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Recap

So far we saw several constructions of CPA-secure public-key encryp-
tion schemes:
* The El-Gamal scheme, based on the DDH (or CDH) assump-
tion.

* The scheme obtained from Rabin’s trapdoor permutation

fn : QRy — QRy (where N is a Blum integer)®, based on * A Blum integer is a number of the
form N = p-q, whee p and q are
primes such that p = 3 mod 4 and
g =3 mod 4.

the hardness of Factoring.

¢ The Goldwasser-Micali scheme, based on the Quadratic
Residuosity assumption.

* The RSA scheme from the RSA trapdoor permutation, based
on the RSA assumption.
All these assumptions (and schemes) can be broken using a quantum
computer. In particular, Shor [3] presented a polynomial-time quan-
tum algorithm for factoring large integers and computing discrete
logarithms modulo a prime p.

Today: Lattice-Based Cryptography

Before we begin the topic of today’s lecture, let me start with correct-
ing a mistake I made in the other lecture.

Correction from last lecture: Computing square roots in Z,,

* Case 1: p = 3 mod 4. In this case p — 1 = 2 - k for some odd

number k € IN.

Given such prime p and y € QRy,?, the square-root of y in *Recall that QR,, = {x?: x € Z;}.
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p+1
Z} is simply a =y &

’ . To see why this is the case note that

where the last equality follows from the fact that y € QR,
and hence is of the form x> mod p for some x € z;.

Remark. Note that in the above, we relied on the fact that
we know the order of the group Z, which is p — 1. We

also relied on the fact that pTH € NN, which holds only if

p =3 mod 4.
* General case: p — 1 = 2° - k, for odd k € IN.3 In this case if 3 In the case above, where p = 3 mod 4,
y* = 1 mod p, then finding the square-root can be done as ;{t 20111\?5 thatp =1 = 2k for an odd

above, by setting it to be a = yHTl. Note that
k
=y y=y.
More generally, we will find z such that y* - 22 = 1. Then we
can seta = yHTl -z, where

2 =gkt 2 =y,

It remains to find such z, which is a bit complicated, and is
done as follows:

1. Find any element w € Z;, which is not a quadratic residue.
This can be done by sampling a random w < Z, and

checking if w'T = —1.1If this is the case then w is not a
quadratic residue. Otherwise, try again. Since half of the
elements are not quadratic residues we expect to find one
in constant time.

2. Let W = w" mod p.
3. Seta=0.

4. Note that the facts that 2 = 0 and y is a quadratic residue,
imply that
s—1

(e - )

5. Find the minimal s’ < s — 1 such that

/

(yk . W2u>25 —1

6. If ' = 0 then output z = W*.
7. Otherwise, leta :=a + 25='~1 and go back to Item 5.
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We next argue that s’ always decreases by at least one in each
step, so that the algorithm terminates after at most s < log p
steps. Namely, we claim that

’ 25’1
<yk ) W2-<a+25’5 1)) -1

This follows from the following calculations:

(yk ] W2.<a+25*5’71) ) 291 _

s/ —

(yk _ WZa) R

as needed.

Lattice-Based Cryptography

Lattice-based cryptography is extremely useful for several reasons:

¢ Post-quantum security: Lattice assumptions are believed to
be post-quantum secure. This is in contrast to Factoring and
Discrete-Log which are known to be broken in polynomial
time using a quantum computer [3].

Indeed, lattice-based cryptography has recently been stan-
dardized, with the intention of replacing many of the uses of
factoring and discrete-log based crypto systems, with lattice-
based ones.

* Exponential hardness: Lattice assumptions are believed to
be exponentially hard. This is in contrast with Factoring and
Discrete-Log over Z,, for which we have sub-exponential

algorithms that run in time roughly A,

* Worst-case hardness: We can build crypto-systems whose
security can be based on a worst-case hardness assumption.
This is in contrast to what we have seen so far, where all our
assumptions were average-case assumptions.

* Surprising capabilities: As we will see next week we can
build fully homomorphic encryption from lattices.

¢ Simple and efficient!
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Learning with Error (LWE) Assumption

We know that linear equations can be efficiently solved by Gaussian
elimination. Namely, given a random matrix A < Z"*" and given
A -s, where s « Zg is a random vector, and where m > n, one can
efficiently recover s.

However, we believe that solving noisy linear equations is hard.
Namely, we believe that there is a “noise distribution” x over Z,,
such that

(A,As+e)~ (A u)

where e < x" and u - Z;. This is precisely the LWE assumption!

Remark. As Vinod Vaikuntanathan says: to make solving linear equa-
tions hard we need to chop both the head (i.e., take the linear equa-
tions modulo some ¢) and the tail (i.e., add noise). If we only chop
the head then we can solve the linear system using Gaussian elimina-
tion over Z,; and if we only chop the tail (by adding noise) then we
can solve by linear regression. It turns out that if we chop both the
head and the tail then solving the system becomes very hard!

Which noise distribution should we use? One can take x to be the uni-
form distribution over Z;, in which case

(A,As+e)=(Au);

i.e., the two distributions are identical, where A <+ quX”, s < Z",
e < x"and u < Zj'. But this is not useful. For cryptographic
applications, we need the error distribution x to produce elements of
bounded size, say in the interval [—B, B] where B << 4.

For this class, think of x as being the uniform distribution on
[—B, B]. Though, usually, we choose x to be a “discrete Gaussian”
distribution, since with such a distribution we know how to reduce
the LWE assumption to a worst-case hardness assumption on lattices
[2, 1].

Linearization Attacks

One needs to be careful with the choice of B. As we saw above, if B
is unbounded, say B = g/2, and y is uniform in [—q/2,q/2] then
we get something which is useless. However, it turns out that if we
choose B to be too small then there are attacks. Specifically, if B is
any constant, and we have enough equations, i.e., m > n2B+1 then
there are attacks. These are called linearization attacks.

For simplicity, let me illustrate the attack for the case where B = 1.
The attack consists of two steps. First, get rid of the noise, by convert-
ing each noisy linear equation b = a-s +e¢, wheree € {—1,0,1}, to
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the following noiseless polynomial equation:
(b—a-s)-(b—a-s—1)-(b—a-s+1)=0.

Thankfully, even solving systems of equations of degree 2 is known
to be NP-complete.

However, one can attempt the following linearization attack: Replace
each monomial s; - s; - sy with a single variable s; ;, and solve the
system of linear equations. In general the solution may not satisfy
that s; - s; - s = s;, but it turns out that if m is large enough, in

2B+1

particular, if m > n*"7", then there is a unique solution which indeed

satisfies that s; - s; - sp = s; j k.

Parameter setting: Typically we set the parameters as follows:

s n=A
e m = poly(n).
e Br /0.

e g must be significantly larger than B. We can set g = poly(#n)
or even set g to be sub-exponential in #; e.g., g = 21" As we
will see, it is often beneficial to set § = n«(1).

Definition 1. The Decisional LWE assumption with parameters

(n,m,q,x), denoted by LWE,, ;s 4,,, where n = n(A) and m = m(n),

X = x(n), and q = q(n), asserts that

(A,A-s+e)=~ (A u)

where A «+ Z;”X", S Zg, e« x™, and u + Z,T.
The computational LWE assumption with parameters (1, m,q, x), as
above, asserts that the following function is a one-way:

F(A,s,e) = (A, A -s+e). (1)

Namely, the computational LWE assumption asserts that the func-
tion in Equation (1) is one-way, while the decisional LWE assumption
asserts that this function is a PRG.

Remark. It turns out that that one can convert an efficient distin-
guisher for the decisional LWE assumption into an efficient solver for
the computational LWE assumption (for § = poly(A)). We therefore
often do not distinguish between the two, and simply refer to them
as the LWE assumption.

The fact that F it is a PRG implies that we can use F to construct
a secret-key CPA-secure encryption, by using F to construct a PRF F’/
and using F’ to encrypt messages by Enc(k,m) = (r, F'(k,r) & m).

5
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We will present a much simpler construction due to Regev [2],
from his paper where he introduced the LWE assumption. Moreover,
in that same paper he constructs a public-key encryption scheme
under the LWE assumption! We will see both constructions starting
from the secret-key one.

Secret-Key Encryption Scheme from LWE

We next present Regev’s secret-key encryption scheme for message
space M = {0,1}. In what follows let n = A, let ¢ be much larger
than 7 (it can be polynomial in #n or can be super-polynomial in ), x
error distribution that produces elements x € Z; of size |x| < B, and

).

* The secret key is s < Zj.
* Enc(s,m) does the following:

1. Sample a - Zf and e < .

2. Outputct = (a,a-s+e+[q/2]| -m).
* Dec(s, ct) does the following:

1. Parse ct = (a,c).

2. Output m = 0 if and only if [c — a - s| < g/4, and output 1
otherwise.

Correctness: Note that
lc—a-s[=le+|q/2] m|

which is less than B if and only if m = 0, assuming B < q/4.
CPA-security: Follows immediately from the LWE assumption.

Additive homomorphism: Note that this scheme is additively homo-
morphic! In particular, Enc(s,b;) + Enc(s, b,) is an encryption of

b1 ® by with a larger noise, where the noise is e; + ;. In particular, if
we set g to be super-polynomial in n then we can tolerate polynomi-
ally many additions.

Regev’s Public-Key Encryption Scheme

The idea is simply beautiful and seems crazy at first! The secret key
will remain s, and the public-key will contain many encryptions of
zero. Namely,

pk=(A,A-s+e)

6
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To encrypt a message m € {0,1} add a random subset of these
ciphertext to get a “fresh” encryption of 0 and then add to it [q/2] -
m. Namely, Enc(pk, m) does the following:

1. Sample r < {0,1}".
2. Output (r-A,r-(A-s+e)+|q/2] -m).

The decryption is done exactly as in the secret-key setting.
Security follows from the Leftover Hash Lemma (and the LWE
assumption). Specifically, the Leftover Hash Lemma asserts that

(A,r-A) =(A,0)
assuming that m >> n -logg. More formally:

Lemma 2 (Leftover Hash Lemma (special case):). Fixanye € (0,1),
then for A < Z7*" and x < {0,1}" and u < {0,1}", it holds that

£

(A,r-A) =(A,u)

ifm > nlogg+2-log(1/e).

Claim 1. The public-key encryption scheme described above is CPA-
secure, assuming m > nlogg + A

Proof. Suppose for the sake of contradiction that there exists a poly-
size A that wins in the CPA-security game with a non-negligible
advantage. By the LWE assumption, A should still win with non-
negligible advantage even if we replace

pk=(A,(A-s+e)) € ZZM("H)

with pk = B, where B «+ ZZZX(”H)
r- B = u, and hence the ciphertext Enc(pk, m) is statistically close

. By the Leftover Hash Lemma

to uniform in Z;‘H regardless of m, and hence even an all powerful
adversary cannot win the CPA-security game with non-negligible
advantage. O
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