
Lecture 15: Fully Homomorphic Encryption
Notes by Yael Kalai (inspired by notes by Alexandra Hen-
zinger)

MIT - 6.5620
Lecture 15 (October 27, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Recap

Last lecture we talked about Lattice-based cryptography.

• We introduced the Learning with Errors (LWE) assumption,
which is a family of assumptions LWEq,n,m,χ, that assert that

(A, As + e) ≈ (A, u)

where A ← Zm×n
q , s ← Zn

q , e ← χm and u ← Zm
q , and

where n = λ is the security parameter and the rest of the
parameters are set as a function of n.

• We showed Regev’s public-key encryption scheme [6], where

– Gen(1λ) outputs pk = (A, As + e) and sk = s,

where the public key B := (A, As + e) ∈ Z
m×(n+1)
q

(obtained by adding the column As + e to A) and the
secret key s ∈ Zn

q are generated by sampling

A← Zm×n
q , s← Zn

q , e← χm.

– Enc(pk, b) outputs rB + m · ⌊q/2⌋ · (0, . . . , 0, 1),

where r← {0, 1}m.

– Dec(sk, c) output 0 if and only if |c · (−s, 1)| ≤ q/4.

Today: Fully Homomorphic Encryption (FHE)

This week we will cover one of the most exciting and surprising ad-
vances in cryptography in the last 20 years: fully homomorphic encryp-
tion! This is an encryption scheme that allows us to evaluate arbitrary
functions on the encrypted data, without ever decrypting!

We will present a formal definition, give motivation, and present a
construction, along with a security proof.

lecture 15: fully homomorphic encryption 2

History of FHE

The idea of FHE was first suggested in 1978 by Rivest, Adleman, and
Dertouzos [7], though it took until 2009 for the first construction to
be proposed in a paper by Craig Gentry—who, at the time, was a
PhD student at Stanford [3]. Since then, there have been many im-
provements to known FHE schemes. In 2011, Brakerski and Vaikun-
tanathan [1] showed how to construct FHE directly from the learning-
with-errors (LWE) assumption, which we covered last week [6]. In
2013, Gentry, Sahai, and Waters gave an elegant and conceptually
simple construction of FHE (sometimes referred to as the “GSW
scheme”) [4], which also relies only on LWE. We will see this GSW
construction in the next two lectures.

Homomorphic encryption schemes

Last lecture we saw that Regev’s encryption scheme (described
above) satisfies the property that given Enc(pk, b1),Enc(pk, b2) it is
easy to compute Enc(pk, b1 ⊕ b2),1 by simply outputting 1 This property is what allowed the

secret-key version to be converted to a
public-key encryption scheme.Enc(pk, b1) + Enc(pk, b2) =

r1B + b1⌊q/2⌋ · (0, . . . , 0, 1) + r2B + b2⌊q/2⌋ · (0, . . . , 0, 1) =

(r1 + r2)B + (b1 + b2) · ⌊q/2⌋ · (0, . . . , 0, 1) ≈
(r1 + r2)B + (b1 ⊕ b2) · ⌊q/2⌋ · (0, . . . , 0, 1) =

Enc(pk, b1 ⊕ b2).

We call such a scheme homomorphic w.r.t. the ⊕ operation.
As we will see in the HW, the Goldwasser-Micali encryption scheme
[5] that we saw last week is also homomorphic w.r.t. the ⊕ opera-
tion. We also mention that the El-Gamal encryption scheme [2] is
homomorphic w.r.t. multiplication in the group. Recall that

Enc(gs, m) = gr, gr·s ·m.

So, multiplying the ciphertexts coordinate-wise gives an encryption
of the product of the messages, where the product is group multipli-
cation. The RSA trapdoor permutation,

fN(x) = xe mod N,

is also homomorphic w.r.t. multiplication in Z∗N ; specifically,

fN(x1 · x2) = fN(x1) · fN(x2).

Remark. Homomorphism can be seen both as a feature and as a bug.
It may be dangerous to give the adversary the ability to generate ci-
phertexts related to our honest ciphertexts, as the adversary could

lecture 15: fully homomorphic encryption 3

use this ability for malice. This is what motivates the definition of
CCA-secure encryption. However, as we will see today, a homomor-
phic encryption scheme is also extremely useful.

This week, we will see how to construct a fully homomorphic en-
cryption scheme, which is homomorphic w.r.t. both ⊕ and multipli-
cation (modulo 2).

FHE Definition and Syntax

We start by formally defining the syntax of a FHE scheme. In particu-
lar, we will consider FHE schemes where:

• The message space is bits (i.e.,M = {0, 1}).

• The model of computation is Boolean circuits (i.e., circuits
composed of additions and multiplications gates mod 2, or
equivalently, XOR and AND gates).

We note that additions and multiplications mod 2 is complete in the
sense that every efficiently computable function can be represented
via a circuit with polynomially many addition and multiplication
gates mod 2.

In what follows, we define an FHE scheme w.r.t. a circuit class C,
which contains all the circuits that the FHE scheme can homomorphi-
cally evaluate.

Definition 1. A homomorphic encryption scheme w.r.t. a class
of Boolean circuits C = {Cℓ}ℓ∈N, where each C ∈ Cℓ is a cir-
cuit C : {0, 1}ℓ → {0, 1}, consists of four efficient algorithms
(Gen,Enc,Dec,Eval) with the following syntax:

• (Gen,Enc,Dec) has the same syntax as a public-key encryp-
tion scheme. Namely:

– Gen(1λ) → (pk, sk): Gen takes as input the security
parameter (in unary) and outputs a pair of public
and secret keys (pk, sk).

– Enc(pk, µ) → ct: Enc takes as input a public-key pk

and a message µ ∈ {0, 1},2 and outputs a ciphertext 2 We denote the message by µ since m
will be used to denote the number of
rows in the matrix A corresponding to
the LWE assumption.

ct.

– Dec(sk, ct) → µ: Dec takes as input a secret-key sk

and a ciphertext ct and outputs a message µ ∈ {0, 1}.

• Eval(pk, C, ct1, . . . , ctℓ) → c̃t: Eval takes as input a public-key
pk, a Boolean circuit C ∈ Cℓ, where C : {0, 1}ℓ → {0, 1}, and ℓ

ciphertexts ct1, . . . , ctℓ and outputs an evaluated ciphertext c̃t.

We require the four algorithms (Gen,Enc,Dec,Eval) to satisfy the
following three properties:

lecture 15: fully homomorphic encryption 4

1. Correctness: For every polynomial ℓ : N → N there exists a
negligible function negl such that for every λ ∈ N the following
holds for ℓ = ℓ(λ): For any C ∈ Cℓ and any inputs µ1, . . . , µℓ ∈
{0, 1},

Pr

Dec(sk, c̃t) = C(µ1, . . . , µℓ) :
(pk, sk) ← Gen(1λ)

cti ← Enc(pk, µi) for all i ∈ [ℓ]

c̃t← Eval(pk, C, ct1, . . . , ctℓ)

 ≥ 1−negl(λ).

2. Security: (Gen,Enc,Dec) is a CPA-secure encryption scheme w.r.t.
the message spaceM = {0, 1}.

3. Compactness: For every polynomial ℓ = ℓ(λ) there exists a negli-
gible function negl such that for every security parameter λ, every
C ∈ Cℓ, and every µ1, . . . , µℓ ∈ {0, 1},

Pr[|c̃t| = |ct1| = . . . = |ctℓ|] = 1− negl(λ)

where
c̃t = Eval(pk, C, ct1, . . . , ctℓ)

and where the probability is over (pk, sk) ← Gen(1λ), and over
cti ← Enc(pk, µi) for every i ∈ [ℓ].

Remark. Without the compactness requirement constructing a fully
homomorphic encryption can be done trivially, as follows:

Eval(pk, C, ct1, . . . , ctℓ) := (C, ct1, . . . , ctℓ).

where decryption of a ciphertext of the form (C, ct1, . . . , ctℓ) is done
by decrypting each cti and applying C to all decrypted messages.

Therefore, some notion of compactness is necessary for this defi-
nition to be interesting. One could imagine various stronger notions
of compactness. For example, one could demand that the evaluated
ciphertext c̃t “has the same form as a “fresh” ciphertext.

Remark. Note that while we defined the Eval function to take as input
circuit C that only output a single bit, we can easily extend Eval to
take as input a circuit C that output many bits C : {0, 1}ℓ → {0, 1}k,
as follows: Let C = (C1, . . . , Ck) where Ci : {0, 1}ℓ → {0, 1} outputs
the i’th bit of C, and define

Eval(pk, C, ct1, . . . , ctℓ) := (Eval(pk, C1, ct1, . . . , ctℓ), . . . ,Eval(pk, Ck, ct1, . . . , ctℓ))

With respect to what function class can (and will) we build FHE? We
defined an FHE scheme with respect to a function class that governs
what type of circuits the scheme can homomorphically evaluate.
Clearly, the more expressive this function class is, the more powerful

lecture 15: fully homomorphic encryption 5

our FHE scheme will be. Various flavors of homomorphic encryption
exist for various function classes.

In particular, any Boolean circuit can be written using only ad-
dition and multiplication gates over Z2 (i.e., where addition and
multiplication is mod 2). We will differentiate between circuits based
on the number of addition/multiplication gates that they contain, as
well as the layout of these gates. So far in the course, we have seen
encryption schemes that let us compute either additions or multipli-
cations on ciphertexts—but not both!

In the next two lectures, we will show how to build FHE for very
general function classes:

• Arbitrary circuits of a bounded depth: We will first see
how to build an FHE scheme that supports bounded-depth
circuits, also called a levelled FHE scheme.

Roughly, the reason why our scheme will only support
bounded-depth computations is because each homomor-
phic evaluation of an addition or multiplication gate will
incur some error growth (in the underlying LWE assump-
tion). Once this error grows too large, the ciphertexts will
no longer be decryptable. So, to avoid this, the number of
addition and multiplication gates that we can evaluate will be
bounded.

• Arbitrary circuits: We will then see how to boost a levelled
FHE scheme to one that can support arbitrary circuits, under
some additional assumptions. This is done using a beatiful
boosting technique due to Gentry [3]. The key idea is a pro-
cedure to “refresh” ciphertexts to reset their error to a small
level. This beautiful technique will let us homomorphically
evaluate any Boolean circuit under encryption, with an over-
head that is only polynomial in the security parameter λ.

Motivation: Delegation

Suppose we wish to put all our secret data on the cloud, but we are
concerned about the privacy of our data. By now we are experts
on encryption, so we can simply encrypt our data and upload it
to the cloud encrypted. But now suppose we want the cloud to do
computations on our private data. For example, suppose I want to
fetch a certain email of picture, and I want the cloud to send me only
that email or picture.

If we use a CCA-secure encryption then the problem is that this is
“too secure,” as it will not allow the cloud to perform this computa-
tion. A fully-homomorphic encryption scheme is precisely what we

lecture 15: fully homomorphic encryption 6

need!

Constructing “Levelled” FHE: Background and Intuition

At a high level, the GSW scheme relies on the observation that the
eigenvectors of matrices are preserved across addition and multipli-
cation. Specifically, for any dimension n ∈ N, let C1, C2 ∈ Zn×n

q
denote two matrices. Let vector v ∈ Zn

q be an eigenvector of matrices
C1 and C2 with eigenvalues λ1 ∈ Zq and λ2 ∈ Zq, respectively. This
means that the following relations hold:

C1 · v = λ1 · v ∈ Zn
q

C2 · v = λ2 · v ∈ Zn
q

Then, we get the following two properties:

• (C1 + C2) · v = C1 · v + C2 · v = (λ1 + λ2) · v
That is, the vector v remains an eigenvector of the summed
matrix (C1 + C2), with associated eigenvalue λ1 + λ2 ∈ Zq.

• (C1 · C2) · v = C1 · (C2 · v) = C1 · v · λ2 = v · λ1 · λ2

That is, the vector v remains an eigenvector of the product
matrix (C1 · C2), with associated eigenvalue λ1 · λ2 ∈ Zq.

Intuition. To build FHE, we will take advantage of this behavior of
eigenvectors as follows: in our scheme, the secret key will be a vec-
tor in Zn

q . Then, roughly speaking, our ciphertexts will be matrices
in Zn×n

q whose eigenvector will be the secret-key vector and whose
associated eigenvalue will be the message being encrypted. With this
setup:

• To decrypt a ciphertext matrix, it suffices to multiply the
matrix by the secret-key vector. This produces the underlying
message, scaled by the secret-key vector.

• To evaluate an addition gate on two ciphertexts, it suffices
to add up the two matrices. This produces a ciphertext that
encrypts the sum of the underlying messages.

• To evaluate a multiplication gate on two ciphertexts, it suf-
fices to multiply the two matrices. This produces a ciphertext
that encrypts the product of the underlying messages.

Unfortunately, we cannot exactly instantiate this template to build
a secure encryption scheme—after all, efficient algorithms exist to
find the eigenvectors of matrices. However, using the learning-with-
errors (LWE) assumption, we can construct an approximate version of
this scheme. Specifically, in our FHE scheme, the secret-key vector s

lecture 15: fully homomorphic encryption 7

will be a noisy eigenvector of each ciphertext matrix C ∈ Zn×n
q such

that the following equation holds:

C · s = s · µ + e, (1)

where µ ∈ {0, 1} is the message being encrypted and e ∈ Zn
q is a

small error vector. We will carefully set up our encryption scheme
so that this invariant (i.e., equation (1)) holds after encryption, and
is preserved after computing (a bounded number of) homomorphic
addition and multiplication gates.

Building “Levelled” FHE: the GSW Construction

Now that we have built up some intuition, we will dive into the GSW
construction.

The construction is based on the LWE assumption, and is ex-
tremely similar to Regev’s encryption. Recall that a Regev encryption
of a message µ ∈ {0, 1} is one LWE vector (a, a · s + e) masked with
µ⌊q/2⌋(0, . . . , 0, 1), where ⌊q/2⌋(0, . . . , 0, 1) can be thought of as a
fixed public “gadget” vector.

A GSW encryption of a message µ ∈ {0, 1} consists of many LWE

vectors (A, A · s + e) masked with µG where G is a cleverly chosen
“gadget” matrix.

The GSW construction is associated with parameters q, n, m, χ,
where n is the security parameter, q, m ∈ N are functions of n, and χ

is an error distribution which is assumed to output elements in Zq of
bounded size (say, elements in [−σ, σ]).

Given these LWE parameters, we will let N = (n + 1) · ⌈log q⌉.
Then, the construction works as follows:

• Gen(1λ)→ (pk, sk):

– Sample a random vector s← Zn
q .

– Sample a random matrix A← Zm×n
q

– Sample a random error vector e← χm.

– Set B = (A, As + e) ∈ Z
m×(n+1)
1 .

– Set t =

(
−s
1

)
∈ Z

(n+1)
q as the secret key.

– Output (pk, sk) = (B, t).

Note that Bt = e ≈ 0, thus t is an approximate eigenvector of
B with the eigenvector 0.

• Enc(B, µ)→ C ∈ Z
N×(n+1)
q .

– Sample a random matrix R← {0, 1}N×m.

lecture 15: fully homomorphic encryption 8

– Output C = RB + µG as the ciphertext, where
G ∈ Z

N×(n+1)
q is some fixed “gadget” matrix, which

is a public matrix that we will define later. As we will see, we will need to care-
fully craft this matrix G to allow us to
support homomorphic multiplications.• Dec(t ∈ Z

(n+1)
q , C ∈ Z

N×(n+1)
q)→ µ ∈ {0, 1}.

– Compute the vector v = C · t.

– Output “0” if the magnitude of each entry of v is
small; say, less than q/4. Otherwise, output “1.”

Properties of this construction. Before we describe how to perform
homomorphic additions and multiplications, we first argue that this
scheme is CPA-secure, and is correct in the sense that calling Dec on a
fresh ciphertext output by Enc produces the correct result.

Correctness: To argue that correctness holds note that

C · t = (RB + µG) · t = Re + µGt = µGt + e′ (2)

where e′ is an error vector. We refer to equation (2) as the “decryp-
tion invariant.” We will make sure that this decryption invariant is
preserved across homomorphic operations.

We have just shown that this decryption invariant holds after
encryption with Enc, where the error vector e′ = Re, and thus has all
its coordinates in [−mσ, mσ].

Note that if this decryption invariant holds, with a small enough
error vector e′, then decryption will succeed in recovering the under-
lying message µ with probability 1− negl, if (for example) G has full
rank (which it does).

• If µ = 0, the product of C · t exactly recovers the error vec-
tor e′, and we set mσ < q/4, so that the ciphertext will be
correctly decrypted to 0.

• If µ = 1, the product of C · t recovers the vector Gt + e′. Since
t here contains a uniformly random vector in Zn

q , and since
we choose the matrix G to be full rank, with overwhelming
probability at least one entry of Gt + e′ has large norm (i.e.,
in [q

4 , 3q
4]).

Therefore, checking whether the entries of the resulting vector are
“big” or “small” lets us recover the encrypted message µ.

CPA-security: The security proof is identical to the security proof of
Regev’s security proof. Specifically, suppose that there exists a poly-
size A that wins in the CPA security proof with probability 1/2 + ϵ,
where ϵ = ϵ(λ) is a non-negligible function.

lecture 15: fully homomorphic encryption 9

By the LWE assumption, even if we replace the public B with a
uniformly random B ← Z

m×(n+1)
q , it should still be the case that

A(B) wins in the CPA game with probability 1/2 + ϵ− negl.
We next claim that if B is uniformly distributed in Z

m×(n+1)
q then

even an all-powerful A has only a negligible advantage in winning
in the CPA game. Specifically, we argue that if B ← Z

m×(n+1)
q is

uniformly random then

(B, RB) ≡ (B, U)

This follows immediately from the Leftover Hash Lemma, as long as
m >> n log q.

Lemma 2 (Leftover Hash Lemma (special case):). Fix any ϵ ∈ (0, 1),
then for A← Zm×n

q , r← {0, 1}m and u← Zn
q , it holds that

(A, r ·A)
ϵ≡ (A, u)

if m > n log q + 2 · log(1/ϵ).

Homomorphic Operations

Homomorphic addition. To compute an addition gate on two cipher-
texts, it suffices to add their corresponding matrices. That is:

Eval(“+′′, C1, C2)→ C.

• Output C = C1 + C2

This works, because it (roughly) preserves the decryption in-
variant in equation (2). Namely, when we call Dec on the output
of Eval(“+′′, C1, C2), where matrices C1 and C2 respectively encrypt
the messages µ1 and µ2 and satisfy the invariant in (2), we get that:

Eval(“+′′, C1, C2) · t = (C1 + C2) · t
= C1t + C2t

= (µ1 ·Gt + e1) + (µ2 ·Gt + e2)

= (µ1 + µ2)︸ ︷︷ ︸
new message

·Gt + (e1 + e2)︸ ︷︷ ︸
new error

.

Remark. Note that addition as presented here is mod q (rather than
mod 2). However, using addition mod q and multiplication mod 2,
one can easily compute addition mod 2, by

(b1 + b2) mod 2 = ((b1 + b2) mod q)− ((b1 · b2) mod 2) mod q.

It is worth noting that there is some slight error growth here: the
error in the resulting ciphertext may double in magnitude (exactly

lecture 15: fully homomorphic encryption 10

as in Regev’s ciphertext). However, since this error growth is rela-
tively small, it is manageable as long as we set our LWE parameters
correctly; in particular, set q to be significantly larger than n and m. It
will be useful to think of q = nω(1), i.e., being super-polynomial in n.

Homomorphic multiplication. To compute a multiplication gate on
two ciphertexts, we will need to do something slightly more compli-
cated than just taking the product of their corresponding matrices
(their product is not even syntactically defined!). Specifically, we
will need to carefully pick the error-correcting matrix G to support
homomorphic multiplications.

Defining the matrix G. To define G, we first define a function h
which is the “bit-decomposition” function, that converts any ele-
ment in x ∈ Zq into a vector in b ∈ {0, 1}⌈log q⌉ which is the bit
decomposition of x; i.e.,

x =
⌈log q⌉−1

∑
i=0

bi2i.

We also define h as a function on matrices (and in particular on ci-
phertexts), in which case it takes any input C ∈ Z

m×(n+1)
q and out-

puts a matrix h(C) ∈ {0, 1}m×(n+1)⌈log q⌉, which is ⌈log q⌉ wider,
and each entry x ∈ Zq in the matrix C is replaced with its binary
decomposition h(x).

The matrix G ∈ Z
N×(n+1)
q , where N = (n + 1)⌈log q⌉, is the “bit

recomposition" matrix, which does the “inverse” operation to h, so
that for any matrix C,

h(C) ·G = C.

Concretely, G is a matrix in Z
N×(n+1)
q that looks as follows (where all

of the unmarked entries are zeros):

G =



1
2
...

2log q−1

1
2
...

2log q−1

· · ·
1
2
...

2log q−1



lecture 15: fully homomorphic encryption 11

Then, we can homomorphically evaluate multiplications as fol-
lows:

Eval(“×′′, C1, C2)→ C.

• Output C = h(C1) · C2

Intuitively speaking, this works because:

1. Approximate eigenvectors are preserved across multiplication, as
long as the matrix that we multiply by has small entries (to prevent
large error growth).

2. Applying the h-transform to the ciphertext matrix C1 ensures that
we are multiplying by a matrix with small entries.

More formally, when we call Dec on the output of Eval(“× ”, C1, C2),
where matrices C1 and C2 respectively encrypt the messages µ1 and
µ2 and satisfy the invariant in (2), we get that:

Eval(“× ”, C1, C2) · t = (h(C1) · C2) · t
= h(C1) · (C2 · t)
= h(C1) · (µ2 ·Gt + e2)

= µ2 · h(C1) ·Gt + h(C1) · e2

= µ2 · C1t + h(C1) · e2

= µ2 · (µ1 ·Gt + e1) + h(C1) · e2

= (µ1 · µ2)︸ ︷︷ ︸
new message

·Gt + (µ2e1 + h(C1) · e2)︸ ︷︷ ︸
new error

Here, since µ2 is a bit and the entries of the matrix h(C1) are also
bits, we know that the error in the resulting ciphertext must be small
in magnitude. Namely, since C1 has dimensions N-by-(n + 1), we
know that h(C1) will have dimensions N-by-N (since recall that
N = (n + 1) · ⌈log q⌉), and so the error in the output ciphertexts will
be at most a factor of N larger than the error in either of the input
ciphertexts.

What type of circuits can we evaluate? All in all, the encryption scheme
we just saw has the following error growth: after each add gate, the
error doubles; after each multiplication gate, the error is multiplied
by ≈ n log q, on LWE security parameter n and LWE modulus q.
So, given error that falls in the initial range [−σ, σ], we can still de-
crypt after evaluating any Boolean circuit of depth up to d, as long as
q ≫ (n log q)d · 2σ. Equivalently, for large enough q, the depth we can
support is roughly d ≈ n0.99.

In the next lecture, we will see an absolutely beautiful idea to
boost this encryption scheme to compute arbitrary-depth circuits!

lecture 15: fully homomorphic encryption 12

References

[1] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully ho-
momorphic encryption from (standard) lwe. In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science (FOCS),
pages 97–106. IEEE, 2011.

[2] Taher ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In G. R. Blakley and David
Chaum, editors, Advances in Cryptology — CRYPTO ’84, volume
196 of Lecture Notes in Computer Science, pages 10–18, Santa Bar-
bara, CA, USA, 1984. Springer.

[3] Craig Gentry. Fully homomorphic encryption using ideal lattices.
In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing (STOC ’09), pages 169–178. ACM, 2009.

[4] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In Advances in Cryptology –
CRYPTO 2013, pages 75–92. Springer, 2013.

[5] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and
how to play mental poker keeping secret all partial information.
In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and
Lawrence H. Landweber, editors, Proceedings of the 14th Annual
ACM Symposium on Theory of Computing, May 5-7, 1982, San Fran-
cisco, California, USA, pages 365–377. ACM, 1982.

[6] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In Harold N. Gabow and Ronald Fagin,
editors, Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 84–93.
ACM, 2005.

[7] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On
data banks and privacy homomorphisms. In Richard A. DeMillo,
David P. Dobkin, Anita K. Jones, and Richard J. Lipton, editors,
Foundations of Secure Computation, pages 165–179. Academic Press.

	Recap
	Today: Fully Homomorphic Encryption (FHE)
	History of FHE
	Homomorphic encryption schemes
	FHE Definition and Syntax
	Motivation: Delegation
	Constructing ``Levelled'' FHE: Background and Intuition
	Building ``Levelled'' FHE: the GSW Construction
	Homomorphic Operations

