Lecture 11: Key-Agreement
Notes by Yael Kalai

MIT - 6.5620
Lecture 11 (October 8, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Recap

During the last two lectures we constructed signature schemes from
collision-resistant hash functions. These lectures transitioned us from
the world of symmetric cryptography to the world of public-key
cryptography.
e We first constructed a one-time secure signature scheme from
one-way function (Lamport’s scheme). In this scheme the
keys are longer than the messages!

¢ We then introduced the hash-then-sign paradigm, and used
it to construct a one-time signature scheme for messages in

{0,1}*.

* Then we showed how to use a one-time secure scheme with
long messages (messages of length two keys), togegher with
a PRF, to construct a many-time secure signature scheme by
generating a tree of keys (on the fly) and using a different
key to sign each message.

Today

Today, we are heading in a tunnel that will take us to public-key
encryption. In this tunnel we will learn how to agree on a secret-key
while communicating over a public channel.

Key-Agreement

Our goal is for two parties, Alice and Bob, to agree on a secret key k
without ever meeting, and while exchanging messages over a public
channel. This may seem paradoxical at first! When Bob commu-
nicates with Alice, what distinguishes an eavesdropper Eve, from

LECTURE 11: KEY-AGREEMENT

Alice?? We will see how this can be done using some basic number
theory.

We note that so far in class, we managed to do everything from
only one-way functions: PRG, PRF, CPA-secure encryption, MAC,
CCA-secure encryption, and even digital signature schemes!

Remark. Recall that our signature scheme construction relied on the
existence of collision resistant hash functions, but actually this same
construction can be based on one-way functions alone! The observa-
tion, due to Rompel [8], is that in the hash-then-sign, we could have
used a “target collision resistant hash” (which is a weaker primitive
than collision resistant hash), and can in turn be constructed from
any one-way function.

While we do not have a proof that one-way functions exist (indeed
we do not even have a proof that P # NP), we strongly believe they
do. In Russell Impagliazzo’s famous paper [4], introducing “Russell’s
five worlds,” he introduces five possible worlds we may live in: Algo-
rithmica, Heuristica, Pessiland, Minicrypt and Cryptomania, where
one-way functions (and hence cryptography) only exist in Minicrypt
and Cryptomania. Minicrypt contains only one-way functions, but
no advanced cryptographic primitives (such as public-key encryp-
tion). Today we enter the world of Cryptomania, where public-key
cryptography exists!

We will construct a key-agreement protocol under specific num-
ber theoretic assumptions. We do not know how to construct key-
agreement from OWF or from collision resistant hash functions.

Group Theory Background

Our schemes use a group G of size roughly 2%, with the following
properties:

1. Computing the group operation is easy (i.e., it is computable in
time poly(A)). Namely, given g, h € G it is easy to compute g - I,
where - denotes the group operation.

Note that this implies that given ¢ € G and given x € [|G|], itis
easy to compute g* via repeated squaring. Namely, compute

A
88,8488

and then compute

gx _ H g2i .

i€{0,1,...A}: x;=1

where x = Zf\:o x; - 2!

LECTURE 11: KEY-AGREEMENT

2. Given g € G it is easy to compute its inverse ¢~ 1.

3. G is cyclic; namely, there exists a generator g € G such that G =
{8'}ie(a))-

4. The following problem, referred to as the Discrete Log problem, is
hard: Given a pair (g, g"*) where ¢ € G is a random generator and
x is random in [|G|], compute x. In other words the property is
that for every poly-size A there exists a negligible y such that for
every A € N,

Pr[A(g,8%) = x] < u(2)

where the probability is over a random generator ¢ € G and a
random x < [|G|].

Remark. Item 4 implies that the following is a one-way function for
any generator g € G:
f G,g(x) =8 Y,

where fc, : [|G|] = G. In other words, the hardness of inverting fg ,
does not come from the choice of the generator g.

The reason is that if there exists a generator 1 € G such that fg),
is easy to invert; i.e., there exists a poly-size .4 and a non-negligible
€ : IN — [0,1] such that for every A € N,

e () =] 2 ¢(),

then there exists a poly-size B such that for every A € N,
Pr[B(g,8") = x] > €*(A)

where the probability is over a random generator ¢ € G and a ran-
dom element x € [|G]].
B(g,g*) does the following:

1. Compute & = f;(g)-
2. Compute = f; ,(g%).
3. Output x = B-a~! mod|G|.

Note that
Pr[i* =g A K =g*]> €M)

which implies that

Prlx = B-a ! mod|G|] > €2(M).

3

Examples An example of a group that we believe satisfies the above
properties is Zj, for a random prime p. The inverse of an element

X € Z,, can be computed efficiently via the extended GCD algorithm.
Another example is elliptic curves, which we will not discuss in this
class.

In practice, elliptic curves are used more often since there are no
non-trivial algorithms for solving the Discrete Log problem over
elliptic curves, while there are non-trivial algorithms over Z,,. For ex-
ample, the Number Field Sieve algorithm for Discret Log, inverts fg

in time roughly A1/ (log 1)2/3

. As a result when we use Z;, we need to
use much larger security parameter, which results with schemes that
are less efficient.

When working over Z3, we cannot choose p arbitrarily. For exam-
ple, the Pohlig-Hellman algorithm solves the Discrete-Log problem
in time O(,/q) time where g is the largest prime factor of the order of
group (which is p — 1 in the case of Z,). That is, there are primes for
which the Discrete-Log problem is easy. We believe that for a random

prime p the Discrete-Log problem is hard.

Prime order groups In many applications, such as the ones we will
see today, we need the group to be of prime order." Note that the
group Z, is of order p — 1,and hence is not a prime order group.

Subgroup of Z,: Instead, we can take our group to be a sub-group of
Z; of prime order. Specifically, if p = 2¢q + 1 where g is prime (such
p is called a safe prime and such g is called Sophie-Germain prime),
then we can take

G={x*:xc z,}
be the set of all quadratic residues modulo p, and where the opera-
tion is multiplication modulo p. Note that |G| = g is a prime order
group. Any element ¢ € G s.t. § # 1 is a generator, since the order of
an element divides the order of the group.

The question is how do we find such a safe prime p? Well, we can
choose a random number p < {0,1}* and check if it is a safe prime.
If it is a safe prime then great! Otherwise, we try again.

While we do not even know if there are infinitely many safe
primes, we do believe that they are “dense”; i.e., we believe that there
are roughly 2!/ poly(A) safe primes of size at most 2*. Therefore, we
expect to find a safe prime after poly(A) tries.

Another good news: We can efficiently test if a number is a safe
prime, thanks to known primality tests [5, 6, 1] that check if a A-bit
number if prime in time poly(A).

As mentioned above, in practice we often use elliptic curve groups
of prime order.

LECTURE 11: KEY-AGREEMENT 4

* The order of a group is the number of
elements in the group.

LECTURE 11: KEY-AGREEMENT

The Diffie-Hellman Key-Exchange Protocol

Diffie and Hellman, in their very influential paper “New directions in
Cryptography” [2], proposed the idea of public-key encryption and
digital signature schemes. They did not construct such schemes but
they did construct the following key-agreement protocol.

¢ Fix a multiplicative group G of prime order g (where g is of
size roughly 2%), and let ¢ € G be a generator of the group G.

e Alice samples a random element a < {1,...,q} and sends
A = g to Bob.

* Bob samples a random element b < {1,...,q} and sends
B = g’ to Alice.

e They agree on the secret key k = ¢g*?, where Alice computes
this key by computing B? and Bob computes this key by
computing A’

Is this scheme secure? Yes, if you assume it is :-)

Decisional Diffie-Hellman (DDH) Assumption

Definition 1. The DDH assumption w.r.t. a group G prime order g
with generator ¢ € G, states that

(8%,8".8"") ~ (8" 8", &)
where a,b,c < Z,.

Under this assumption, the Diffie-Hellman key-agreement, pre-
sented above, is secure against a poly-size eavesdropper (i.e., passive
adversary).

The point is that now Alice and Bob can encrypt messages to each
other using their secret key k = g*?.

Remark. Another assumption commonly used in cryptography is the
Computational Diffie-Hellman (CDH), w.r.t. a group G of a prime
order group and a generator g, which asserts that for every poly-size
A there exists a negligible function u such that for every A € IN,

PrlA(g", &%) = &' = u(A).

Note that this assumption is not strong enough to make the key-
agreement secure!

The DDH assumption is at least as strong as the CDH assumption,
which is at least as strong as the Discrete-Log assumption.

LECTURE 11: KEY-AGREEMENT

As we will see, the Diffie-Hellman key agreement protocol, pre-
sented above, almost immediately gives us a public-key encryption
scheme! However, this was observed only several years later by ElGa-
mal [3] who used this key agreement protocol to construct a public-
key encryption scheme. The first public-key encryption scheme was
invented here at MIT by Rivest, Shamir and Adleman [7], two years
after Diffie and Hellman’s paper was published.

Public-Key Encryption Scheme

Definition 2. A public-key encryption scheme, w.r.t. message space
M = {M,}ren, consists of three PPT algorithms (Gen, Enc, Dec)
with the following syntax:

* Genis a PPT algorithm that takes as input the security pa-
rameter 1 (in unary) and outputs a pair of public and secret
keys (pk, sk).

* Encis a PPT algorithm that takes as input a public-key pk
and a message m € M and outputs a ciphertext ct.

* Dec is a poly-time algorithm that takes as input a secret-key
sk and a ciphertext ct and outputs a message m.

The encryption scheme is required to satisfy the following complete-
ness guarantee:

Completeness: For every A € IN, and every m € M,,
Pr[Dec(sk, Enc(pk,m)) =m] =1

where the probability is over (pk,sk) < Gen(1*) and over the ran-

domness of Enc.? >Sometimes this perfect correctness
requirement is relaxed to be correct
Definition 3. A public-key encryption scheme (Gen, Enc, Dec) with with probability 1 — negl(A).

message space M = { M, } <N is said to be semantically secure if
for every poly-size A there exists a negligible u such that for every
A € N and every my, m; € M,,

Pr[A(pk, Enc(pk, my)) = b] = 1 + ().

A stronger definition is one where the adversary A can choose the
two messages mg and m4 as a function of pk.

Definition 4. A public-key encryption scheme (Gen, Enc, Dec) with
message space M = { M } en is said to be CPA-secure if for every
poly-size A there exists a negligible y such that for every A € IN the
adversary A wins the game below with probability at most % + u(A):

1. The challenger samples (pk, sk) «<— Gen(1) and sends pk to .A.

LECTURE 11: KEY-AGREEMENT 7

2. A chooses my,m; € M, and send these messages to the chal-
lenger.

3. The challenger samples a random bit b < {0,1} and computes
cty < Enc(pk,m;). and sends ct;, to A.

4. A outputs a bit b’ (as a guess for b).
A wins if and only if b’ = b.

Remark. Note that we do not need to give A oracle access to Enc(pk, -)
since he can compute Enc(pk, -) on its own.

The El-Gamal Encryption Scheme

e Let G = G, be a group of prime order g of size roughly 2%,
and let ¢ € G be a generator. The message space M, is G.
e Gen(11):
1. Choose at random s < Z,.
2. Set pk = ¢° and sk = s.
3. Output (pk, sk).
e Enc(pk,m):
1. Choose at random r < Z,.
2. Output ct = (g", pk” - m).
® Dec(sk,ct):
1. Parse ct = (R, ct/).
2. Output m = ct’ - (R75K).

Theorem 5. This scheme is CPA secure under the DDH assumption.

References

[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes
is in p. Technical Report TRo2-004, Electronic Colloquium on
Computational Complexity (ECCC), 2002. Preliminary version;
journal version in Ann. of Math. 160 (2004), 781—793.

[2] Whitfield Diffie and Martin E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, 22(6), 1976.

[3] Taher ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In G. R. Blakley and David
Chaum, editors, Advances in Cryptology — CRYPTO 84, volume
196 of Lecture Notes in Computer Science, pages 10-18, Santa Bar-
bara, CA, USA, 1984. Springer.

[4]

[5]

(6]

[7]

(8]

LECTURE 11: KEY-AGREEMENT

Russell Impagliazzo. A personal view of average-case complexity.
In Proceedings of the Tenth Annual Structure in Complexity Theory
Conference, Minneapolis, Minnesota, USA, June 19—22, 1995, pages
134-147. IEEE Computer Society, 1995.

Gary L. Miller. Riemann’s hypothesis and tests for primality.
Journal of Computer and System Sciences, 13(3):300-317, 1976.

Michael O. Rabin. Probabilistic algorithm for testing primality.
Journal of Number Theory, 12(1):128-138, 1980.

Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method
for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120-126, 1978.

J. Rompel. One-way functions are necessary and sufficient for se-
cure signatures. In Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, STOC “9o, pages 387—-394, New York, NY,
USA, May 1990. Association for Computing Machinery.

	Recap
	Today
	Key-Agreement
	Group Theory Background
	The Diffie-Hellman Key-Exchange Protocol
	Decisional Diffie-Hellman (DDH) Assumption
	Public-Key Encryption Scheme
	The El-Gamal Encryption Scheme

