Lecture 10: Signature Schemes (Cont.)
Notes by Yael Kalai

MIT - 6.5620
Lecture 10 (October 6, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Recap

* Defined the notion of a signature scheme, which is the
public-key analogue of a MAC.

* Constructed a one-time secure signature scheme (due to
Lamport [1]), assuming the existence of one-way functions.

* Defined the notion of a collision resistant hash family.
¢ Introduced the Hash-then-Sign paradigm.

¢ The Hash-then-signed applied to Lamport’s scheme gives
a one-time signature scheme with message space {0,1}*
assuming the existence of a collision resistant hash family.

Definition 1. A signature scheme is associated with a message space
{M) }ren and with three PPT algorithms (Gen, Sign, Ver), with the
following syntax:

e Gen: Takes as input the security parameter 1! in unary and
outputs a pair (vk,sk) of a public verification key and a secret

signing key.
¢ Sign: Takes as input a secret signing key sk and a message
m € M, and outputs a signature ¢.

* Ver: Takes as input a verification key vk, a message m and a
signature ¢ and outputs 0/1, indicating accept or reject.

A signature scheme is required to satisfy the following complete-
ness guarantee: For every A € IN and every m € M,

Pr[Ver(vk, m,Sign(sk,m)) =1] =1

where the probability is over (vk,sk) < Gen(1*) and over the ran-
domness of Sign (if it is randomized).* " Ver is always deterministic.

LECTURE 10: SIGNATURE SCHEMES (CONT.)

Definition 2. A signature scheme (Gen, Sign, Ver) with message space
{M) }ren is said to be existentially unforgeable against adaptive
chosen message attacks if for every poly-size A there exists a negligi-
ble function y such that for every A € IN,

Pr[A58k (k) = (m*,0*) s.t. Ver(vk,m*,0*) =1 A m* ¢ Q] < u(A)

where Q denotes the set of all oracle calls that .4 makes to the oracle,
and the probability is over (vk,sk) < Gen(1") and over the random-
ness of Sign (if it is randomized).

It is said to be one-time secure if the above holds against any
poly-size A that queries the oracle only once (i.e., |Q| = 1).

Today

In this lecture, we show how to take any one-time secure signature
scheme with message space M = {0,1}*, and convert it into one that
is many-time secure (i.e., existentially unforgeable against adaptive
chosen message attacks).

This will be done analogously to the way we built a PRF from a
PRG. In fact, this whole lecture might give you a deja vu, since we
are basically repeating the PRF construction and proof in the context
of signature schemes.

In this lecture, we construct a signature scheme with message
space M, = {0,1}*. Using the hash-then-sign paradigm we can
convert it into a signature scheme with message space M, = {0,1}*,
by first hashing the message m € {0,1}* and then signing Hy(m) €
{0,1}*, where Hy, is a collision resistant hash function.

From One-Time Security to Many-Time Security

The idea is simple! To sign many messages lets generate many secret
keys, and sign each message using a different key! The problem is
that Gen is a PPT algorithm, and hence can generate at most poly-
nomially many keys. Therefore, the adversary can query the signing
oracle with polynomially many messages where this number is larger
than the number of keys, and hence will use at least one key more
than once, which may cause a breach in security.

Idea 1: Generate these secret keys on the fly, as many as needed!

2

LECTURE 10: SIGNATURE SCHEMES (CONT.) 3

A Stateful signature scheme:
From one-time to many-time security via a chain of keys

As a warmup, let us first construct a “stateful” signature scheme. The
idea is to evolve the keys as we go along. We start with a key pair
(vko,sko) < Gen(1%). Then to sign the i’th message we generate a
pair of fresh keys (vk;, sk;) - Gen(1") and use sk;_; to sign the (long)
message (m;,vk;). The verifier’s algorithm will verify the signature of
the i’th message w.r.t. the (i —1)’st verification key vk;_.

Note that the verifier and the signer need to keep track of the
number of messages and verification keys that were signed. We can
make the verifier stateless and keep only the signer stateful, at the
price of making the signatures grow linearly with the number of
messages that were signed. A signature of the i"th message m; would
consist of verification keys (vkj, ..., vk;), messages (mj,...,m;_1) and
signatures (07, ...,0;). The verifier will accept this signature if and
only if for every j € [i],

Ver(ijfll (m]/ ij)/ 0-]) =1

The drawback of this approach is that the signer must be stateful and
the signatures grow linearly with the number of messages signed.

Remark. This should remind you of our first attempt to construct a
stateful PRF via a line (as opposed to using a tree).

We next show how to shrink the signature length.

Idea 2: Shrink the signature length via a tree!

From one-time to many-time security via a tree of keys

So far, we showed how to use each secret key sk; to sign one new ver-
ification key vk;;1. Next, she will use each secret key to sign two new
verification keys. This gives a tree of keys instead of a list of keys.
Specifically, the signer will generate 2* key pairs {(vky, sky) }c (1)1
To sign message m € {0,1}" he will use the signing key sk;,. The
signature will consist of (vk,, Sign(sky,, 1)) and the authentication of
vk, which is

{ (Vkml,...,mi_l,O/ Vkml,...,mi,l,l)/ Slgn (Vkml,...,m,-_lf (Vkml,...,m,-_l,O/ Vkml,...,mi,l,l)) }le[/\}

where the original verification key is vkg. This makes the verifier
stateless and the signature length “short” (i.e. of fix polynomial

length that does not grow with the number of messages signed).? 21t actually grows logarithmically with

the number of messages signed, but

. . . . since we always sign less than 2* many

since he needs to store this exponential size tree! messages we can think of the signature
as being of fixed size (that grows only
with A.

However, this comes with a price! The signer is now inefficient

LECTURE 10: SIGNATURE SCHEMES (CONT.)

Idea 3: Generate the tree of keys on the fly! Rather than generating all
the 2" key pairs a priori, the signer will generate the keys it needs on
the fly. This will allow the signer to run in polynomial time, but will
require the signer to be stateful. Specifically, the signer will keep a set
S of all the key pairs generated thus far.

Remark. If the signature scheme was randomized then it would also
need to store the signatures of these verification keys. Recall that
Lamport’s one-time signature scheme has a deterministic signing
algorithm. Actually, every signature scheme can be made to have

a deterministic signing algorithm by using a PRF to generate the
randomness used by the signing algorithm.

To sign a message m the signer needs to generate key pairs

vk . p,5k))}
{ < ml,...,m,_l,h ml,...,m,_l,b iE[)\],bE{O,l}

along with signatures

{O'ml,u.,mi = Slgn (Skml,...,mi/ (Vkml,...,mi,l,()/ Vkm],‘..,m,v,l,l)) }ie[)\]

Notice that he cannot generate all these key pairs at random since
then he will sign many messages with the same skg. Instead, he will
generate only those key pairs that were not already generated and
stored in S. This ensures that each secret key will be used to sign
only one message!

It remains to make the signer stateless.

Idea 4: Generate the keys using a PRF. Rather than storing the key
pairs, the signer will store a key to a PRF and will regenerate each
key pair (vky, sky) by running Gen(1%) with the same randomness
ry = PRF(k, x).

The Construction

Let F: Ky x {0,1}=* — {0,1}" be a PRF, and let (Gen, Sign, Ver) be
a one-time signature scheme w.r.t. message space {0,1}*. We define a
signature scheme (Gen*, Sign*, Ver*) for message space M, = {0,1}*,
as follows.
o Gen*(1"):
1. Sample a PRF key k < KC,.
2. Sample a key pair (skg,vkp) < Gen(1%).
3. Let vk* = vkg and sk™ = (k, skgp).
4. Output (vk*,sk*).
* Sign*(sk*,m) :

4

LECTURE 10: SIGNATURE SCHEMES (CONT.) 5

1. Parse sk* = (k,skgp).
2. Denote by m = (mq,...,m,)).
3. For every i € [A] do the following:
(a) Foreveryb € {0,1}, compute 7, ., p = F(k, (my,...,mi_1,b)).
(b) For every b € {0,1}, sample (K, . 1 br VK, 1b)
Gen(l’\; rmh-.-,m,-_pb)'
(c) Compute oy,...m; ; = Sign(Knny,..mi 10 (VKig,m; 1,00 VRimyoom; 11))-
4. Compute o = Sign(skp,,....m,, m).
5. Output o* = ({(Vkml,...,mi,l,OrVkml,...,mi,l,l)r‘7m1,---,mi71}ie[A}/‘7>'

e Ver(vkgp, m,c*):

1. Parse " = ({(Vkml,...,mifl,OrVkml,...,mi_l,l)r”mp---,m,q}ie[A]/U)'

2. For every i € [A] verify that
Ver (Vkiny,..m; 1o (VKoo 1,00 VK omi 1) Oy) = 1
3. Verify that
Ver(vky, m, o) =1
4. If any of these checks fail output 0 and otherwise output 1.

Theorem 3. (Gen®,Sign*, Ver®) is existentially unforgeable against adap-
tive chosen message attacks.

Proof. Suppose for the sake of contradiction that there exists a poly-
size A and a non-negligible € : N — [0, 1] such that for every A € N,

Pr[ASEN (K) (yk*) = (m*,0*) s.t. Ver*(vk*,m*,0*) =1 A m* ¢ Q] > e(A)
(1)
where Q denotes the set of all oracle calls that A makes to the oracle,
and the probability is over (vk*,sk*) < Gen*(1%).
Denote by vk* = vkg and sk* = (k,skp). Consider the inefficient
oracle Sign™*, that is identical to Sign* except that it replaces the PRF
F(k,-) with a truly random function R.

Claim 1. There exists a negligible function : N — [0, 1] such that
forevery A € IN,

| Pr[A58 (K) (vk*) = (m*, 0*) s.t. Ver* (vk*, m*,0*) =1 A m* ¢ Q]—
Pr[ASE (K) (yk*) = (m*,0%) s.t. Ver*(vk*,m*,0*) =1 A m* ¢ Q]|
< u(A)

The claim follows from the security of the underlying PRF F.3 3 We leave the reduction as an exercise.
Claim 1 and Equation (1) implies that there exists a non-negligible
0 :IN — [0,1] such that for every A € N

Pr[ASE () (vk*) = (m*,0%) st Ver* (vk, m*,0*) =1 A m* ¢ Q] > 6(A)

LECTURE 10: SIGNATURE SCHEMES (CONT.)

We next construct a poly-size B that uses A to break one-time se-
curity of (Gen, Sign, Ver). Let g = poly(A) be an upper bound on
the number of oracle calls that .4 makes. Let ¢ = g-2A + 1. We
actually construct a poly-size B that wins in the following game
(which is slightly different than the one-time security game) with
non-negligible probability:

1. For every i € [/] the challenger samples (vk;,sk;) + Gen(1"), and
sends (vky,...,vky) to B.

2. B is given oracle access to the g oracles Sign(sky,), ..., Sign(sky,)
and can send each oracle a single query message (adaptively cho-
sen).

3. B outputs (m*,c*).
4. B wins if and only if there exists i € [¢] such that
Ver(vk;, m*,c*) =1
and m* is not the oracle query that B sent to oracle Sign(sk;, -).

We note that the existence of a poly-size B that wins in this game
with non-negligible probability implies there there exists a poly-size
B’ that breaks the one-time security of (Gen, Sign, Ver). At a high level
B’ on input vk does the following:

1. Choose at random i < [¢] and set vk; = vk.
2. Forevery j € [(]\ {i} sample (vkj,sk;) Gen(1%).

3. Emulate B while emulating its oracles Sign(sk;, -) for every j €
(€] \ {i} using {sk;}(¢\ (i}, and emulating Sign(sk;, -) using its own
oracle.

4. Output the output of B, denoted by (m*,c*).

Note that if B wins in the game with probability €(A) then B’ wins
with probability (M) /¢, since

Pr[B’ wins| >

Pr[B’ wins| B wins] - Pr[B wins] =

Pr[B’ wins| B wins] - €(A) =

e
¢

Thus, it remains to construct the adversary B, that wins with non-

m

negligible probability in the game described above, from the adver-
sary A.

The adversary B, on input (vk, vki, . .., vkg.21), emulates ASien™ (sko) (vky)
by emulating its oracle as follows:

6

LECTURE 10: SIGNATURE SCHEMES (CONT.) 7

1. Define vkg = vkg.
2. Every time A sends an oracle query m, generate {Vkml,...,m,-,l,b}ie[)»],be{o,l}
as follows:

Foreveryi € [A]and b € {0,1},if vk, ., was not al-
ready defined, then define it to be the next unused key in the
list (Vkl, . .,qu,z/\).

Note that we have enough keys since we assume that .4 makes at
most g calls to its signing oracle Sign**(skg, -).

3. Query the oracle Sign(sku,,...m;_,,) with message (Vku,, .. m; 1,0, VKmy,..om; 11)
to obtain a signature oy, ,...m; ;-

4. Generate a signature o for the message m by querying Sign(sky,, -)
with query m.

5. Output
U'* = ({Vkml,_.,mi,l,Or Vkml,...,mi,l,l)/U'ml,...,mi,l }IE[/\] /U)

Notice that we query each Sign(sk;, -) only once.

6. When A generates an output (m*,c*), parse
/ /
0-* = ({ (Vkml,...,mi,l,O' Vkml,.‘.,mi_l,l)' Uml/'--/mifl }le[/\]’ U) .

7. Output (m*,0).

Notice that B emulates Sign**(skg,) perfectly, and hence with proba-
bility 6(A),
Ver(vky, m*,0) =1

where vk« € {vki,...,vky21}, and Sign(sky+,) was not previously
queried. Thus, B also wins with probability §(A), as desired.
O

References

[1] Leslie Lamport. Constructing digital signatures from a one-way
function. Technical Report CSL-98, SRI International, Computer
Science Laboratory, Menlo Park, CA, October 1979. Technical
Report.

	Recap
	Today
	From One-Time Security to Many-Time Security
	A Stateful signature scheme: From one-time to many-time security via a chain of keys
	From one-time to many-time security via a tree of keys
	The Construction

