
6.875 Number Theory Lecture Notes

Vinod Vaikuntanathan

October 19, 2021

This evolving set of notes will serve as lecture notes for the number-theoretic portion of 6.875.

1 Groups

An Abelian group G = (S, ◦) is a set S together with a binary operation ◦ : S × S → S which
satisfies

• Identity: There is an element Id ∈ S such that for all a ∈ S, a ◦ Id = Id ◦ a = a.

• Inverse: For every a ∈ S, there is an element b ∈ S such that a ◦ b = b ◦ a = Id.

• Associativity: For every a, b, c ∈ S, a ◦ (b ◦ c) = (a ◦ b) ◦ c.

• Commutativity: For every a, b ∈ S, a ◦ b = b ◦ a.

Notice that we defined Abelian (or commutative) groups by default. Those will be the only
type of groups that we see in this class. The definition of general groups is the same as the above,
except without the commutativity property. Also, most of the time in this class, the groups we
deal with will be finite, namely S will be a finite set. An occasional exception is the additive group
Z of all integers.

Some notations.

• We will sometimes abuse notation and say that g ∈ G when we really mean that g ∈ S.

• We will denote the multiplicative shorthand for iterated group operations by default. That
is, for g ∈ S, g2 = g ◦ g, g3 = g ◦ g ◦ g, and so forth.

• g0 = Id and g−1 denotes the inverse of g.

An Example: The Additive Group ZN . A simple example is the additive group ZN = (S =

{0, 1, 2, . . . , N−1},+) consisting of integers from 0 to N−1, where the group operation is addition
modulo N . The identity element is 0, its inverse is 0, and the inverse of x 6= 0 is N−x. We will call
them the additive identity and the additive inverse, to distinguish them from their multiplicative
friends who will show up soon, and who will turn out to be more useful.

1

Order of a Group and the order of an element. The order of a group is the number of
elements in it, namely |S|. The order of an element g ∈ S is the number of times one has to
perform the group operation on g to get to the identity element Id. That is,

ord(g) = min
i>0
{gi = Id} .

For example, the order of the group ZN is N .

Theorem 1.1 (Lagrange’s Theorem). The order of any element divides the order of the group.

Proof. Let g ∈ G be some group element. Note that multiplication by g defines a bijection on G.
That is, f : G→ G defined by f(x) = gx is a one-to-one and onto function.

We first claim that g|G| = Id. Let’s multiply all the group elements in two ways. Notice that on
the left and the right, we are computing the product over the same set of elements since multiplying
by g permutes the elements of the group. So,∏

h∈G
h =

∏
h∈G

(hg) = g|G| ◦
(∏
h∈G

h
)

Dividing by
∏
h∈G h from the left and the right gives us g|G| = Id.

Now let x be the order of g. Let x′ = gcd(x, |G|). By Extended Euclid, there are integers a and
b such that

ax+ b|G| = x′

Therefore,
gx

′
= gax+b|G| = (gx)a(g|G|)b = (Id)a(Id)b = Id

If x′ < x, this contradicts the assumption that x′ was the order of G, and therefore the smallest
positive power of G that gives Id. So, it must be the case that x′ = x and thus x = gcd(x, |G|) and
consequently, x divides G.

Generator of a Group. A generator of a group G is an element of order |G|. In other words,

G = {g, g2, . . . , g|G| = Id}

For example, 1 is a generator of ZN for any N .

Cyclic group. A group G is called cyclic if it has a generator. By the above, ZN is always cyclic.
We also know:

Theorem 1.2. Every group whose order is a prime number, is cyclic. Moreover, every
element other than the identity is a generator.

Proof. Exercise.

2

Discrete Logarithms. Let G be a cyclic group. We know that g has a generator, and that every
h ∈ G can be written as h = gx for a unique x ∈ {1, 2, . . . , |G|}. We write

x = dlogg(h)

to denote the fact that x is the discrete logarithm of h to the base g.
We will look for groups where computing the group operations is easy (namely, polynomial

time) but computing discrete logarithms is hard (namely, exponential or sub-exponential time).
Our source for such groups will come from number theory, so let us move on to reviewing a few
basic notions from (computational) number theory.

Discrete logarithms in ZN are, for better or worse, easy. Indeed, the generators of ZN are
precisely those g whose greatest common divisor with N is 1. If you are told that

x · g = h (mod N)

then x can be computed as h · g−1 (mod N) where g−1 now denotes the modular multiplicative
inverse of g which can be found easily using the extended Euclidean algorithm. (See next section).
It is at this point that we abandon ZN and move on to other groups, notably the multiplicative
group Z∗N .

2 Baby (Computational) Number Theory

Greatest Common Divisors, Euclid and Extended Euclid. The greatest common divisor
(gcd) of positive integers a and b is the largest positive integer d that divides both a and b. a and
b are relatively prime if their gcd is 1.

One can find d using Euclid’s algorithm in time O(n2) where n is the maximum of the bit-
lengths of a and b. One can do more: it turns out that there are always integers (not necessarily
positive) x and y such that

ax+ by = d

These integers can be found in essentially the same complexity using a modification of Euclid’s
algorithm, referred to as extended Euclid. We will assume that you have seen these algorithms and
facts (say, in a previous course such as 6.042 or 6.006.)

Modular Arithmetic. We expect you to be familiar with modular arithmetic. For integers a
and b, a (mod N) will denote the remainder upon dividing a by N .

b is the (multiplicative) inverse of a if ab = 1 (mod N). In this case, we say b = a−1 (mod N).
The multiplicative inverse of a exists if and only if gcd(a,N) = 1.

Exercise: Show a polynomial-time algorithm to compute the multiplicative inverse of a given
number a modulo a given N .

Modular Exponentiation. This is the operation of computing ab (mod N). Computing ab

over the integers and then reducing mod N is a horribly inefficient way to do this (think about it).
Instead, one uses the repeated squaring algorithm that runs in time O(n3).

3

Operation Time Complexity Remarks
a+ b O(n) grade-school addition

ab
O(n2) grade-school multiplication
O(n log n) Harvey and van der Hoeven 2020

gcd(a, b) O(n2) Euclidean algorithm or binary gcd algorithm
a (mod N) O(n2)

a+ b (mod N) O(n2)

ab (mod N) O(n2)

a−1 (mod N) O(n2) extended Euclidean algorithm
ab (mod N) O(n3) repeated squaring algorithm

Checking if a given p is prime
O(n2 log 1/ε) rand. Miller-Rabin
O(n6) det. Agrawal-Kayal-Saxena 2002 and followups

Factoring N 2O(n1/3(logn)2/3) Number field sieve
Discrete log in Z∗N 2O(n1/3(logn)2/3) Number field sieve
Discrete log in any group G O(

√
|G|) baby step-giant step algorithm

Figure 1: The complexity of basic operations with numbers. n denotes the input length for each
of these operations.

Chinese Remainder Theorem. Let N =
∏`
i=1 P

αi
i . The Chinese remainder theorem states

that the following group isomorphism is true:

Z∗N ≡ Z∗
P
α1
1
× · · · × Z∗

P
α`
`

.

That is, there is an isomorphism φ that maps Z∗N to a direct product of the groups ZPαii . This
isomorphism is efficiently computable in both directions.

Slightly less abstractly, φ maps every element x ∈ Z∗N as into a tuple of elements

~x = (x (mod Pα1
1), x (mod Pα2

2), . . . , x (mod Pα``)) .

Multiplying x and y mod N is equivalent to multiplying ~x and ~y componentwise. φ is a one-to-one
onto mapping. φ−1 can be computed as a linear function. Letting ~x = (x1, . . . , x`), it turns out
that

φ−1(~x) =
∑̀
i=1

cixi (mod N)

where, letting Qi denote Pαii and letting Q−i denote
∏
j 6=i P

αj
j , the chinese remainder coefficients

ci are as follows:
ci = Q−i · (Q−1−i (mod Qi))

I will leave it as an exercise to check that this is indeed the inverse of φ.

3 The Multiplicative Group Z∗N
The multiplicative group of numbers mod N , denoted Z∗N , consists of the set

S = {1 ≤ a < N : gcd(a,N) = 1}

4

https://hal.archives-ouvertes.fr/hal-02070778v2/document
https://annals.math.princeton.edu/wp-content/uploads/annals-v160-n2-p12.pdf

with multiplication mod N being the group operation.

Theorem 3.1. Z∗N is a group. Operations in this group including multiplication and com-
puting inverses can be done in time polynomial in the bit length of the numbers, namely
poly(logN).

Proof. Exercise.

Examples.

Z∗2 = {1}
Z∗3 = {1, 2}
Z∗4 = {1, 3}
Z∗5 = {1, 2, 3, 4}
Z∗6 = {1, 5}
Z∗7 = {1, 2, 3, 4, 5, 6}

Some further facts about Z∗N :

• The order of Z∗N , the number of positive integers smaller than N that are relatively prime to
it, is called the Euler totient function of N denoted ϕ(N).

• If N =
∏
i p
αi
i is the prime factorization of N , then

ϕ(N) =
∏
i

pαi−1i (pi − 1)

Prove this! For example, if N is prime, then ϕ(N) = N − 1 and if N = PQ is a product of
two primes, then ϕ(N) = (P − 1)(Q− 1).

• For every a ∈ Z∗N ,
aϕ(N) = 1 (mod N)

This is called Euler’s theorem, a direct consequence of Lagrange’s theorem and the fact that
the order of Z∗N is ϕ(N). In the special case where the modulus P is prime, for every a ∈ Z∗P ,

aP−1 = 1 (mod P)

a fact that is referred to as Fermat’s little theorem.

4 The Multiplicative Group Z∗P for a Prime P

Let’s first focus on the case of Z∗P when P is prime. Then, Z∗P = {1, 2, 3, . . . , P − 1} and its order
is ϕ(P) = P − 1.

5

Z∗P is Cyclic. The following is a very important property of Z∗P when P is prime.

Theorem 4.1. If P is prime, then Z∗P is a cyclic group.

For example, Z∗7 = {1, 2, 3, 4, 5, 6} = {56, 54, 55, 52, 51, 53} = {5i (mod 7) : i > 0}. So, 5 is a
generator of Z∗p. We refer the reader to Angluin’s notes for a proof.

It is very tempting to try to prove this theorem by appealing to Theorem 1.2 which says that
every group with prime order is cyclic. Many before you have succumbed to this mistake. Be
careful, and note that the order of Z∗P is P − 1, which is decidedly not prime.

Even if N is not prime, Z∗N may end up being cyclic: in particular, it is known that this
happens exactly when N = 1, 2, 4, pk or 2pk where p is an odd prime number. However, we will
never encounter these beasts in our course.

One could ask several followup questions such as:

• how many generators are there for Z∗p?

• how to tell (efficiently) if a given element g is a generator?

• how to sample a random generator for Z∗p?

We will answer them in the sequel, starting with the first question.

Z∗P has lots of generators. The proof of the following theorem is contained in the proof of
theorem 4.1 and can be found in Angluin’s notes.

Theorem 4.2. The number of generators in Z∗P is ϕ(P − 1).

Now, how large is φ(P −1) asymptotically? This is answered by the following classical theorem.

Theorem 4.3. For every integer N , φ(N) = Ω(N/ log logN).

In other words, if you pick a random element of Z∗P , you will see a generator with probability

ϕ(P − 1)/(P − 1) = Ω(1/ log logP)

which is polynomial in 1/ logP . So, reasonably often!

The multiplicative group Z∗P and the additive group ZP−1. Let us note the following
structural fact about Z∗P before proceeding further. These two groups are isomorphic with an
isomorphism φ that maps x ∈ ZP−1 to gx ∈ Z∗P . In particular, consider

φ(x) = gx (mod P)

we have φ(x+ y) = φ(x) · φ(y).
The isomorphism is efficently computable in the forward direction (exponentiation, using the

repeated squaring algorithm) but not known to be efficiently computable in the reverse direction.
The latter is the discrete logarithm problem.

Here is another quick application of this isomorphism:

6

https://people.csail.mit.edu/vinodv/6892-Fall2013/Angluin.pdf
https://people.csail.mit.edu/vinodv/6892-Fall2013/Angluin.pdf

Lemma 4.4. Let P be an odd prime. If g is a generator of Z∗P , then so is gx as long as x
and P − 1 are relatively prime.

Proof. Exercise.

As a corollary, we immediately derive the fact that ϕ(P − 1) elements of Z∗P are generators.

Primes, Primality Testing and Generating Random Primes. The prime number theorem
tells us that there are sufficiently many prime numbers. In particular, letting π(N) denote the
number of prime numbers less than N , we know that

π(N) = Ω(N/ logN)

Thus, if you pick a random number smaller than N , with probability 1/ logN (which is 1/polyno-
mial in the bit-length of the numbers in question) you have a prime number at hand.

The next question is how to recognize that a given number is prime. This has been the subject
of extensive research in computational number theory with many polynomial-time algorithms,
culminating with the deterministic polynomial-time primality testing algorithm of Agrawal, Kayal
and Saxena (AKS) in 2002.

These two facts put together tell us how to generate a random n-bit prime number — just pick
a random number less than 2n and test if it is prime. In expected n iterations of this procedure,
you will find a n-bit prime number, even a random one at that.

How to tell if a given g is a generator of Z∗P? We know that gP−1 = 1 (mod P) and we want
to check if there is some smaller power of g that equals 1. We also know (by Lagrange) that any
such power has to be a divisor of P − 1. However, there are a large number of divisors of P − 1,
roughly P 1/ log logP which is not polynomial (in logP .) It turns out, however, that you do not need
to check all divisors, but rather only the terminal divisors.

More precisely, let P − 1 =
∏
i q
αi
i be the prime factorization of P − 1. Then, the following

algorithm works, on input g and the prime factorization of P − 1:

1. For each i, check if g(P−1)/qi = 1 (mod P). If yes, say “not a generator” and otherwise say
“generator”.

That’s nice. But can one tell if g is a generator given only g and P (as opposed to the prime
factorization of P − 1 which is in general hard to compute)? We don’t know, so we have to find a
way around it. There are two solutions:

Solution 1. Pick P = 2Q+1 where Q is prime. Such primes are called safe primes, and Q is called
a Sophie-Germain prime after the famous mathematician. While there are infinitely many primes,
it has only been conjectured that there are infinitely many Sophie-Germain primes. This remains
unproven.

Solution 2. Pick a random P together with its prime factorization. This, it turns out, can be
done due to a clever algorithm of Kalai. (reference on the webpage)

We will more or less always stick with Solution 1 in this course.

7

5 One-way Functions, PRGs and PRFs from Discrete Logarithms

A one-way function is a function f that is easy to compute but hard to invert on average. A
formal definition will come in later lectures, but for now, let us present an informal candidate.

f(P, g, x) = (P, g, gx (mod P))

Computing this function can be done in time polynomial in the input length. However, inverting
is the discrete logarithm problem (defined formally below) which is conjectured to be hard.

Discrete Log Assumption (DLOG): For a random n-bit prime P and random
generator g of Z∗P , and a random x ∈ ZP−1, there is no polynomial (in n) time
algorithm that computes x given P, g, gx (mod P).

In fact, this is not just a one-way function, but can also be made into a family of one-way
permutations. More on that later. As we will see in a couple of lectures, one-way permutations can
be used to build pseudo-random generators; and as we saw already, pseudorandom generators can
be used to build pseudorandom functions and stateless secret-key encryption and authentication.
So, we can do all the crypto we saw so far based on the hardness of the discrete logarithm problem.

However, going via this route may not be the most efficient. So, we will look at related problems
and try to build more efficient PRGs and PRFs.

5.1 Algorithms for the Discrete Log Problem

We will present an algorithm for discrete logarithms that works over any group. This is the so-
called baby-step giant-step algorithm that runs in time O(

√
|G|). It is still exponential but a

square-root factor faster than naïve exhaustive search.

The Idea. Given elements g, h ∈ G, the problem is to find an x such that h = gx in G. Since we
know that 0 ≤ x < |G|, let us write x as

x = x1P + x0

where P is an integer that is close to
√
|G|, and 0 ≤ x0, x1 < P . In other words, write x in base-P .

Now, we know that
h = gx1P+x0 = (gP)x1 · gx0

or
h · g−x0 = (gP)x1

Conversely, any such pair of integers (x0, x1) will solve the discrete log problem for us. So, let’s
create two tables, that enumarerate the values of hg−x0 and (gP)x1 respectively, as follows.

Table 0 :

(0, hg−0)

(1, hg−1)

(2, hg−2)

. . .

(P − 1, hg−(P−1))

 and Table 1 :

(0, (gP)0)

(1, (gP)1)

(2, (gP)2)

. . .

(P − 1, (gP)(P−1))

8

Figure 2: The toy version of random self-reduction for discrete log that randomizes only h.

Let us now restate the job of the algorithm: find two entries, one in each table, with a common
second component. This can be done in time O(P logP) = O(

√
|G| log |G|) by sorting table 0 and

table 1 by their second components (in time O(P logP)) and then running through them to find
a common element using the two-finger algorithm (remember Merge-Sort?) in O(P) time.

This is still the best known algorithm for computing discrete logarithms in arbitrary groups,
and even in some practically important ones such as elliptic curve groups. However, for Z∗P , better
algorithms are known: the index-calculus algorithm runs in 2O(

√
logP log logP) time, and the number

field sieve algorithm that runs in 2O((logP)1/3(log logP)2/3) time. Both are sub-exponential, but far
from a polynomial-time algorithm.

5.2 Random Self-Reducibility

How hard is the discrete logarithm problem for different choices of P, g and x? Could it be that
the problem is hard for a worst-case choice of these values, yet easy for many values, or random
values? What we would ideally like is a worst-case to average-case reduction that tells us that if
the discrete logarithm problem can be solved for (appropriately defined) random p, g and x, then
it can be solved for every p, g and x. We unfortunately do not know such a statement, but we can
prove something.

As a warmup, fix P and a generator g of Z∗P , and assume that you have an algorithm A
that solves discrete log for (P, g, gx (mod P)) for a random P . How do you construct out of A an
algorithmW that solves discrete log for every (P, g, gx (mod P))? The idea is to turn this instance
of the discrete log problem into a random instances in such a way that a solution to the random
instance can be mapped back into a solution for the given instance. The reduction is shown in
Figure 2. The more general theorem is given below.

Theorem 5.1 (Random Self-Reducibility). Fix a prime P . If discrete log over Z∗P can be solved
in polynomial-time for a uniformly random generator g and x ∈ ZP−1, then it can be solved

9

for every generator g and x ∈ ZP−1.

Proof. Establishing the theorem requires showing a reduction. Assume A (for average-case) is
a poly(n)-time algorithm that solves discrete log over Z∗P for a 1/poly(n) fraction of (g, x) where
n = logP . We wish to demonstrate a poly(n)-time algorithmW (for worst-case) that solves discrete
log over Z∗P for every (g, x).

The algorithm W, on input (P, g, h = gx (mod P)), works as follows:

• Pick a random s s.t. gcd(s, P − 1) = 1. Let g′ = gs (mod P).

• Pick a random r ← ZP−1 and compute h′ = hs · gr (mod P).

• Return x = s−1(x′ − r) (mod P − 1) as the discrete log solution to (P, g, h).

First, note that by our choice of s, g′ is a generator as well. Indeed, it is a uniformly random
generator of Z∗P . Now

h′ = hs · gr = gsx+r (mod P)

which, by the random choice of r, is a uniformly random element of Z∗P (even conditioned on g′).
Thus, A will produce the discrete log x′ of h′ w.r.t. g′ with probability 1/poly(n). In this event,

we can compute x as
x = s−1(x′ − r) (mod P − 1)

If A refuses to solve the discrete log problem or it outputs an incorrect answer (either of which
can happen with probability at most 1− 1/poly(n)), then W repeats this process again with fresh
choice of s and r. Thus the reduction succeeds with probability 1−negl(n) when run on n ·poly(n)

trials.

5.3 Quadratic Residues

Let us take a detour and look at a different facet of the equation

h = gx (mod P)

namely the problem of computing g given h and x. In fact, we will look at the special case of x = 2

for now. So, can you compute square roots mod P?
Before getting there, one could ask which numbers mod P are squares, namely which h ∈ Z∗P

can be written as h = g2 (mod P) for some g ∈ Z∗P ? Such numbers are also called quadratic
residues. Can you efficiently determine, given h, which it is a quadratic residue?

Theorem 5.2. Let P be an odd prime number and g be some generator of Z∗P . The following
conditions are equivalent.

1. dlogg(h) is an even number;

2. h is a quadratic residue mod P ; and

10

3. h(P−1)/2 = 1 (mod P).

Proof. We will show the following implications.
(1)⇒(2). Assume h = gx (mod P) where x is an even number. Then, h = (gx/2)2, so it is a
quadratic residue.
(2)⇒(3). Assume h = t2 (mod P) is a quadratic residue. Then,

h(P−1)/2 = tP−1 = 1 (mod P)

where the second equation is by Fermat’s little theorem (or Lagrange’s theorem).
(3)⇒(1). Assume h(P−1)/2 = 1 (mod P). Letting h = gx, we have

gx(P−1)/2 = 1 (mod P)

This means that P − 1 divides x(P − 1)/2 which can only happen when x is even.

In other words, exactly half the elements of Z∗P are quadratic residues. If t is a square root of
h, so is −t. Thus, every quadratic residue has two distinct square roots. One can compute the two
square roots of any given number in poly(n) = poly(logP) time. We will prove this below, for a
special class of P ’s.

Theorem 5.3. Assume P = 3 (mod 4). The two square roots of h mod P are h(P+1)/4 and
−h(P+1)/4.

Proof. First of all, (P + 1)/4 is an integer precisely because P = 3 (mod 4). Now, assume that
h = t2 (mod P). Then,

h(P+1)/4 = t(P+1)/2 = t · t(P−1)/2 = ±t (mod P)

The last equality is because tP−1 = 1 (mod P) and t(P−1)/2, being its square root, is either 1 or
−1 mod P .

For the case of general P , a beautiful algorithm due to Berlekamp computes square roots in
probabilistic polynomial time.

5.4 Other Roots

If e is relatively prime to P − 1, it is much easier to solve the equation h = ge (mod P) given h
and e. It is not hard to verify that if d = e−1 (mod P −1) (this exists because e is relatively prime
to P − 1), then

g = hd (mod P)

is the unique solution. This will come in handy when we describe the RSA cryptosystem later in
the course.

11

5.5 The Diffie-Hellman Assumptions

Given gx and gy mod P , you can compute gx+y = gx · gy (mod P), but can you compute gxy

(mod P)? If you can compute discrete logarithms, then you can compute x from gx, and raise gy

to x to get (gy)x = gxy (mod P). But discrete log is hard, so this isn’t an efficient way to solve the
problem.

Indeed, this problem, called the computational Diffie-Hellman (CDH) problem, appears to be
computationally hard, in fact as hard as computing discrete logarithms!

Computational Diffie-Hellman Assumption: For a random n-bit prime P

and random generator g of Z∗P , and random x, y ∈ ZP−1, there is no polyno-
mial (in n) time algorithm that computes gxy (mod P) given P, g, gx (mod P), gy

(mod P).

Moreover, it appears hard to even tell if you are given the right answer or not! But this
requires some care to formalize. At first, one may think that given P, g, gx, gy, it is hard to
distinguish between the right answer gxy (mod P) versus a random number u mod P . Let us
call the assumption that this decisional problem is hard the decisional Diffie-Hellman (DDH)
assumption.

Decisional Diffie-Hellman Assumption (first take): For a random n-bit prime
P and random generator g of Z∗P , and random x, y ∈ ZP−1 and a random num-
ber u ∈ Z∗P , there is no polynomial (in n) time algorithm that distinguishes be-
tween (P, g, gx (mod P), gy (mod P), gxy (mod P)) and (P, g, gx (mod P), gy (mod P), u

(mod P)).

However, this assumption turns out to be false as we will now show.

5.5.1 DDH is False in Z∗P

Let’s step back and ask if the DDH assumption is actually true. It seems awfully strong on first
look. It says not only that it is hard to compute gxy from gx and gy, but also that not even a single
bit of gxy can be computed (with any polynomial advantage beyond trivial guessing).

We will now show that some information about gxy indeed does leak from gx and gy. For this
end, we will use the notion of quadratic residues in Z∗P (or, perfect squares mod P). Recall by the
discussion in the previous section that

• exactly half the elements in Z∗P are quadratic residues,

• these are precisely the elements h whose discrete logarithm w.r.t. (some generator) g is even,
and

• we can decide in polynomial-time whether h is a quadratic residue or not.

Notice what this says: even though the discrete log x itself is hard to compute in its entirety, its
parity can in fact be efficiently computed!

Armed with this observation, we prove the following theorem.

12

Problem
Z∗N , Z∗N ,
prime N composite N

Powering:
poly-time poly-time

Given N, g ∈ Z∗N , x ∈ Zϕ(N), compute h = gx (mod N)

Discrete Logarithm:
hard hard

Given N and g, h ∈ Z∗N , compute x s.t. h = gx (mod N)

Root-Finding: poly-time
hard

Given N and g ∈ Z∗N , x ∈ Zϕ(N), compute g s.t. h = gx (mod N) (randomized)

Figure 3: The complexity of three related problems.

Theorem 5.4. gxy is a quadratic residue if and only if either gx or gy (or both) is a quadratic
residue.

Proof. gx (resp. gy) is a quadratic residue if and only if x (resp. y) is even (and therefore even
mod P − 1 since P − 1 is itself necessarily even). Thus, if gx or gy is a quadratic residue, then
xy (mod P − 1) is even and therefore gxy is a quadratic residue as well. Conversely, if gxy is a
quadratic residue, then xy is even, so either x or y is even. In other words, either gx or gy is a
quadratic residue. This finishes the proof.

Thus, given gx and gy, one can tell whether either of them is a quadratic residue and therefore
whether gxy should be a quadratic residue. This immediately translates to an algorithm that
distinguishes between gxy and a uniformly random element mod P .

Thus, we need to refine our assumption. Looking at the core reason behind the above attack,
we see that there is a 1/2 chance that gx falls into a subgroup (the subgroup of quadratic residues,
to be precise) and once that happens, gxy is also in the subgroup no matter what y is. These
properties are furthermore detectable in polynomial-time which led us to the attack.

A solution, then, is to work with subgroups of Z∗P of prime order. In particular, we will
take P = 2Q + 1 to be a safe prime and work with QRP , the subgroup of quadratic residues in
Z∗P . Recall that the subgroup has order (P − 1)/2 = Q which is indeed prime! By virtue of this,
every non-identity element of QRP is its generator. With this change, we can state the following
DDH assumption which is widely believed to be true.

Decisional Diffie-Hellman Assumption (final): Let P = 2Q + 1 be a random
n-bit safe prime and let QRP denote the subgroup of quadratic residues in
Z∗P . For a random generator g of QRP , and random x, y ∈ ZQ and a ran-
dom number u ∈ QRP , there is no polynomial (in n) time algorithm that
distinguishes between (P, g, gx (mod P), gy (mod P), gxy (mod P)) and (P, g, gx

(mod P), gy (mod P), u (mod P)).

We know that DLOG → CDH → DDH but no implications are known in the reverse direc-
tions.

13

6 PRGs and PRFs from the Diffie-Hellman Assumption

PRG from DDH. Here is a candidate PRG whose pseudorandomness follows from the DDH
assumption:

G(P, g, x, y) = (P, g, gx, gy, gxy)

where P = 2Q+ 1 is a safe prime, g is a generator of the prime-order group QRP , and x, y ← ZQ.
Indeed, this expands two group elements into three. We can also speak about a family of

pseudorandom generators which turns out to be more convenient. The family is indexed by P and
g and works as follows:

GP,g(x, y) = (gx, gy, gxy)

The security definition now says that given a random function chosen from the family {GP,g : P =

2Q + 1, P and Q prime and g a generator of QRP }, it is hard to distinguish between gx, gy, gxy

and a sequence of three random group elements in QRP .

PRF from DDH. One could start from the PRG above and construct a PRF using the GGM
construction. But there are more direct ways to do this by exploiting the number-theoretic structure
in the function.

Here is a candidate PRF due to Naor and Reingold whose pseudorandomness follows from the
DDH assumption. The key is a generator g for QRP and a vector ~x = (x1, . . . , x`) ∈ Z`Q and the
public description of the family is P . The PRF is defined as:

FP,g,~x(a) = g
∏`
j=1 x

aj
j

In other words, it computes a subset product in the exponent.

Theorem 6.1 (Naor and Reingold, FOCS 1997). Let P = 2Q + 1 be a safe prime and let g be
a generator of QRP . The family of functions {FP,g,~x : ~x ∈ Z`Q} is a pseudorandom function
family.

Proof. The proof will go very much in the same vein as that of the GGM tree-based PRF. Assume
that there is a ppt adversary A that has oracle access to either FP,g,~x for a random ~x or a uniformly
random function from {0, 1}` to QRP . Let us define hybrid experiments H0, H1, . . . ,H` as follows:

H0: In this hybrid, A gets oracle access to FP,g,~x.

H1: In this hybrid, we pick two elements z0 = 1 and z1 uniformly at random and answer each
query ~a with

gza1 ·
∏
j>1 x

aj
j

H2: In this hybrid, we pick four elements z00 = 1, z01, z10, z11 uniformly at random and answer
each query ~a with

gz~a[2]·
∏
j>2 x

aj
j

14

where a[i] denotes the first i bits of ~a.

· · ·
Hi: In this hybrid, we pick 2i elements zα for every α ∈ {0, 1}i at random except with z0i = 1

(later, we will see how to implicitly pick them so as to not run in time 2i) and answer each query
~a with

gz~a[i]·
∏
j>i x

aj
j

Hi+1: In this hybrid, we pick 2i+1 elements zα for every α ∈ {0, 1}i+1 at random except with
z0i+1 = 1 and answer each query ~a with

gz~a[i+1]·
∏
j>i+1 x

aj
j

· · ·
H`: In this hybrid, we pick 2` elements zα for every α ∈ {0, 1}` at random except with z0` = 1 and
answer each query ~a with

gz~a

The adversary has access to the PRF in H0 and she has access to a random function in H`.
By the hybrid argument, if she can distinguish between them, she can also distinguish between Hi

and Hi+1 for some i ∈ {0, . . . , `− 1}. We will show how to turn such a distinguisher into a breaker
for the DDH assumption.

To get a bit of intuition, imagine for a moment that ` = 2. Let us look at the PRF evaluated
on all inputs 00, 01, 10 and 11. This gives us four answers

g, gx1 , gx2 , gx1x2

These four elements are indistinguishable from random by the DDH assumption.
This intuition can be carried out to take advantage of a distinguisher between Hi and Hi+1 in

pretty much exactly the same way. One should be careful to generate the zα only when warranted,
using lazy evaluation, exactly as in the GGM proof.

15

	Groups
	Baby (Computational) Number Theory
	The Multiplicative Group ZN*
	The Multiplicative Group ZP* for a Prime P
	One-way Functions, PRGs and PRFs from Discrete Logarithms
	Algorithms for the Discrete Log Problem
	Random Self-Reducibility
	Quadratic Residues
	Other Roots
	The Diffie-Hellman Assumptions
	DDH is False in ZP*

	PRGs and PRFs from the Diffie-Hellman Assumption

