
Lecture 17: Zero-Knowledge Interactive Proofs
Notes by Yael Kalai

MIT - 6.5620
Lecture 17 (November 5, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Interactive proofs

• Zero-knowledge interactive proofs

Recap

In the last two classes we learned about fully homomorphic encryp-
tion (FHE) schemes. FHE is an important primitive in today’s world
where we have large amounts of (possibly sensitive) data that we
cannot store locally on our own devices. FHE allows us to store our
data encrypted on an untrusted platform, and yet allow the plat-
form to do computations on our encrypted data. Moreover, even if
our sensitive data is stored on a trusted platform, for example our
medical data is stored on our hospital servers, which we supposedly
trust, the hospitals may want to collaborate and learn from their joint
sensitive medical data. FHE allows them to collaborate without re-
vealing to each other sensitive information about each other’s data.
FHE indeed allows us to obtain secrecy but what about integrity?

Suppose we store our data on an untrusted platform and then
request the platform to perform computations on our encrypted data.
How do we know that indeed the platform is doing the instructed
computation? In other words, can we efficiently verify that a computation
was done correctly? Namely, is there a succinct and efficiently verifiable
proof that we can append to the output of a computation attesting to
the fact hat this output is indeed correct? This is the topic for the next
five lectures.

Following our convention that “efficient” means polynomial time,
we ask which computations (beyond P) have proofs of correctness
that can be verified in polynomial time? This is precisely the defini-
tion of the complexity class NP, which is the set of all languages that
have membership proofs (aka witnesses) that can be checked by a

lecture 17: zero-knowledge interactive proofs 2

polynomial-time verifier algorithm, denoted V . We would like proofs
of correctness for languages outside of NP. More precisely, our focus
is on a fine-grained version of the question above. Namely, do there
exist proofs of correctness for time T computations that can be verified in
time << T (say time Tϵ or even polylog(T))? Unfortunately, we do
not believe that every T-computable language has a proof (or a “wit-
ness”) of size << T. As you learned by now, cryptography is an art
of overcoming such barriers. We overcome this barrier by changing
the definition of a proof and by making use of some cryptographic
magic!

Interactive Proofs and Zero-Knowledge Proofs

Proof systems have been studied by mathematicians for thousands
of years, starting from Euclid (300 BCE). A huge amount of progress
in computer science has been made by attempting to computation-
ally formalize the notion of a proof. This led to the definition of the
complexity class NP, which is the set of all languages L such that
membership in the language x ∈ L can be efficiently verified given a
polynomial-size proof w ∈ {0, 1}poly(n) (called a witness).

Definition 1. A language L ⊆ {0, 1}∗ is in NP if there exists a poly-
nomial m : N → N and a poly-time algorithm R such that for
every n ∈ N and every x ∈ {0, 1}n, x ∈ L if and only if there exists
w ∈ {0, 1}m(n) such that R(x, w) = 1.

Until recently, all proof systems were of a somewhat similar form
which is simply a list of formulas that follow from a set of inference
rules and axioms.

This changed in the mid eighties when Goldwasser, Micali and
Rackoff defined the notion of a zero-knowledge proof [1]. Intuitively, a
zero-knowledge proof is one that reveals no information beyond the
validity of the statement (and can be verified in polynomial time).
What does “no information” mean? How is this formalized? Gold-
wasser et al. formalized it as follows: No information means we
could have generated it on our own. However, with such formulation
zero-knowledge proofs exist only for easy languages (i.e., ones that
are in P).

To avoid this limitation, they completely changed the way we
think about proofs. They defined a new notion called interactive
proofs. Such proofs extend upon the classical notion of “proofs” in
two ways. First, rather than solely considering a verifier algorithm V ,
we instead think of the proof as arising from interaction between the
verifier V and a prover algorithm P . Second, we allow the verifier to
access “private” randomness that is not accessible to the prover.

lecture 17: zero-knowledge interactive proofs 3

Both the verifier and prover algorithms will have access to the
input of the problem instance. The two algorithms will exchange
messages sequentially, computing the next message in the sequence
as a function of the messages up to that point. Ultimately, the ver-
ifier algorithm will decide whether to accept or reject the problem
instance. We can think of the interaction metaphorically as the prover
trying to “convince” the verifier of the problem instance being true,
and of the verifier trying to verify that the prover is not “dishonest”
or “cheating” and misleading the verifier into accepting a false state-
ment.

Definition 2 (Interactive Proof system (IP)). An interactive proof sys-
tem for a language L consists of an interactive PPT verifier algorithm
V and an interactive (possibly inefficient) algorithm P , which ex-
change a series of messages m1, . . . , mk, with each message computed
as a function of all the previous messages: mi = V(x, m1, . . . , mi−1),
and likewise for P . Notably, the verifier’s computations may also
depend upon private random bits not revealed to the prover. Denote
by (P ,V(r))(x) = 1 the event that the verifier V , with private ran-
domness r, accepts the interactive proof after communicating with
the prover P on the joint input x and assuming V has randomness r.
The following two properties are required to hold:

1. Completeness: ∀x ∈ L,

Pr[(P ,V(r))(x) = 1] ≥ 2
3

2. Soundness: ∀x /∈ L and ∀ (malicious and possibly all powerful) P∗,

Pr[(P∗,V(r))(x) = 1] ≤ 1
3

.

Remark. These numbers (2
3 and 1

3) are arbitrary. By repeating the
interactive proof λ times and accepting if and only if at least λ

2 are ac-
cepting we can get completeness 1− negl(λ) and soundness negl(λ).
This follows from the Chernoff bound, which is a concentration
bound that says that if X1, . . . , Xλ are independent and identically
distributed Bernouli random variables such that Pr[Xi = 1] = p then
Pr[| 1λ ∑i∈λ Xi − p| > δ] ≤ 2−O(δ2·p·λ). See this for information about the

Chernoff bound.We therefore often give P and V an additional input 1λ, and re-
quire completeness to hold with probability 1− negl(λ) and sound-
ness to hold with probability negl(λ).

The class IP is the set of all languages L that have such an in-
teractive proof. Note that NP ⊆ IP but IP may contain additional
languages.

https://en.wikipedia.org/wiki/Chernoff_bound

lecture 17: zero-knowledge interactive proofs 4

Remark. The power of the class IP comes from the fact that the verifier
is randomized. If the verifier was deterministic this class would be
equivalent to NP

Example: Graph Non-Isomorphism

A graph G is defined by a set of vertices V and a set of edges E ⊆
V × V, where each edge is a pair (u, v) for u, v ∈ V. Two graphs Formally,we have defined a directed

graph,because we have denoted an edge
as an ordered pair. For this lecture this
distinction is not important and you can
think of the edges as non-directed.

G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic if there
exists a permutation π : V1 → V2 such that for every u, v ∈ V1,

(u, v) ∈ E1 if and only if (π(u), π(v)) ∈ E2.

Denote by

Liso = {(G1, G2) : G1, G2 are isomorphic}.

Note that Liso ∈ NP. But we believe that the complement language:

L̄iso = {(G1, G2) : G1, G2 are not isomorphic}

is not in NP.
Yet there is a simple interactive proof for proving membership

in L̄iso. Given a pair of non-isomorphic graphs (G1, G2) the interac-
tive proof proceeds as follows: In what follows, assume for simplicity
that V1 = V2 = [n]. This is without loss of generality since we can
simply rename the variables to be in [n] assuming |V1| = |V2| = n.1 1 If |V1| ̸= |V2| then the verifier immedi-

ately knows that the two graphs are not
isomorphic.1. V chooses a random b ∈ {1, 2} and chooses a random permutation

π : [n]→ [n]. It sends π(Gb) to P.

2. P sends b′ such that Gb′ is isomorphic to π(Gb).

3. The verifier accepts if and only if b′ = b.

This shows that interactive proofs are likely to be more powerful
than NP! There is something else really nice about this proof: the
(honest) verifier did not learn anything about why the graphs are
non-isomorphic! He knew that b′ = b!

Definition of Zero-Knowledge

Definition 3 (Honest verifier ZK). Fix a language L ∈ NP with a
corresponding NP relation R. We say that an interactive proof (P ,V)
for L is honest-verifier (computational) zero-knowledge if there exists a
PPT simulator S such that for every polynomials ℓ1 = ℓ1(λ) and
ℓ2 = ℓ2(λ), the following holds:

lecture 17: zero-knowledge interactive proofs 5

For every λ ∈ N every x ∈ L of size |x| = ℓ1(λ), every witness w
with (x, w) ∈ R, and every auxiliary input z ∈ {0, 1}ℓ2(λ), the fol-
lowing ensembles (over the security parameter) are computationally
indistinguishable:{

View
(
(P(w),V)(1λ, x, z)

) }
λ∈N

≈
{

S(1λ, x, z)
}

λ∈N
.

In addition, it is required that P runs in polynomial time (given a
witness w).

Definition 4 (ZK). Fix a language L ∈ NP with a corresponding
NP relation R. We say that an interactive proof (P ,V) for L is (com-
putational) zero-knowledge if for every PPT verifier V∗ there exists a
PPT simulator S such that for every polynomials ℓ1 = ℓ1(λ) and
ℓ2 = ℓ2(λ), the following holds:

For every λ ∈ N every x ∈ L of size |x| = ℓ1(λ), every witness w
with (x, w) ∈ R, and every auxiliary input z ∈ {0, 1}ℓ2(λ), the fol-
lowing ensembles (over the security parameter) are computationally
indistinguishable:{

View
(
(P(w),V∗)(1λ, x, z)

) }
λ∈N

≈
{

S(1λ, x, z)
}

λ∈N
.

In addition, it is required that P runs in polynomial time (given a
witness w).

Construction of ZK Protocol for the NP Language QR

Goldwasser Micali and Rackoff [1] showed how to construct ZK
proof for some NP languages. For example, they constructed a ZK
proof for the language

QR = {(N, y) : ∃x ∈ Z∗N s.t. y = x2 mod N}

The proof is very simple! Given an instance (N, y) it proceeds as
follows:

1. The prover chooses a random r ← Z∗N and sends to the verifier the
element s = r2 mod N.

2. The verifier chooses a random bit b← {0, 1}.

3. If b = 0 the prover sends z = r. If b = 1 the prover sends z = r · x,
where x is the witness (i.e., y = x2 mod N).

4. If b = 0 the verifier accepts iff z2 = s mod N. If b = 0 the verifier
accepts iff z2 = s · y mod N.

lecture 17: zero-knowledge interactive proofs 6

This protocol is ZK. Let us first prove that it is honest-verifier ZK.
The simulator will choose a random bit b ← {0, 1} on behalf of the
verifier. If b = 0 it will first choose the prover’s first message, by
sampling a random r ← Z∗N and setting s = r2 mod N, and then
set the prover’s second message to be z = r. If b = 1 then it will
first choose the prover’s second message, by sampling a random
element z ← Z∗N , and then set the prover’s first message to be s =

z2 · y−1 mod N.
This protocol is also (malicious verifier) ZK. The simulator is very

similar to the one above. It will guess the (malicious) verifier’s bit
b ← {0, 1}, and produce (s, z) as above. It V(x, s) = b then output
(s, b, z) as the simulated transcript. Else, try again.

This protocol has perfect completeness and soundness 1/2. To
amplify the soundness we simply repeat the entire protocol.

Remark. To maintain the zero-knowledge property we need to re-
peat the protocol sequentially. In general parallel repetition does not
preserve ZK (see HW 4). But sequential repetition does!

If all we want is honest-verifier ZK then we can repeat the protocol
in parallel.

References

[1] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems (extended abstract).
In Robert Sedgewick, editor, Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence,
Rhode Island, USA, pages 291–304. ACM, 1985.

	Outline
	Recap
	Interactive Proofs and Zero-Knowledge Proofs
	Example: Graph Non-Isomorphism
	Definition of Zero-Knowledge
	Construction of ZK Protocol for the NP Language QR

