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Recap:

In the last lecture, we saw how to construct a CPA-secure public-key
encryption scheme from any trapdoor injective one-way function
family.

Today:

We will see constructions of trapdoor one-way functions from num-
ber theoretic assumptions.

First, let us recall the definition of trapdoor one-way functions and
how they can be used to construct a public-key encryption scheme.

Definition 1. A trapdoor injective one-way function family consists
of a PPT key generation algorithm Gen, that takes as input 1λ and
outputs a (public) hash key hk together with an associated (secret)
trapdoor key td, and a family of functions Fhk : Dhk → Rhk. The
following properties are required to hold:

• Efficiently computable: There is a poly-time algorithm A
such that for every (hk, td) ∈ Gen(1λ) and for every x ∈ Dhk,
A(hk, x) = Fhk(x).

• Efficiently sampleable: There is a PPT algorithm D such that
for any (hk, td)← Gen(1λ),

D(hk) ≡ UDhk

Namely D(hk) outputs an element in Dhk whose distribu-
tion is statistically close to the uniform distribution over the
domain Dhk.

• Trapdoor invertible: There is a poly-time inversion algorithm
I such that for any (hk, td) ∈ Gen(1λ) and any x ∈ Dhk

I(td, Fhk(x)) = x
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• One-way: For every polys-size A there exists a negligible
function µ such that for every λ ∈N,

Pr[A(hk, Fhk(x)) = x] ≤ µ(λ)

where the probability is over (hk, td) ← Gen(1λ) and over
x ← Dhk.

The corresponding public-key encryption scheme is defined as
follows, where HCP(x; r) is any hardcore predicate such as the Gol-
dreich Levin (randomized) hardcore predicate

HCP(x; r) = x · r.

• Gen(1λ) outputs (pk, sk) = (hk, td).

• Enc(hk, m) = (Fhk(x), r,HCP(x; r)⊕m).

• Dec(td, y, r, c) uses td to obtain x which is the inverse of y,
and then use (x, r) to unmask c and obtain m = HCP(x; r)⊕ c.

Correctness follows from the fact that Fhk is injective, and the inver-
sion algorithm finds the same x that is used to mask the message m.
Security relies on the fact that by definition of a hardcore predicate,

(hk, Fhk(x), r,HCP(x, r) ≈ (hk, Fhk(x), r, U)

where U ← {0, 1}.

Number-Theory Review

The constructions we will see are based on number theory, but this
time over the group

Z∗N = {x : GCD(x, N) = 1}.

where N is a product of two large primes p, q← {0, 1}λ. Note that

|Z∗N | = N − p− q + 1 = (p− 1)(q− 1).

What makes this group very different from Z∗p where p is prime,
is that Z∗N is a group of unknown order (assuming the hardness of
Factoring).

The Chinese Remainder Theorem (CRT) the CRT theorem asserts that
for N = p · q, the group Z∗N is isomorphic to the group Z∗p ×Z∗q , with
the isomorphism given by

x → (x mod p, x mod q).
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Namely, c = a · b mod N if and only if

c = a · b mod p ∧ c = a · b mod q.

Furthermore, for any a ∈ Z∗p and b ∈ Z∗q , there is a unique efficiently
computable c ∈ Z∗N such that

c = a mod p ∧ c = b mod q.

Uniqueness follows from the fact that if x1, x2 ∈ Z∗N satisfy that

x1 mod p = x2 mod p ∧ x1 mod q = x2 mod q

then
x1 − x2 mod p = 0 ∧ x1 − x2 mod q = 0

which by the fact that p, q are co-prime implies that

x1 − x2 = 0 mod N,

as desired.

Claim 1. Given any primes p, q and any a, b ∈ N that are co-prime
to p and q, respectively, one can efficiently compute c ∈ Z∗N , for
N = p · q, such that

c mod p = a ∧ c mod q = b

Proof. Given any primes p, q and any a, b ∈ N, co-prime to p and q,
respectively, compute c ∈ Z∗N , as follows.

• Compute p−1 which is the inverse of p modulo q.

• Compute q−1 which is the inverse of q modulo p.

• Output c = q · q−1 · a + p · p−1 · b mod N.

.

Remark. The notation above is a bit misleading since p · p−1 ̸=
1 mod N, and similarly for q. Moreover, neither p nor q have an in-
verse modulo N. Crucially, the inverses p−1 and q−1 were defined
over q and p, respectively.

It is easy to see that

c mod p = a ∧ c mod q = b,

as desired.

Notation We denote by (a, b) the CRT representation of an element
c ∈ Z∗N . Namely (a, b) refers to the unique c ∈ Z∗N such that

c mod p = a ∧ c mod q = b,
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Warmup Construction: Rabin’s Function

As a warmup we present Rabin’s function family [2]. It is not quite
what we want, since it is not injective. We will later elaborate on how
one can convert this trapdoor family into an injective one.

The Construction

• Gen(1λ):

1. Choose two random primes p, q← {0, 1}λ.

2. Compute N = p · q.

3. Output hk = N and td = (p, q).

• FN(x) : Z∗N → Z∗N , where

FN(x) = x2 mod N.

Definition 2. Factoring is said to be hard if for every poly-size A
there exists a negligible µ such that

Pr[A(N) = (p, q)] ≤ µ(λ)

where the probability is over randomly chosen primes p, q ← {0, 1}λ

and where N = p · q.

Claim 2. Rabin’s function family is a trapdoor (non-injective) one-
way function family (where the inverstion algorithm finds all preim-
ages) assuming the hardness of Factoring.

Proof. We prove that this function family satisfies all the conditions
from Definition 1 except the injectiveness.

• Efficiently computable: It is easy to see that given hk =

N and given any x ∈ Z∗N it is easy to compute FN(x) =

x2 mod N.

• Efficiently sampleable: One can efficiently sample an el-
ement from Z∗N uniformly at random, by sampling a ran-
dom element in x ← {1, . . . , N − 1}, and checking that
gcd(x, N) = 1.1 If this is not the case then given x one can 1 Note that gcd is an efficiently com-

putable function, via Euclid’s the
extended gcd algorithm.

efficiently compute p, q such that N = p · q, and hence sample
a random element x ← Z∗N by sampling a random element
a ← Z∗p and a random element b ← Z∗q , and using the CRT
theorem to compute x ∈ Z∗N such that

x = a mod p ∧ x = b mod q

• Trapdoor invertible: Given td = (p, q) and given y =

FN(x) = x2 mod N, we will use the Chinese Remainder The-
orem (CRT), compute all four square-roots of y modulo N, as
follows:
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1. Compute a ∈ Z∗p such that a2 = y mod p.

If p = 3 mod 4 then this can be done by setting a = y
p+1

4 .
Note that

a2 = y
p+1

2 = y
p−1

2 · y = y,

where the latter equality follows from the fact that y is a
square, and hence if g ∈ Z∗p is a generator then y = g2b, for

some b ∈N, and hence y
p−1

2 = gb·(p−1) = 1.

Remark. Note that we rely on the fact that we know the
order of the group Z∗p, which is p − 1. In the above, we

also rely on the fact that p+1
4 ∈ N, which holds only if p =

3 mod 4. We can remove the restriction that p = 3 mod 4,
at the price of making the algorithm for finding square-
roots more complicated. For the sake of completeness we
present the general square-root finding algorithm for Z∗p at
the end of these notes.

We will later see that it is hard to compute square roots
modulo N, assuming the hardness of Factoring, since com-
puting the order of the group Z∗N is as hard as Factoring.

Note that α and p − α are the only two square roots of y
modulo p. This follows from the fact that p is prime and
hence GF[p] is a field.

2. Compute b such that b2 = y mod q.

This is done in a similar manner, and as above, β and q− β

are the only two square roots of y modulo q.

3. For every one of the four elements

(a, b), (a, q− b), (p− a, b), (p− a, p− b) ∈ Z∗p ×Z∗q

output the corresponding elements c1, c2, c3, c4 ∈ Z∗N .

4. One-way: We will show that if the one-way condition
does not hold then we can break the hardness of Factoring
assumption. Specifically, suppose that there exists a poly-
size A and a non-negligible ϵ such that

Pr[A(N, y) = x : x2 = y mod N] ≥ ϵ(λ)

where the probability is over randomly chosen primes
p, q ← {0, 1}λ, and setting N = p · q, and over a randomly
chosen r ← Z∗N and setting y = r2 mod N.

We will construct a poly-size algorithm B that breaks the
hardness of Factoring. Given N = p · q, the algorithm B
does the following:
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(a) Choose a random element r ← Z∗N .

(b) Compute y = r2 mod N.

(c) Compute x = A(N, y).

(d) Compute d = gcd(N, x + r).

(e) If d = 1 then abort, and otherwise output {d, N/d}.
We next argue that B successfully factors N with proba-
bility ϵ(λ)

2 . To this end denote by Succ the event that A is
successful at finding a preimage.

Pr[B(N) = (p, q)] =

Pr[B(N) = (p, q)| Succ] · Pr[Succ] + Pr[B(N) = (p, q)| ¬Succ] · Pr[¬Succ] ≥
Pr[B(N) = (p, q)| Succ] · Pr[Succ] ≥
Pr[B(N) = (p, q)| Succ] · ϵ(λ) =
1
2
· ϵ(λ)

where the last equation follows from the fact that y has
four preimages modulo N:

(a, b), (a, q− b), (p− a, b), (p− a, q− b),

and A has no information about the preimage r chosen by
B. Hence, the output would be identical if first A would
output a preimage x and then B would choose a random
preimage r. Thus, with probability 1/2 the two primages
will be equal modulo one of the primes and not equal
modulo the other, in which case indeed gcd(N, x + r) will
output one of the primes.

Rabin’s construction is very nice but it is not injective, and hence
it is not clear how it can be used to construct a public-key encryp-
tion scheme. However, note that we can easily make it injective by
restricting its domain to be:

QRN = {x2 : x ∈ Z∗N}.

Namely, we can define

FN : QRN → QRN

which turns out to be a permutation, if p, q ≡ 3 mod 4!

Terminology: An integer N of the form p · q, where p and q are
primes such that p = 3 mod 4 and q = 3 mod 4, is called a Blum
integer.
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The reason FN is a permutation, assuming N is a Blum integer, is
that x ∈ QRN if and only if x ∈ QRp and x ∈ QRq. Recall that every
element in c ∈ QRN has 4 square roots in Z∗N , and these roots are
of the form in the CRT representation: {(±a,±b)} for some a ∈ Z∗p
and b ∈ Z∗q . The fact that p = 3 mod 4 and p = 3 mod 4 implies that
−1 /∈ QRp and −1 /∈ QRq, and hence exactly one of these four roots
is in QRN .

This construction turned out to be extremely useful, and has led
to the Goldwasser-Micali encryption scheme [1], which was the first
public-key encryption scheme that was proven to be secure!

The Goldwasser-Micali Public-Key Encryption Scheme

• Gen(1λ):

1. Sample random primes p, q← {0, 1}λ, such that

(p mod 4 = 3) ∧ (q mod 4 = 3).

This choice of p, q ensures that (−1) is not a quadratic
residue modulo p or modulo q.

This is the case since let x ∈ Z∗p be any generator then

−1 = x
p−1

2 . Note that this would be a quadratic residue
only if p−1

2 was even modulo p − 1, i.e., if there exists
a ∈N such that

2a =
p− 1

2
mod (p− 1)

which holds only if p = 1 mod 4.

2. Let N = p · q.

3. Output pk = N and sk = (p, q).

• Enc(pk, m):

1. Sample a random x ← Z∗N .

2. Compute y = x2 mod N.

3. Output ct = (−1)m · y.

• Dec(sk, ct):

1. Output m = 0 if y ∈ QRN and output m = 1 otherwise.

Security follows from the assumption that it is secure! Namely, the
assumption is that it is hard to distinguish random elements in QRN

from random elements in Z∗N that are not quadratic residues modulo
p or q.
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Remark. It turns out that it is easy to distinguish random elements in
QRN from random elements in Z∗N \QRN . But we believe that it is
hard to distinguish between random elements in QRN from random
elements in {x ∈ Z∗N : (x mod p) /∈ QRp ∧ (x mod q) /∈ QRq}. This
is called the Quadratic Residue assumption and is precisely what
is needed in order to prover the security of the Goldwasser-Micali
encryption scheme.

RSA Construction of a Trapdoor Permutation

We now present the RSA function, due to Rivest, Shamir, and Adle-
man [3]. The RSA trapdoor function came before Rabin’s function,
but it is convenient to think of it as a modification of Rabin’s func-
tion, that converts it from a trapdoor function into a trapdoor permu-
tation.

Recall that Rabin’s function FN(x) = x2 mod N had the problem
that each image has 4 preimages. This results from the fact that in
Z∗p and Z∗q every square has two square roots, and thus by the CRT

theorem, in Z∗N each square has four square roots.
There is a natural fix to this! Instead of taking FN(x) = x2 mod N,

define it to be
FN,e(x) = xe mod N

where e is any element that is co-prime to p− 1 and q− 1. The point
is that if e is co-prime to p − 1 and q − 1 then FN,e : Z∗n → Z∗n is a
permutation. The reason is that if e is co-prime to p − 1 then there
exists d such that d · e = 1 mod (p− 1) and hence if

xe
1 = xe

2 mod N

then
xe

1 = xe
2 mod p ∧ xe

1 = xe
2 mod q.

Note that
(xe

1)
d mod p = x1

1+c·(p−1) mod p = x1,

and the same holds for q and for x2. This implies that

x1 = x2 mod p ∧ x1 = x2 mod q

which by the CRT theorem implies that x1 = x2.
One way of choosing such e is setting e = 3 and choosing random

p, q such that p mod 3 = 2 and q mod 3 = 2. This ensures that 3 is
co-prime to p− 1 and q− 1.

This is exactly the RSA trapdoor permutation! The next question
to ask is whether this is still one-way assuming the hardness of Fac-
toring? The sad answer is that we don’t know. Instead we make a
new assumption, referred to as the RSA assumption.
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The RSA Assumption: For every poly-size A there exists a negligible
function µ such that for every λ ∈N,

Pr[A((N, e), FN,e(x)) = x] ≤ µ(λ)

where the probability is over randomly chosen p, q ← {0, 1}λ such
that p mod 3 = 2 and q mod 3 = 2, and over x ← Z∗N where N = p · q
and e = 3.

Under this assumption the one-wayness holds by definition!

Remark. The original proposed RSA encryption scheme worked with
message spaceMλ = Z∗N , and the encryption algorithm was defined
to be

Enc((N, e), m) := me mod N.

However, this is clearly insecure, since it is deterministic! We can
make it secure by using the trapdoor function with a hardcore predi-
cate, as we saw in the last lecture. Namely, letM = {0, 1} and

Enc((N, e), m) = (FN,e(x), r,HCP(x; r)⊕m).

We can take HCP to be the Goldreich-Levin hardcore predicate. But,
it turns out that the least-significant bit P(x) := x mod 2 is a hardcore
predicate for RSA. Namley, if there exists a poly-size adversary that
guesses the least-significant bit of x with non-negligible advantage
given xe mod N, then there is a poly-size adversary that breaks the
RSA Assumption with non-negligible probability.

So, one can use the following encryption algorithm:

Enc((N, e), m) = (FN,e(x), (x mod 2)⊕m).

Algorithm for finding square-roots in Z∗p

We next show how to find square-roots in the group Z∗p for any
prime p. In general, any prime p can be written as p − 1 = 2s · k,
where k ∈N is an odd integer.

The algorithm: Given a prime p = 2s · k and a quadratic residue
y ∈ Z∗p do the following:

If
yk = 1 mod p,

then the square-root of y can be computed as in the case where p =

3 mod 4, by computing
a = y

k+1
2 .

Note that
a2 = yk · y = y.
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More generally, the algorithm will find z such that yk · z2 = 1, and
set

a = y
k+1

2 · z,

where
a2 = yk+1 · z2 = y.

Finding such an element z is a bit complicated, and is done as fol-
lows:

1. Find any element w ∈ Z∗p which is not a quadratic residue. This
can be done by sampling a random w ← Z∗p and checking if

w
p−1

2 = −1. If this is the case then w is not a quadratic residue.
Otherwise, try again. Since half of the elements are not quadratic
residues we expect to find one in constant time.

2. Let W = wk mod p.

3. Set a = 0.

4. Note that the facts that a = 0 and y is a quadratic residue, imply
that (

yk ·W2a
)2s−1

=
(

yk
)2s−1

= 1

5. Find the minimal s′ ≤ s− 1 such that

(
yk ·W2a

)2s′

= 1

6. If s′ = 0 then output z = Wa.

7. Otherwise, let a := a + 2s−s′−1 and go back to Item 5.

We next argue that s′ always decreases by at least one in each step, so
that the algorithm terminates after at most s ≤ log p steps. Namely,
we claim that (

yk ·W2·
(

a+2s−s′−1
))2s′−1

= 1

This follows from the following calculations:

(
yk ·W2·

(
a+2s−s′−1

))2s′−1

=

(
yk ·W2a

)2s′−1

·W2s−1
=

(−1) · (wk)2s−1
= (−1) · (−1) = 1,

as needed.



lecture 13: public-key encryption schemes (cont.) 11

References

[1] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and
how to play mental poker keeping secret all partial information.
In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and
Lawrence H. Landweber, editors, Proceedings of the 14th Annual
ACM Symposium on Theory of Computing, May 5-7, 1982, San Fran-
cisco, California, USA, pages 365–377. ACM, 1982.

[2] Michael O. Rabin. Digitalized signatures and public-key
functions as intractable as factorization. Technical Report
MIT/LCS/TR-212, MIT Laboratory for Computer Science, Cam-
bridge, MA, January 1979. Technical Report.

[3] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method
for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.


	Recap:
	Today:
	Number-Theory Review
	Warmup Construction: Rabin's Function
	The Goldwasser-Micali Public-Key Encryption Scheme
	RSA Construction of a Trapdoor Permutation
	Algorithm for finding square-roots in Z*p

