when instantiated with an explicit (real-world) hash function. Once
H is replaced with an explicit hash function, both soundness and ZK
are in danger!

Zero knowledge: We know how to prove ZK for a single statement

by using a special "programmable” hash function that can be pro-
grammed so that H(a) = e. For example given any keyed hash
function H with key k, one can define a new hash function with key
(k,u) where u < {0,1}*, and define

Hy(x) = Hy(x) @ .

LECTURE 19: COMMITMENT SHCHEMES AND NON-INTERACTIVE ZERO-KNOWLEDGE (NIZK)

In this case one can simulate the view by generating (4, ¢, z) using
the simulator corresponding to the honest verifier, and then setting
choosing u so that Hy ,(a) = e, which can be done easily by setting

u = Hi(a) ®e.

This works assuming a does not depend on u, which indeed holds

if x is chosen non-adaptively. There are 3-message ZK proofs for NP
where the first message a does not depend on the instance x at all, in
which case x can be chosen adaptively (for example, the ZK proof for
Graph Hamiltonicity due to [3]). Thus, with this hash function, we
get adaptive ZK single-instance for NP. One can then use a beautiful
idea, due to Feige, Lapidot and Shamir [3] to get to many-instance
ZK. The basic idea to get many instance ZK, is by making u really
large and using a “fresh” part of u for each NIZK proof; and then
shrinking u via a PRG.

Soundness: Whether soundness is preserved is a great question
that is still poorly understood. In general, the idea of eliminating

interaction from public-coin? interactive proofs by replacing the 2 A public-coin protocol is one where
the verifier simply sends uniformly

verifier with an explicit hash function dates back to a beautiful paper |
random (unstructured) bits.

by Fiat and Shamir [4].3 Since then, there has been a lot of works on 3 They considered the specific appli-

trying to understand whether this paradigm is sound; namely, does cation of eliminating rounds from
interactive identification schemes to

. . . . obtain signature schemes, but by now
verifier with this hash function we are guaranteed to have soundness. we refer to the Fiat-Shamir paradigm

there always exist an explicit hash function that if we replace the

We know that for many message (non-constant round) protocols, as a general paradigm for eliminating
even if we replace the verifier with a RO, we may lose soundness.
This is the case for sequential repetition of our ZK protocol for 3COL,
since a cheating prover can guess the hash value simulate the proof,
and if the guess was wrong try again.

Even for constant round protocols with negligible soundness we
have counter examples [1, 5], showing that the Fiat-Shamir paradigm
is not secure, if the underlying protocol is only computationally sound.
For statistically sound protocols, we believe that there should be
a sound way to instantiate the Fiat-Shamir paradigm (for constant
round protocols with negligible soundness), but we still do not know
how to prove this from standard assumptions.

In 2019, there was a breakthrough result [2, 7] that showed that
there exists a 3-message ZK proof (the one for graph Hamiltonicity
from [3]), that if repeated in parallel and converted into a NIZK as
above, then there does exist an explicit hash function that makes it
sound and zero-knowledge.

interaction from public-coin protocols.

6

LECTURE 19: COMMITMENT SHCHEMES AND NON-INTERACTIVE ZERO-KNOWLEDGE (NIZK)

References

[1]

[2]

(6]

Boaz Barak. How to go beyond the black-box simulation barrier.
In 42nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 106—115. IEEE Computer Society, 2001.

Ran Canetti, Alex Lombardi, and Daniel Wichs. Fiat-shamir:
From practice to theory, part ii (NIZK and correlation intractabil-
ity from circular-secure FHE). Technical Report 2018/1248, Cryp-
tology ePrint Archive, 2018.

Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-
interactive zero knowledge proofs based on a single random
string. In 315t Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 308-317. IEEE, 1990.

Amos Fiat and Adi Shamir. How to prove yourself: Practical so-
lutions to identification and signature problems. In Andrew M.
Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, Santa Bar-
bara, California, USA, 1986, Proceedings, volume 263 of Lecture
Notes in Computer Science, pages 186—194. Springer, 1986.

Shafi Goldwasser and Yael Tauman Kalai. On the (in)security
of the fiat-shamir paradigm. In g4th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 102-113. IEEE
Computer Society, 2003.

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael
Luby. A pseudorandom generator from any one-way function.
SIAM Journal on Computing, 28(4):1364-1396, 1999.

Chris Peikert and Sina Shiehian. Noninteractive zero knowl-
edge for NP from (plain) learning with errors. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptol-
ogy — CRYPTO 2019, volume 11692 of Lecture Notes in Computer
Science, pages 89—114. Springer, 2019.

	Recap
	Outline
	Commitment Schemes
	Constructing a Commitment Scheme
	Non-Interactive ZK (NIZK)
	NIZK Construction in the Random Oracle Model
	Replacing ROM with an Explicit Hash Function

