
Lecture 18: Zero-Knowledge Interactive Proofs (Cont.)
Notes by Yael Kalai

MIT - 6.5620
Lecture 18 (November 12, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Construct a ZK proof for the language of Quadratic Residues.

• Construct ZK proof for all of NP.

• Construct a commitment scheme from one-way functions.

Recap

Definition 1 (ZK). Fix a language L ∈ NP with a corresponding
NP relation R. We say that an interactive proof (P ,V) for L is (com-
putational) zero-knowledge if for every PPT verifier V∗ there exists a
PPT simulator S such that for every polynomials ℓ1 = ℓ1(λ) and
ℓ2 = ℓ2(λ), the following holds:

For every λ ∈ N every x ∈ L of size |x| = ℓ1(λ), every witness w
with (x, w) ∈ R, and every auxiliary input z ∈ {0, 1}ℓ2(λ), the fol-
lowing ensembles (over the security parameter) are computationally
indistinguishable:{

View
(
(P(w),V∗)(1λ, x, z)

) }
λ∈N

≈
{

S(1λ, x, z)
}

λ∈N
.

In addition, it is required that P runs in polynomial time (given a
witness w).

Remark. We say that an interactive proof (P ,V) for L is (compu-
tational) honest-verifier ZK if the above holds only for the honest
verifier V .

Construction of ZK Protocol for the NP Language QR

Goldwasser Micali and Rackoff [2] showed how to construct ZK
proof for some NP languages. For example, they constructed a ZK
proof for the language

QR = {(N, y) : ∃x ∈ Z∗N s.t. y = x2 mod N}

lecture 18: zero-knowledge interactive proofs (cont.) 2

The proof is very simple! Given an instance (N, y) it proceeds as
follows:

1. The prover chooses a random r ← Z∗N and sends to the verifier the
element s = r2 mod N.

2. The verifier chooses a random bit b← {0, 1}.

3. If b = 0 the prover sends z = r. If b = 1 the prover sends z = r · x,
where x is the witness (i.e., y = x2 mod N).

4. If b = 0 the verifier accepts iff z2 = s mod N. If b = 0 the verifier
accepts iff z2 = s · y mod N.

This protocol is ZK. Let us first prove that it is honest-verifier ZK.
The simulator will choose a random bit b ← {0, 1} on behalf of the
verifier. If b = 0 it will first choose the prover’s first message, by
sampling a random r ← Z∗N and setting s = r2 mod N, and then
set the prover’s second message to be z = r. If b = 1 then it will
first choose the prover’s second message, by sampling a random
element z ← Z∗N , and then set the prover’s first message to be s =

z2 · y−1 mod N. Note that this protocol is perfect honest-verifier zero-
knowledge. Namely, the simulated view is identical to the real view.

This protocol is also (malicious verifier) ZK. The simulator is very
similar to the one above. It will guess the (malicious) verifier’s bit
b ← {0, 1}, and produce (s, z) as above. If V(x, s) = b then out-
put (s, b, z) as the simulated transcript. Else, try again. Repeat for at
most k = poly(λ) times (to ensure the simulator runs in polynomial
time). Note that this protocol is statistical zero-knowledge. Namely,
the simulated view is statistically close to the real view. The reason
the simulation is not perfect is that the simulator fails with probabil-
ity 2−k.

This protocol has perfect completeness and soundness 1/2. To
amplify the soundness we simply repeat the entire protocol.

Remark. To maintain the zero-knowledge property, we need to re-
peat the protocol sequentially. Sequential repetition preserves zero-
knowledge. This is where the auxiliary information z is useful. We
think of prior executions as auxiliary input.

It is tempting to repeat the protocol in parallel, to avoid blowing
up the round complexity. Unfortunately, in general, parallel rep-
etition does not preserve ZK (see HW 4). If all we want is honest-
verifier ZK then we can repeat the protocol in parallel.

lecture 18: zero-knowledge interactive proofs (cont.) 3

Constructing Zero-Knowledge Proofs for all of NP

Goldreich Micali and Wigderson proved that every language in NP

has a zero-knowledge proof, assuming one-way functions exist [1]. In
other words, every proof can be made zero-knowledge!

We will see a zero-knowledge proof for a specific NP-complete
language called 3Col which contains the set of all graphs G = (V, E)
such that the set of vertices V can be colored by three colors: C :
V → {1, 2, 3} such that no two adjacent vertices have the same color.
Namely, for every (u, v) ∈ E, C(u) ̸= C(v).

We first show how to convert a coloring C : V → {1, 2, 3}, which
is a proof that the graph G is 3-colorable, into a “physical” zero-
knowledge proof.

1. The prover does the following:

(a) Choose a random permutation π : {1, 2, 3} → {1, 2, 3}.
Denote by V = {1, 2, . . . , n}.

(b) For every i ∈ [n] place the color π(C(i)) in an opaque locked
box and send the n locked boxes to the verifier.

2. The verifier chooses a random edge (i, j) ∈ E and sends (i, j) to the
prover.

3. The prover sends the keys that open only box i and box j.

4. The verifier accepts if and only if the colors in these boxes are
distinct and are legal (i.e., belong to the set {1, 2, 3}).

Is this protocol zero-knowledge? It is definitely honest-verifier zero-
knowledge since the the only thing the verifier learns is two distinct
random colors. We can simulate this by choosing a random edge
(u, v) (on behalf of the verifier), sampling two distinct random colors
cu, cv ∈ {1, 2, 3}, storing these colors in the boxes corresponding
to the vertices u and v, and then opening these boxes. This view is
identical to the real view.

It is also (malicious verifier) zero-knowledge. The simulator can
guess the verifier’s edge (u, v) randomly, store the random distinct
colors cu, cv ∈ {1, 2, 3} in their boxes, give the boxes to the malicious
verifier, and if the verifier sends back the edge (u, v) the continue the
simulation. If not, try again! Currently, we think of the boxes as

ideal opaque physical boxes. But soon
we will replace them with a digital
commitment to each color, and a
malicious verifier can choose its edge as
a function of this commitment string.

It has completeness 1. The soundness is only 1− 1
|E| but can be

amplified via repetitions. By repeating k = |E| · λ, with probability
(1− 1/|E|)|E|·λ the simulator will fail with probability 2−Ω(λ). Each
time we repeat we need to choose a fresh permutation.

lecture 18: zero-knowledge interactive proofs (cont.) 4

Remark. The above protocol is a physical protocol, where the prover
sends opaque locked boxes. Such boxes have a digital analogue. This
is called a commitment scheme.

Commitment Schemes

Definition 2. A commitment scheme corresponding to a message
spaceM consists of a pair of algorithms (Gen,Com):

• Gen is a PPT algorithm that takes as input the security pa-
rameter 1λ and outputs public parameters, denoted by
pp ∈ {0, 1}poly(λ).

• Com is a polynomial-time computable function that takes an
input public parameters pp, a message m ∈ M and random-
ness r ←R {0, 1}λ and outputs a commitment Com(pp, m, r).

One can think of both Gen and Com as
randomized algorithms. We chose to
explicitly include the randomness of
Com, and hence think of it as being de-
terministic since when the commitment
is opened the randomness is revealed

The following two properties are required to hold:

• Hiding: For every m0, m1 ∈ M,

(pp,Com(pp, m0, r0)) ≈ (pp,Com(pp, m1, r1))

for pp← Gen(1λ) and r0, r1 ←R {0, 1}λ.

• Binding: For every (even all-powerful) adversary A:

Pr
pp←Gen(1λ)

[A(pp) = (m0, r0, m1, r1) s.t. m0 ̸= m1 ∧ Com(pp, m0, r0) = Com(pp, m0, r0)] = negl(λ).

Remark. Note that if we replace each physical opaque locked boxes
with a commitment to to the relevant color, then the ZK protocol
above becomes a computational ZK protocol, due to the computa-
tional hiding guarantee. It still has same completeness and sound-
ness guarantees (up to a negligible loss in soundness due to the fact
that there is a negligible probability that pp is sampled in a way that
does not bind the adversary).

Remark. In the above definition, the hiding requirement is compu-
tational and the binding is statistical. One can define a commitment
scheme to be statistically hiding and only computationally binding
(as you will see in the HW). If we replace our opaque boxes with
such a commitment then we obtain statistical ZK (due to the statisti-
cal hiding property of the commitment scheme), but get soundness
only against computationally bounded cheating provers since an all-
powerful cheating prover can break the binding of the commitment
scheme. We will talk more about such computational soundness
guarantee in the upcoming classes.

lecture 18: zero-knowledge interactive proofs (cont.) 5

Constructing a Commitment Scheme

It is known how to construct a commitment scheme from the mini-
mal assumption that one-way functions exist. We will see two con-
structions: The first assumes the existence of one-way functions. The
second assumes the existence of injective one-way functions, but does
not need any public parameters!

Construction from OWFs: Let G : {0, 1}∗ → {0, 1}∗ be a PRG that
takes inputs of length λ to outputs of length 3λ length doubling
pseudorandom generator (which we know how to construct from any
OWF).

• Gen(1λ) outputs a uniformly random string u← {0, 1}3λ.

• Com(b, r) = G(r)⊕ b · u.

Hiding follows from the assumption that G(r) is indistinguishable
from uniform in {0, 1}3λ, which in turn implies that

G(r)⊕ u ≈ G(r).

Binding follows from the fact that

Pr
u←{0,1}3λ

[∃r, r′ ∈ {0, 1}λ : G(r)⊕ u = G(r′)] =

Pr
u←{0,1}3λ

[∃r, r′ ∈ {0, 1}λ : G(r)⊕ G(r′) = u] ≤

22λ

23λ
= 2−λ.

Construction from injective OWF without pp: We will see a simple
construction from injective one-way functions. This construction does
not need pp.

Fix an injective one-way function f : {0, 1}∗ → {0, 1}∗. Let P be a
(randomized) hardcore predicate corresponding to f . Define

Com(b, (r, s)) = (f (r), s, P(r, s)⊕ b)

Note that this scheme has no public parameters. Computational
hiding follows from the fact that P is a hardcore predicate of f , which
by definition implies that

(f (r), s, P(r, s)) ≈ (f (r), s, U)

where U ← {0, 1} is a uniformly random bit.
Binding follows from the fact that f is injective.

lecture 18: zero-knowledge interactive proofs (cont.) 6

References

[1] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
prove all np-statements in zero-knowledge, and a methodology
of cryptographic protocol design. In Andrew M. Odlyzko, editor,
Advances in Cryptology - CRYPTO ’86, Santa Barbara, California,
USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 171–185. Springer, 1986.

[2] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems (extended abstract).
In Robert Sedgewick, editor, Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence,
Rhode Island, USA, pages 291–304. ACM, 1985.

	Outline
	Recap
	Construction of ZK Protocol for the NP Language QR
	Constructing Zero-Knowledge Proofs for all of NP
	Commitment Schemes
	Constructing a Commitment Scheme

