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Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Course Staff

• Instructor: Yael Tauman Kalai

• TAs: Aparna Gupte and Andrew Huang

Course Website

All the information about the class can be found in the course web-
site: mit6875.github.io.

Grading

• 40% of the grade: Midterm.

• 60% of the grade: Psets. We will have 5 Psets and will count
your best 4 (so 15% for each Pset).

• You can collaborate on the Psets in groups of up to three, but
must write your solutions separately, in your own words.

• If you need an extension (for any reason!) just email the staff,
and you will be granted 72 additional hours, no questions
asked! If you need more than that, please contact S3 if you
are an undergraduate and your academic advisor if you are a
graduate student.

What is this class about?

This class is a foundations class where we will learn fundamental
concepts in cryptography. We will see three themes:

• Definitions: We will learn how to think adversarially: How
to model the adversary, its goals and its capabilities. We
will focus on coming up with the “correct definitions” that
capture the real world. We will see that often when trying
to achieve a cryptographic goal, be it secrecy, integrity, zero-
knowledge proofs etc., we often hit an impossibility result.
Cryptography is the art of overcoming such barriers. This
is often achieved by carefully choosing the definitions and
models.

mit6875.github.io
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• Hardness assumptions: Most of cryptography relies on
hardness assumptions, since information theoretic security
is often impossible to achieve. These hardness assumptions
come from various branches of mathematics: number theory,
group theory, elliptic curves, lattices, and coding theory.

• Reductions: We prove the security of our schemes via reduc-
tions: We prove that if there exists an adversary that breaks
our scheme then we can reduce this adversary to a break of
the underlying hardness assumption. So “science wins either
way!” (quote of Silvio Micali).

We will use these concepts to do magic! We will see how we can
communicate in a secret and authenticated manner without ever
meeting to share a secret! We will show how to compute on en-
crypted data, how to prove statements without revealing any in-
formation about why the statement is true, how to shrink proofs, and
much more!

Today: Perfect Security and the One-Time Pad

Claude Shannon was the first to give a rigorous definition of a secure
encryption scheme [1], and his definition is now commonly referred
to as perfect security. He also constructed a very simple encryption
scheme that satisfies this definition.

Defining Encryption Schemes

In what follows, we present Shannon’s definition of a perfectly secure
encryption scheme.

Definition 1. An encryption scheme is associated with a message
spaceM (also referred to as the plaintext space), a ciphertext space
C and a key space K, and two polynomial time algorithms (Enc,Dec)
with the following syntax:

• Enc : K×M→ C

• Dec : K× C →M
The encryption scheme is required to satisfy the following properties:

• Correctness: For every m ∈ M and k ∈ K,

Dec(k,Enc(k, m)) = m.

• Shannon Security: For any probability distribution M over
the plaintext spaceM and every plaintext m ∈ M and
ciphertext c ∈ C,

Pr[M = m] = Pr
k←K

[M = m|Enc(k, M) = c].
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Notice that there is no reference to an adversary in the security
definition. However, this definition intuitively captures that the ad-
versary (Eve) knows exactly as much about the plaintext after seeing
the ciphertext as she did before. In other words, Eve does not gain
any information about the plaintext m from the ciphertext c.

It turns out that Shannon security is equivalent to the following
(IMO, more intuitive) definition.

Definition 2 (Perfect Indistinguishability). An encryption scheme
(Enc,Dec) is said to have perfect indistinguishability if for every
message m0, m1 ∈ M and every ciphertext c ∈ C

Pr
k←K

[Enc(k, m0) = c] = Pr
k←K

[Enc(k, m1) = c]

Claim 1. An encryption scheme is Shannon secure if and only if it is
perfectly indistinguishable.

The proof is straightforward, and is essentially just a single appli-
cation of Bayes’ theorem. But since this is the first lecture we will do
it carefully in class.

Proof. First, we show that any Shannon secure encryption scheme
(Enc,Dec) is perfectly indistinguishable. To this end, fix any two
plaintexts m0, m1 ∈ M and any ciphertext c ∈ C. We need to prove
that

Pr
k←K

[Enc(k, m0) = c] = Pr
k←K

[Enc(k, m1) = c].

Let M be the distribution defined by

Pr[M = m0] = Pr[M = m1] = 1/2.

Namely, M is the uniform distribution on {m0, m1}. By Shannon
security, for any b ∈ {0, 1},

Pr[M = mb] = Pr
k←K

[M = mb|Enc(k, M) = c].

By Bayes’ theorem,

Pr
k←K

[M = mb|Enc(k, M) = c] =
Pr[M = mb] · Prk←K[Enc(k, mb) = c]

Prk←K[Enc(k, M) = c]

Putting these two equalities together, we conclude that

Pr
k←K

[Enc(k, mb) = c] = Pr
k←K

[Enc(k, M) = c].

By the definition of the distribution M

Pr
k←K

[Enc(k, M) = c] =
1
2
· Pr

k←K
[Enc(k, m0) = c]+

1
2
· Pr

k←K
[Enc(k, m1) = c],
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which together with the equation above, implies that

Pr
k←K

[Enc(k, m0) = c] = Pr
k←K

[Enc(k, m1) = c],

as desired.
Next, suppose that our encryption scheme is perfectly indistin-

guishable, and we will prove that it is Shannon secure. To this end,
let M be any distribution over the plaintext spaceM, and fix any
m0 ∈ M and c ∈ C. By Bayes’ rule,

Pr
k←K

[M = m0|Enc(k, M) = c] =
Pr[M = m0] · Prk←K[Enc(k, m0) = c]

Prk←K[Enc(k, M) = c]

By perfect indistinguishability,

Pr
k←K

[Enc(k, M) = c] =

∑
m1∈M

Pr[M = m1] · Pr
k←K

[Enc(k, m1) = c] =

∑
m1∈M

Pr[M = m1] · Pr
k←K

[Enc(k, m0) = c] =

Pr
k←K

[Enc(k, m0) = c]

Plugging this in to the above, we see that

Pr
k←K

[M = m0|Enc(k, M) = c] = Pr[M = m0],

as desired.

Here is yet another definition that is equivalent to the previous
two, and where the adversary Eve is considered explicitly. It is also
more similar to most of the other definitions that we will see in this
course.

Definition 3 (Perfect security against an adversary). An encryption
scheme (Enc,Dec) is perfectly secure against an adversary if for any
adversary E : C → {0, 1} and any pair of messages m0, m1 ∈ M,

Pr
b←{0,1},k←K

[E(Enc(k, mb)) = b] = 1/2.

It is a good exercise to convince yourself that this definition is
equivalent to perfect indistinguishability (and thus to Shannon secu-
rity).

The One-Time Pad

Shannon not only gave the first rigorous definition of a secure en-
cryption scheme. He also constructed a scheme that satisfies this
definition. The construction is known as the One-Time Pad. The one-time pad was discovered and

used previously to Shannon, dating
back to Frank Miller in 1882. However,
Shannon was the first to provide formal
guarantees.

In this scheme, the message spaceM, the ciphertext C and the key
space K are all equal to {0, 1}n, for any integer n of our choice.

We simply choose n large enough to
accomodate the plaintexts that we’d like
to send.



lecture 1: one-time pad 5

• For every k, m ∈ {0, 1}n, Enc(k, m) = k⊕m.

• For every k, c ∈ {0, 1}n, Dec(k, c) = k⊕ c.

The one-time pad is very elegant, simple, and efficient. It is also
very easy to prove that it’s perfectly indistinguishable, which imme-
diately implies that it is also Shannon secret (since we proved that the
two definitions are equivalent).

Theorem 4. The one-time pad is perfectly indistinguishable.

Proof. For any two plaintexts m0, m1 ∈ {0, 1}n and any ciphertext
c ∈ {0, 1}n there are unique keys k0 := m0 ⊕ c and k1 := m1 ⊕ c
satisfying Enc(kb, mb) = c. Therefore,

Pr
k←{0,1}n

[Enc(k, mb) = c] = Pr
k←{0,1}n

[k = kb] = 2−n,

and thus

Pr
k←{0,1}n

[Enc(k, m0) = c] = Pr
k←{0,1}n

[Enc(k, m1) = c],

as desired.

The one-time pad can be used only once!

The one-time pad was used significantly in practice (especially by
diplomats to transmit classified information for example during
World War 2). However, it is important to note that the one-time pad
can be used to encrypt only n bits. If Alice and Bob want to exchange
a message of length 1 GB then they need to exchange a key of size 1

GB.
Notice that if we use the same key k ← {0, 1}n to encrypt two

messages m0, m1 ∈ {0, 1}n then security is broken, since

Enc(k, m0)⊕ Enc(k, m1) = m0 ⊕m1

The sad fact is that this is inherent!

Theorem 5. If (Enc,Dec) is perfectly indistinguishable then |K| ≥ |M|.

Proof. For every plaintext m ∈ M and every ciphertext c in the
image of Enc there must be at least one key that maps m to c, since
otherwise the scheme is not perfectly indistinguishable. Since two
distinct plaintexts cannot map to the same ciphertext under the same
key (because then we could not possibly have correctness), we must
have at least as many keys as ciphertexts. Since there must be at least
one distinct ciphertext for each plaintext, this implies that we must
have as many keys as plaintexts.
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Remark. We will later consider randomized encryption algorithms.
We mention that the same impossibility result holds for randomized
encryptions, but the proof is slightly more delicate.

The above impossibility result in unacceptable! We would like to
agree on a single key k ← {0, 1}n and then encrypt arbitrarily many
messages! What can we do (given the impossibility result above)?
Clearly, we should somehow weaken the security definition! To see
how, let’s examine the attack:

suppose that we have some encryption scheme for which |K| <
|M|, and let’s try to understand what the above proof tells us about
Eve’s ability to break this scheme. Recall that Eve’s goal is to take
as input a ciphertext c and guess whether it is an encryption of m0

or m1, with success probability better than 1/2. Given a ciphertext
c = Enc(k, mb), Eve will compute the set Mc := {Dec(k′, c) : k′ ∈ K}.
If m0 ∈ Mc and m1 /∈ Mc, then Eve will output output 0. Similarly, if
m1 ∈ Mc and m0 /∈ Mc, then Eve will output 1. If m0, m1 ∈ Mc then
Eve will output a random bit b′.

The above proof shows that, for at least one pair of messages
m0, m1 ∈ M, there is a non-zero probability p > 0 that one of the
plaintexts will not lie in Mc, in which case Eve will succeed with
probability at least (1 + p)/2 > 1/2.

But, computing whether mb ∈ Mc is extremely challenging, and
takes time roughly 2n, which even for n = 256 is more than the
number of molecules on earth! Recall that Eve is meant to represent
some entity in the real world, so let’s model her as such, and restrict
her running time to be significantly less than 2n. This turns out to be
a very good idea!
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