
Lecture 12: Public-Key Encyrption Schemes
Notes by Yael Kalai

MIT - 6.5620
Lecture 12 (October 15, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Recap:

Last class we transitioned to public-key cryptography!

• Presented the Diffie-Hellman Key Agreement protocol.

• Defined public-key encryption scheme.

• Presented the El-Gamal encryption scheme.

Today

• Prove the security of the El-Gamal encryption scheme, and its
variants.

• Define trapdoor (injective) one-way functions.

• Construct a public-key encryption scheme from any (injec-
tive) one-way trapdoor function.

The El-Gamal Encryption Scheme

• Let G = Gλ be a group of prime order q of size roughly 2λ,
and let g ∈ G be a generator. The message spaceMλ is G.

• Gen(1λ):

1. Choose at random s← Zq.

2. Set pk = gs and sk = s.

3. Output (pk, sk).

• Enc(pk, m):

1. Choose at random r ← Zq.

2. Output ct = (gr, pkr ·m).

• Dec(sk, ct):

1. Parse ct = (R, ct′).

lecture 12: public-key encyrption schemes 2

2. Output m = ct′ · (R−sk).

Theorem 1. This scheme is CPA secure under the DDH assumption.

Recall that the DDH assumption w.r.t. a group G prime order q
with generator g ∈ G, states that

(ga, gb, ga·b) ≈ (ga, gb, gc)

where a, b, c← Zq.
Recall the definition of CPA security for public-key encryption:

Definition 2. A public-key encryption scheme (Gen,Enc,Dec) with
message spaceM = {Mλ}λ∈N is said to be CPA-secure if for every
poly-size A there exists a negligible µ such that for every λ ∈ N the
adversary A wins the game below with probability at most 1

2 + µ(λ):

1. The challenger samples (pk, sk)← Gen(1λ) and sends pk to A.

2. A chooses m0, m1 ∈ Mλ and send these messages to the chal-
lenger.

3. The challenger samples a random bit b ← {0, 1} and computes
ctb ← Enc(pk, mb). and sends ctb to A.

4. A outputs a bit b′ (as a guess for b).

A wins if and only if b′ = b.

Proof of Theorem 1 Fix any poly-size adversary A and suppose that
A wins in the CPA security game (Definition 2) with non-negligible
advantage ϵ : N → [0, 1]. We construct a poly-size adversary B that
breaks the DDH assumption. Given (ga, gb, gc), B emulates the CPA

security game with A, as follows:

1. Send pk = (g, ga) to A.

2. Emulate A(pk) to compute m0, m1 ∈ G.

3. Sample a random β ← {0, 1}, and send to A the ciphertext (gb, gc ·
mβ).

4. Compute the guess β′ computed by A.

5. If β = β′ then output 1 (indicating that the input (ga, gb, gc) is a
DDH tuple) and otherwise output 0.

Note that if (ga, gb, gc) is a DDH tuple then this is a perfect simula-
tion of the CPA game and hence, by our assumption

Pr[B(ga, gb, gc) = 1 | (ga, gb, gc) ∈ DDH] ≥ 1
2
+ ϵ(λ)

lecture 12: public-key encyrption schemes 3

On the other hand,

Pr
a,b,c←[q]

[B(ga, gb, gc) = 1] =
1
2

even if B is all powerful, since gc is a perfect mask of mβ.

Basically, the above proof shows that if we run the Diffie-Helman
key agreement protocol polynomially many times t = poly(λ), with
the same first message ga and with independent randomly chosen
second messages gb1 , . . . , gbt , then,

(ga, gb1 , . . . , gbt , ga·b1 , . . . , ga·bt) ≈ (ga, gb1 , . . . , gbt , gc1 , . . . , gct)

where c1, . . . , ct ← [q].
This can be proven via a standard hybrid argument (which if you

squint, you can see that this is basically what is going on inside the
CPA-security proof above). The point is that given (ga, gb, gc) we can
efficiently simulate the tuple(

gb1 , . . . , gbi−1 , ga·b1 , . . . , ga·bi−1
)

and the tuple (
gbi+1 , . . . , gbt , gci+1 , . . . , gct

)
.

An Alternative Formulation of the El-Gamal Encryption Scheme

In the El-Gamal encryption scheme we presented above, the message
space is G and we use gab as a one time pad by multiplying it with
the message m ∈ G. Alternatively, we can think of the message space
as being {0, 1}ℓ and defining the encryption algorithm to be:

Enc(pk, m) = (gr, H(pkr)⊕m)

where H : G → {0, 1}ℓ.

Why is this better? First,M = {0, 1}ℓ is a more natural message
space. Second, if we use an appropriate H we can rely on the weaker
CDH assumption (as opposed to the stronger DDH assumption).

For example, we can have H be a hardcore predicate! Recall that
by Goldreich-Levin’s theorem we can take H to be the randomized
predicate that on input x and randomness r outputs

H(x; r) = x · r =
λ

∑
i=1

xiri mod 2.

Where we think of G as embedded in {0, 1}λ, and the resulting mes-
sage space isM = {0, 1}.

lecture 12: public-key encyrption schemes 4

In practice, H is taken to output many bits (say λ bits), and the
assumption is that H “behaves like a truly random function.” This is
formalized via the random oracle model (ROM) described below.

Random Oracle Model

The random oracle model was introduced by Bellare and Rogaway
[1]. The idea is to analyze the security of the cryptosystem assuming
that the underlying hash function H is a truly random function and
that the adversary only has black-box access to H (i.e., it can feed
inputs and obtain outputs).

Note that if H was indeed a random oracle then the above variant
of the El-Gamal encryption scheme would be secure under the CDH

assumption, since if the adversary cannot compute pkr then H(pkr)

looks truly random and hence can be safely used as a one-time pad.
We emphasize that this random oracle model is an ideal model,

which is not consistent with reality! Hash functions are not random
functions, and the adversary is given more than black-box access
to the function, since it is given a succinct description of H that
allows him to compute the function efficiently. Indeed, there are
known counter examples, due to Canetti, Goldreich and Halevi [2], of
schemes that are secure in the random oracle model and are insecure
when the random oracle is instantiated with any hash function.

Nevertheless, the random oracle model has proven to be extremely
useful! It is a great proxy for analyzing the security of cryptosystems,
and so far we have not seen examples of real-world schemes that
were proven secure in the random oracle model, and were broken
in practice where the hash function was taken to be an off-the-shelf
hash function, such as SHA256.

Constructing Public-Key Encryption from General Assumptions

So far we have seen how to construct a public-key encryption scheme
from a very specific assumption, which may or may not be secure!
Diffie and Hellman, in their seminal paper [3], proposed to use trap-
door (injective) one-way functions to construct a public-key encryp-
tion.

Trapdoor One-Way Functions

Definition 3. A trapdoor (injective) one-way function family consists
of a PPT key generation algorithm Gen, that takes as input 1λ and
outputs a (public) hash key hk together with an associated (secret)

lecture 12: public-key encyrption schemes 5

trapdoor key td, and a family of functions Fhk : Dhk → Rhk. The
following properties are required to hold:

• Efficient computable: There is a poly-time algorithm A such
that for every (hk, td) ∈ Gen(1λ) and for every x ∈ Dhk,
A(hk, x) = Fhk(x).

• Efficiently sampleable: There is a PPT algorithm A such that
for any (hk, td)← Gen(1λ), and any x ∈ Dhk,

Pr[A(hk) = x] =
1
|Dhk|

(I.e., A outputs a uniformly random sample from the domain
Dhk)

• Trapdoor invertible: There is a poly-time inversion algorithm
I such that for any (hk, td) ∈ Gen(1λ) and any x ∈ Dhk

I(td, Fhk(x)) = x

• One-way: For every polys-size A there exists a negligible
function µ such that for every λ ∈N,

Pr[A(hk, Fhk(x)) = x] ≤ µ(λ)

where the probability is over (hk, td) ← Gen(1λ) and over
x ← Dhk.

Public-key Encryption from Trapdoor One-Way Functions

Intuitively, to build a public-key encryption scheme from a trapdoor
one-way function, we should take the public key to be hk and the
secret key to be td. However, it is not clear what to do next. We will
rely on the Goldreich-Levin theorem that there exists a hardcore
predicate HCP(x, r) = x · r such that

(hk, Fhk(x), r,HCP(x, r) ≈ (hk, Fhk(x), r, U)

where U ← {0, 1}.
Remark. There seems to be a mismatch here since on the one hand
x ∈ Dhk and on the other hand HCP assumes that x ∈ {0, 1}λ.
However, we argue that this mismatch is only syntactic and can be
corrected easily. Basically, all we need to do is embed Dhk in {0, 1}ℓ,
for an appropriate ℓ(λ) = poly(λ).

Alternatively, the fact that x ← Dhk is efficiently sampleable
implies that one can think of Fhk as having the domain {0, 1}λ, and
on input r ∈ {0, 1}λ it samples x ← Dhk using randomness r and
outputs Fhk(x).1 Thus, from now on we assume that Dhk = {0, 1}λ.2 1 We will also need to assume that the

transformation from r ∈ {0, 1}λ to x is
injective. This can be achieved by taking
a shorter λ and using a PRG. We omit
the details here.
2 We note that we will only be inter-
ested in how Fhk behaves on random
elements x ← Dhk hence this change of
domain does not have an affect.

lecture 12: public-key encyrption schemes 6

In what follows, given a trapdoor one-way function family, defined
by GenF and {Fhk}, we construct the following public-key encryption
scheme:

• Gen: Takes as input 1λ and does the following:

1. Sample (hk, td)← GenF(1λ).

2. Set pk = hk and sk = td.

3. Output (pk, sk).

• Enc: takes as input the public key hk and a message m ∈
{0, 1}, and does the following:

1. Sample a random x ← {0, 1}λ.

2. Compute y = Fhk(x).

3. Choose a random r ← {0, 1}λ, and let b = HCP(r, x).

4. Output (y, r, b⊕m).

• Dec: On input a secret key td and a ciphertext ct = (y, r, c),
does the following:

1. Compute x = I(td, y).

2. Compute b = HCP(r, x).

3. Output m = b⊕ c.

Theorem 4. The public-key encryptions scheme above is CPA-secure

Proof. Suppose for the sake of contradiction that there exists a poly-
size adversary A and a non-negligible ϵ such that A wins in the CPA

game with probability ϵ. We construct a poly-size adversary that
inverts the one-way function. To this end, it suffices to construct a
poly-size B for which there exists a non-negligible ϵ such that for
every λ ∈N,

Pr[B(hk, Fhk(x), r) = HCP(x, r)] ≥ ϵ(λ),

where the probability is over (hk, td) ← GenF(1λ) and over x, r ←
{0, 1}λ.
B(hk, Fhk(x), r) emulates the adversary A in the CPA game, as

follows:

1. Send pk = hk to A.

2. Emulate A(hk) to obtain m0, m1 ∈ {0, 1}.

3. Choose at random b← {0, 1}.

4. For each d ∈ {0, 1} (which should be thought of as a guess for
HCP(x, r)),

lecture 12: public-key encyrption schemes 7

(a) Let ctd = (Fhk(x), r, d⊕mb).

(b) Emulate A on input ctd to obtain b′d.

5. If b′0 = b′1 then output a random guess b′ ← b.

6. Otherwise output d such that b′d = b.

Note that for d = HCP(x, r) it holds that

Pr[b′d = b] ≥ 1
2
+ ϵ(λ)

whereas for a random d← {0, 1},

Pr[b′d = b] =
1
2

.

therefore B outputs HCP(x, r) with a non-negligible advantage, as
desired.

Next class we will see examples of trapdoor one-way function
families.

References

[1] Mihir Bellare and Phillip Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. In Proceedings of the
1st ACM Conference on Computer and Communications Security (CCS
’93), pages 62–73, Fairfax, Virginia, USA, 1993. ACM.

[2] Ran Canetti, Oded Goldreich, and Shai Halevi. The random or-
acle methodology, revisited (preliminary version). In Proceedings
of the 30th Annual ACM Symposium on Theory of Computing (STOC
’98), pages 209–218, Dallas, Texas, USA, 1998. ACM.

[3] Whitfield Diffie and Martin E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, 22(6), 1976.

	Recap:
	Today
	An Alternative Formulation of the El-Gamal Encryption Scheme
	Random Oracle Model
	Constructing Public-Key Encryption from General Assumptions
	Trapdoor One-Way Functions
	Public-key Encryption from Trapdoor One-Way Functions

