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Recap

• Last lecture we defined the notion of a homomorphic encryp-
tion scheme w.r.t. a circuit class C = {ℓ}ℓ∈N.

• We presented the GSW construction [2].

Recap of the GSW Construction

The GSW construction is extremely similar to the Regev construction.
Similarly to the Regev construction, it is associated with parameters
q, n, m, χ, where n is the security parameter, q, m ∈ N are functions of
n, and χ is an error distribution which is assumed to output elements
in Zq of bounded size (say, elements in [−σ, σ]).

Given these LWE parameters, we will let N = (n + 1) · ⌈log q⌉.
Then, the construction works as follows:

• Gen(1λ)→ (pk, sk):

– Sample a random vector s← Zn
q .

– Sample a random matrix A← Zm×n
q

– Sample a random error vector e← χm.

– Set B = (A, As + e) ∈ Z
m×(n+1)
q .

– Set t =

(
−s
1

)
∈ Z

(n+1)
q as the secret key.

– Output (pk, sk) = (B, t).

Note that Bt = e ≈ 0, thus t is an approximate eigenvector of
B with the eigenvector 0.

• Enc(B, µ)→ C ∈ Z
N×(n+1)
q .

– Sample a random matrix R← {0, 1}N×m.
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– Output C = RB + µG as the ciphertext, where
G ∈ Z

N×(n+1)
q is some fixed “gadget” matrix, which

is a public matrix that we will define later. As we will see, we will need to care-
fully craft this matrix G to allow us to
support homomorphic multiplications.• Dec(t ∈ Z

(n+1)
q , C ∈ Z

N×(n+1)
q )→ µ ∈ {0, 1}.

– Compute the vector v = C · t.

– Output “0” if the magnitude of each entry of v is
small; say, less than q/4. Otherwise, output “1.”

Today

• Show how to homomorphically compute on GSW cipher-
texts.

• Argue that this scheme only supports bounded-depth cir-
cuits, also called a levelled FHE scheme.

Roughly, the reason why the GSW scheme will only supports
bounded-depth computations is because each homomorphic
evaluation of an addition or multiplication gate will incur
some error growth (in the underlying LWE assumption).
Once this error grows too large, the ciphertexts will no longer
be decryptable. So, to avoid this, the number of addition and
multiplication gates that we can evaluate will be bounded.

• Finally, we will see how to bootstrap a levelled FHE scheme
to one that is fully-homomorphic, i.e., can support arbitrary
circuits, under some additional assumptions. This is done
using a beatiful boosting technique due to Gentry [1]. The
key idea is a procedure to “refresh” ciphertexts to reset their
error to a small level. This beautiful technique will let us
homomorphically evaluate any Boolean circuit under encryp-
tion, with an overhead that is only polynomial in the security
parameter λ.

Properties of the GSW construction

Before we describe how to perform homomorphic additions and
multiplications, we first argue that this scheme is CPA-secure, and is
correct in the sense that calling Dec on a fresh ciphertext output by
Enc produces the correct result.

Correctness: To argue that correctness holds note that

C · t = (RB + µG) · t = Re + µGt = µGt + e′ (1)
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where e′ is an error vector. We refer to equation (1) as the “decryp-
tion invariant.” We will make sure that this decryption invariant is
preserved across homomorphic operations.

We have just shown that this decryption invariant holds after
encryption with Enc, where the error vector e′ = Re, and thus has all
its coordinates in [−mσ, mσ].

Note that if this decryption invariant holds, with a small enough
error vector e′, then decryption will succeed in recovering the under-
lying message µ with probability 1− negl, if (for example) G has full
rank (which it does).

• If µ = 0, the product of C · t exactly recovers the error vec-
tor e′, and we set mσ < q/4, so that the ciphertext will be
correctly decrypted to 0.

• If µ = 1, the product of C · t recovers the vector Gt + e′. Since
t here contains a uniformly random vector in Zn

q , and since
we choose the matrix G to be full rank, with overwhelming
probability at least one entry of Gt + e′ has large norm (i.e.,
in [ q

4 , 3q
4 ]).

Therefore, checking whether the entries of the resulting vector are
“big” or “small” lets us recover the encrypted message µ.

CPA-security: The security proof is identical to the security proof of
Regev’s security proof. Specifically, suppose that there exists a poly-
size A that wins in the CPA security proof with probability 1/2 + ϵ,
where ϵ = ϵ(λ) is a non-negligible function.

By the LWE assumption, even if we replace the public B with a
uniformly random B ← Z

m×(n+1)
q , it should still be the case that

A(B) wins in the CPA game with probability 1/2 + ϵ− negl.
We next claim that if B is uniformly distributed in Z

m×(n+1)
q then

even an all-powerful A has only a negligible advantage in winning
in the CPA game. Specifically, we argue that if B ← Z

m×(n+1)
q is

uniformly random then

(B, RB) ≡ (B, U)

This follows immediately from the Leftover Hash Lemma, as long as
m >> n log q.

Lemma 1 (Leftover Hash Lemma (special case):). Fix any ϵ ∈ (0, 1),
then for A← Zm×n

q , r← {0, 1}m and u← Zn
q , it holds that

(A, r ·A)
ϵ≡ (A, u)

if m > n log q + 2 · log(1/ϵ).



lecture 16: fully homomorphic encryption (cont.) 4

Homomorphic Operations

Homomorphic addition. To compute an addition gate on two cipher-
texts, it suffices to add their corresponding matrices. That is:

Eval(“+′′, C1, C2)→ C.

• Output C = C1 + C2

This works, because it (roughly) preserves the decryption in-
variant in equation (1). Namely, when we call Dec on the output
of Eval(“+′′, C1, C2), where matrices C1 and C2 respectively encrypt
the messages µ1 and µ2 and satisfy the invariant in (1), we get that:

Eval(“+′′, C1, C2) · t = (C1 + C2) · t
= C1t + C2t

= (µ1 ·Gt + e1) + (µ2 ·Gt + e2)

= (µ1 + µ2)︸ ︷︷ ︸
new message

·Gt + (e1 + e2)︸ ︷︷ ︸
new error

.

Remark. Note that addition as presented here is mod q (rather than
mod 2). However, using addition mod q and multiplication mod 2,
one can easily compute addition mod 2, by

(b1 + b2) mod 2 = ((b1 + b2) mod q)− ((b1 · b2) mod 2) mod q.

It is worth noting that there is some slight error growth here: the
error in the resulting ciphertext may double in magnitude (exactly
as in Regev’s ciphertext). However, since this error growth is rela-
tively small, it is manageable as long as we set our LWE parameters
correctly; in particular, set q to be significantly larger than n and m. It
will be useful to think of q = nω(1), i.e., being super-polynomial in n.

Homomorphic multiplication. To compute a multiplication gate on
two ciphertexts, we will need to do something slightly more compli-
cated than just taking the product of their corresponding matrices
(their product is not even syntactically defined!). Specifically, we
will need to carefully pick the error-correcting matrix G to support
homomorphic multiplications.

Defining the matrix G. To define G, we first define a function h
which is the “bit-decomposition” function, that converts any ele-
ment in x ∈ Zq into a vector in b ∈ {0, 1}⌈log q⌉ which is the bit
decomposition of x; i.e.,

x =
⌈log q⌉−1

∑
i=0

bi2i.



lecture 16: fully homomorphic encryption (cont.) 5

We also define h as a function on matrices (and in particular on ci-
phertexts), in which case it takes any input C ∈ Z

m×(n+1)
q and out-

puts a matrix h(C) ∈ {0, 1}m×(n+1)⌈log q⌉, which is ⌈log q⌉ wider,
and each entry x ∈ Zq in the matrix C is replaced with its binary
decomposition h(x).

The matrix G ∈ Z
N×(n+1)
q , where N = (n + 1)⌈log q⌉, is the “bit

recomposition" matrix, which does the “inverse” operation to h, so
that for any matrix C,

h(C) ·G = C.

Concretely, G is a matrix in Z
N×(n+1)
q that looks as follows (where all

of the unmarked entries are zeros):

G =



1
2
...

2log q−1

1
2
...

2log q−1

· · ·
1
2
...

2log q−1


Then, we can homomorphically evaluate multiplications as fol-

lows:

Eval(“×′′, C1, C2)→ C.

• Output C = h(C1) · C2

Intuitively speaking, this works because:

1. Approximate eigenvectors are preserved across multiplication, as
long as the matrix that we multiply by has small entries (to prevent
large error growth).

2. Applying the h-transform to the ciphertext matrix C1 ensures that
we are multiplying by a matrix with small entries.

More formally, when we call Dec on the output of Eval(“× ”, C1, C2),
where matrices C1 and C2 respectively encrypt the messages µ1 and
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µ2 and satisfy the invariant in (1), we get that:

Eval(“× ”, C1, C2) · t = (h(C1) · C2) · t
= h(C1) · (C2 · t)
= h(C1) · (µ2 ·Gt + e2)

= µ2 · h(C1) ·Gt + h(C1) · e2

= µ2 · C1t + h(C1) · e2

= µ2 · (µ1 ·Gt + e1) + h(C1) · e2

= (µ1 · µ2)︸ ︷︷ ︸
new message

·Gt + (µ2e1 + h(C1) · e2)︸ ︷︷ ︸
new error

Here, since µ2 is a bit and the entries of the matrix h(C1) are also
bits, we know that the error in the resulting ciphertext must be small
in magnitude. Namely, since C1 has dimensions N-by-(n + 1), we
know that h(C1) will have dimensions N-by-N (since recall that
N = (n + 1) · ⌈log q⌉), and so the error in the output ciphertexts will
be at most a factor of N larger than the error in either of the input
ciphertexts.

What type of circuits can we evaluate? All in all, the encryption scheme
we just saw has the following error growth: after each add gate, the
error doubles; after each multiplication gate, the error is multiplied
by ≈ n log q, on LWE security parameter n and LWE modulus q.
So, given error that falls in the initial range [−σ, σ], we can still de-
crypt after evaluating any Boolean circuit of depth up to d, as long as
q ≫ (n log q)d · 2σ. Equivalently, for large enough q, the depth we can
support is roughly d ≈ n0.99.

Bootstrapping GSW to support arbitrary-depth computations

In his original paper, constructing FHE, Gentry [1] introduced a
brilliant technique to refresh ciphertexts, which lets us go from a
ciphertext encrypting a message µ with a lot of noise (as a result of
performing homomorphic computations) to a separate ciphertext en-
crypting µ with only a little noise (namely, the baseline level of noise
needed for security). This technique is referred to as “bootstrapping.”

Bootstrapping intuition. At a high level, bootstrapping is based on the
following intuition: if the server was given the secret-key t, then it
could lower the noise level in a ciphertext C by computing Dec(t, C)

to recover the underlying message µ, and then computing a fresh
ciphertext C′ that encrypts µ with the baseline level of noise by run-
ning Enc(B, µ). Then, the server could continue performing homo-
morphic operations on the ciphertext C′. Clearly though, this would
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be insecure: we cannot let the server learn the secret-key vector t,
otherwise it could decrypt all of the ciphertexts (exactly as we’ve
suggested) and this would completely break security.

However, we can play a trick that is very similar to this approach:
namely, we can have the user send the server the encryption of its
secret-key vector t. Then, the server can homomorphically—i.e., under
encryption—evaluate the Dec algorithm on a ciphertext encrypting
µ, as long as Dec has sufficiently low circuit complexity. The output
of this computation will be an encryption of the same message µ, but
with low error. We will now discuss this bootstrapping technique,
as well as the assumption that is needed to make it work (circular
security), in more detail.

Bootstrapping construction. To perform bootstrapping, we will
think of the decryption algorithm, Dec, as a Boolean circuit, CDec. Here, we are using the fact that we can

write any polynomial-time computa-
tion, such as Dec, as a Boolean circuit
that is also requires polynomial time to
evaluate.

This circuit takes as input two parameters: the secret-key vector
t ∈ Zn+1

q and a ciphertext matrix C ∈ Z
N×(n+1)
q . Then, the circuit

outputs the bit µ ∈ {0, 1} encrypted by the ciphertext C.
Now, in the setting we are working in, the server knows the full

ciphertext C that it wants to bootstrap. So, we can think of this ci-
phertext C as hard-coded into the circuit CDec that we are trying to
evaluate. That is, we will denote by CDec,C the circuit CDec in which
the input ciphertext C has been fixed. In other words, the modified
circuit CDec,C now takes as input only the secret-key vector t ∈ Zn+1

q ,
and it spits out the message bit µ ∈ {0, 1} encrypted by the fixed
ciphertext C.

This new circuit CDec,C is exactly what we will homomorphically
evaluate. Namely, the user will include as part of its publice-key a
public evaluation key, denoted by ek, which will include the encryp-
tion of each bit of its secret-key vector, t ∈ Zn+1

q . We can write this
evaluation key as: We are being slightly sloppy with

notation here and directly encrypting
Zq values. In reality, the evaluation key
here consists of the encryption of each
bit in the bit-decomposition of each
entry of t.

ek = (ctt1 , . . . , cttn) = (Enc(t, t1), . . . ,Enc(t, tn)) .

Then, given a ciphertext C that has the maximal amount of allowable
noise in it (such that it is still decryptable), the server will:

1. build the Boolean circuit CDec,C, which correspond to the decryp-
tion circuit with the ciphertext C hard-coded in it, and

2. homomorphically evaluate this decryption circuit to get the result-
ing ciphertext C′:

C′ ← Eval (CDec,C , ctt1 , . . . , cttn) .

Here, we observe two crucial properties:
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• We designed the circuit CDec,C to output the message bit
µ ∈ {0, 1} encrypted in the ciphertext C. So, the new cipher-
text C′, which is the result of homomorphically evaluating
CDec,C , will then be an encryption of µ.

• The amount of noise contained in the new ciphertext C′

depends only on

1. the noise contained in the encryptions ctt1 , . . . , cttn given
as part of the evaluation key ek, and

2. the depth of the decryption circuit CDec,C.

So, since the encryptions given in the evaluation key ek are
fresh (in that they have the minimum amount of required
noise), the output ciphertext C′ can also have low noise!

As a result, the ciphertext C′ is an encryption of the same message as
the ciphertext C, but C′ is guaranteed to have low noise! This is ex-
actly what we set out to construct. However, there are two important
caveats that we need to verify to make this technique work:

1. Decryption circuit complexity. For bootstrapping to be useful,
the underlying levelled FHE scheme must be powerful enough to
homomorphically evaluate (a) the decryption circuit CDec,C and (b)
at least one extra addition or multiplication gate. In other words, we
need the decryption circuit to be “shallow” enough to fit into the
function class supported by our levelled FHE scheme. Concretely, if
the decryption circuit CDec,C has depth d, we need the levelled FHE

scheme to support computations of depth at least d + 1.
When this is the case, we can homomorphically evaluate any

arbitrary-depth boolean circuit as follows:

1. Homomorphic addition: we replace each “ADD” gate by a homo-
morphic addition (i.e., C ← Eval(“+′′, C1, C2) in the notation
of last lecture), followed by a homomorphic decryption (i.e.,
C′ ← Eval(CDec,C , ek)).

At the end of this procedure, we have a ciphertext C′ with noise
in the range [−ℓd · B0, · · · , ℓd · B0], where d is the depth of the
decryption circuit.

2. Homomorphic multiplication: we replace each “MUL” gate by a ho-
momorphic multiplication (i.e., C ← Eval(“×′′, C1, C2)), followed
by a homomorphic decryption (i.e., C′ ← Eval(CDec,C , ek)).

At the end of this procedure, we again have a ciphertext C′ with
noise in the range [−Nd · σ, Nd · σ], where d is the depth of the
decryption circuit.
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By alternating computing on and refreshing the ciphertexts in this
way, the noise in our ciphertexts will never grow too large. No matter
the degree of our computation, we will always be able to decrypt.

In the case of GSW, the decryption circuit has depth O(log n).
(This is depth stems from the comparison operations required to
check whether each value is “big” or “small”.) As we saw, the lev-
elled version of GSW is powerful enough to support computations up
to depth n0.99. So we can indeed bootstrap!

2. Circular security. To preserve security, the server cannot learn
any information about the secret key. Intuitively, the way we are
achieving this is by encrypting the secret-key vector, under itself.
Proving that is secure requires the additional assumption that GSW
encryption is circular secure—that is, that publishing the ciphertexts
that encrypt each bit of the secret key under itself, i.e.,

ctti = Enc(t, ti) for i ∈ [n],

hides the secret key.
In general, we do not know how to show that GSW is circular

secure from just the LWE assumption. Building FHE without the In fact, there exist semantically-secure
encryption schemes that are provably
not circular secure.

circular security assumption is still an open question and an active
area of research!

Applications of FHE

Now that we have constructed FHE, we will discuss three particular
applications that it lets us construct: There are many, many more applica-

tions of (full) FHE. Coming up with a
new application might be a fun avenue
for a class project!

1. Private delegation. In private delegation, a user wants to outsource
the computation of some function to a powerful but untrusted
server, without revealing its input to the computation.

Some examples of this are: a user may want to query a LLM on a
sensitive prompt, without revealing her prompt. Or, a user may
want to outsource the storage of her emails to a cloud server and
to keep the contents of her emails hidden, while retaining the
ability to search over them.

2. Secure collaboration. In secure collaboration, multiple users want to
jointly evaluate a function on their hidden inputs, while revealing
nothing but the output of the function.

Some examples of this are: hospitals may want to collaborate to
train machine learning models, while keeping sensitive patient
data hidden. Or, banks may want to run an auction without re-
vealing (or learning) each bidder’s bid and each seller’s price.
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3. Private database lookups. Private database lookups are a generaliza-
tion of private information retrieval (which we covered in lectures
5 and 6). In this setting, a user wants to make arbitrary queries to
a remote database, while hiding her queries. With FHE, the server
hosting the database can answer these queries under encryption.

These private database queries could take many forms: for ex-
ample, a user may want to make general SQL queries. Or, a user
may want to make a private query to a web search engine (e.g.,
Google), without revealing her query string.

Open questions in FHE

The GSW scheme that we saw in these last two lectures is an incredi-
bly powerful tool that can unlock an array of cryptographic applica-
tions. However, building and improving on known FHE constructions
is an active and exciting area of research in which many interesting
questions remain unanswered. Two such open questions are:

1. Can we build FHE from assumptions other than lattices?

In cryptography, it is always good to construct any given primitive
from a variety of assumptions—this gives us confidence that, even
if any one assumption turns out to be broken, our primitive still
exists. In the case of FHE, we (roughly) only know how to build
it from lattice-based assumptions (e.g., LWE, ring-LWE). Building
FHE from a number-theoretic assumption—for example, the hard-
ness of factoring (e.g., RSA) or the hardness of discrete log (e.g.,
DDH)—would be a big research result!

2. Can we make FHE concretely efficient and practical?

While the construction of FHE that we covered today is possible
in theory, it is still very far from concretely efficient in practice. In
large part, this is due to the computational costs of

• representing computations as Boolean circuits, and

• incurring O(poly(n)) (or even just O(polylog(n))) over-
head per gate.

The state-of-the-art in research today is that evaluating functions
with low multiplicative degree (e.g., degree 2 or 3) and high ad-
ditive degree can be concretely efficient. However, once we try to
evaluate circuits with high multiplicative degree, the LWE parame-
ters that we must use become large and computing on ciphertexts
(and, in particular, bootstrapping them) becomes very expensive.

While FHE isn’t used much in practice yet, building truly practical
FHE would have an enormous impact on the world!
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