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1 Background concepts and terminology

1.1 Decision problems and decidability
A decision problem is an assignment mapping some input space to {0, 1}. Inputs assigned to 0
are NO-instances, and inputs assigned to 1 are YES-instances (i.e., satisfying instances). We call
the set of YES-instances the language of the decision problem, and say that an input is either “in
the language” or “not in the language”.

In words, suppose you’re given a puzzle which you’re not sure whether or not has a solution.
Your job is to only decide if the puzzle is solvable or not, without necessarily finding a solution to
the puzzle in the case that the answer is YES—a strictly weaker property.

Here are some examples of well-studied decision problems:

Problem Decision
Tetris Can you survive a given sequence of blocks?
Chess Can a player force a win from a given board configuration?

Halting problem Does a given computer program terminate for a given input?
s-t Shortest Path Does a given G contain a path from s to t with weight at most d?
Negative Cycle Does a given G contain a negative weight cycle?
Longest Path Does a given G contain a simple path with weight at least d?
Subset Sum Does a given set of integers A contain a subset with sum S?

To better reason about problems that are solvable and decidable, we will define a program to be a
constant-length code segment to solve a problem. That is, a program is a piece of code that produces
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NP-Verification

Verifier Prover
Hard problem instance I. Solution w such that I(w) = YES.

Prove that I is a YES instance.

Here is certificate string c.

Check (I, c)
?
= YES in polynomial time.

Figure 1: Illustration of NP-verification.

correct output (0 or 1) for every input such that the length of the code is independent of the input
size. We refer to a decision problem as decidable if there exists a program to solve the problem in
finite time. Note that not all problems are decidable! A famous example of a problem that is not
decidable is the halting problem (deciding if a program will terminate).

1.2 Polynomial (P) and non-deterministic polynomial time (NP)
• P is the set of decision problems for which there is an algorithm A such that for every instance I

of size n, A on I runs in poly(n) time and decides I correctly (i.e., outputs “YES”/“NO” correctly).

• NP is the set of decision problems for which there is an algorithm V (an efficient verifier) that
takes as input an instance I of size n, and an efficiently checkable certificate bit string c of length
poly(n). Specifically, we require that V always runs in poly(n) time and outputs “YES” (I, c) =
YES, and outputs “NO” if (I, c) = NO. See Figure 1 for an illustration.

R problems decidable in finite time // ‘R’ comes from recursive languages

EXP problems decidable in exponential time 2n
O(1)

// most problems we think of are here
P problems decidable in polynomial time nO(1) // “efficient” algorithms e.g., sorting numbers

Figure 2: Source: https://www.geeksforgeeks.org/

You can think of the certificate as a proof that I is a YES-instance. If I is actually a NO-instance
then no proof should work. Here are some examples of decision problems known to be in NP:
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Problem Certificate Verifier
s-t Shortest Path A path P from s to t Adds the weights on P and checks if ≤ d
Negative Cycle A cycle C Adds the weights on C and checks if < 0

Subset Sum A set of items A′ Checks if A′ ∈ A has sum S
Tetris Sequence of moves Checks that the moves allow survival

How does NP fit into our landscape so far?

• P ⊆ NP: if the problem is in P, it is decidable in poly(n) time so the verifier V can just solve
the instance itself and ignore any certificate. In other words, you can always have an “empty”
certificate c = null where the verifier ignores c and just checks the instance itself.

• NP ⊆ EXP: if the problem is in NP, it has a poly(n)-time verifier V and at most 2n
O(1)

possible
certificates, so an exponential time algorithm can run V on every possible certificate and return
YES if V accepts any certificate and NO if V rejects every certificate.

• Does P = NP? NP = EXP? These are still open questions.

2 Deterministic reductions

2.1 Introduction
Reductons are a powerful tool in both complexity theory and in cryptography. The idea behind
reductions is simple. Suppose you believe that deciding problem A is hard, i.e. takes longer than
polynomial time.

Now, you’re given a problem B which you’re not sure about. B could be an easy or a hard
problem. To prove that B is a hard problem, we must reduce the difficulty of problem A to the
difficulty of problem B. How do we do this? Well, suppose you have a solver F for B (think of F
as a function built into your computer; you can run it but you cannot modify or change its inputs).
If given a valid instance of problem B, then F will give you a valid solution to B. Note that we
make no assumptions on F ’s runtime since we’re trying to prove a lower-bound on the time it takes
to solve instances of problem A!

The key idea is that if you can “transform” an instance of A into an instance of B, then you can
use F to solve A. If this transformation takes polynomial time, then it must be the case that B is at
least as hard as A. Why? Because we’ve shown that if B is decidable in time T , you can decide an
instance of A in time T + the runtime of your transformation. Since we believe A is not decidable
in polynomial time, B also cannot be decidable in polynomial time.

We will now more formally define several types of reductions.

2.2 Karp reductions
Suppose you don’t have a program which decides problem A, but you still want to solve an instance
IA of size n. One way to solve is to convert IA into an instance IB of a problem B which you do
have a solver for: this is called a Karp reduction from problem A to problem B (A → B). The
conversion algorithm must

• run in time polynomial in the length of IA (think about why), and

• convert YES-instances to YES-instances and NO-instances to NO-instances (i.e. IB is a YES-
instance of problem B iff IA is a YES-instance of problem A).

If we have such a conversion, we can conclude that because B can be used to solve A, B is at least
as hard as A (A ≤ B).
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2.2.1 Example: 3SAT → graph 3-colorability

Recall that the 3SAT problem takes a 3-CNF formula as input and asks whether or not the formula
is satisfiable. 3SAT is an important NP-complete problem that we often use in reductions. Here we
will use a reduction from 3SAT to show that graph 3-colorability is NP-hard [1]. Recall that the
graph 3-coloring problem takes an undirected graph as input and asks whether or not it is possible
to, using only 3 colors, color every vertex of the graph so that no edge connects two vertices of the
same color.

Figure 3: Base graph for our 3SAT → graph 3-colorability reduction.

true false

base

v1

v1

vn

vn. . .
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Example 1: 3SAT → graph 3-colorability.

Given a 3-CNF formula φ with m clauses and n variables x1, . . . , xn, we want to construct a graph Gφ
such that Gφ is 3-colorable if and only if φ is satisfiable (i.e. a YES-instance of 3SAT).
First, we’ll construct a graph G which represents a variable assignment, i.e., a mapping {x1, . . . , xn} →
{true, false} (and is independent of φ). We have three nodes, true, false, base, connected in a
triangle. We also have two nodes for each variable xi: vi and vi, which are connected to each other and
the base node in a triangle. See fig. 3.
A 3-coloring of this graph G gives us a variable assignment for x1, . . . , xn. How? true, false, base
will each get different colors. For all i, either vi matches true and vi matches false, or vice versa (vi
matches false and vi matches true). We naturally consider the former an assignment of xi to true and
the latter an assignment of xi to false.
Now, we need to add to this graph the constraints of the actual formula φ. For every clause li ∨ lj ∨ lk
(i.e. the OR of three literals, which could be variables or their negation), we will add an OR “gadget”
graph to G such that if the new composite graph is 3-colorable, then li ∨ lj ∨ lk is satisfiable by some
variable assignment (see the illustration above).

First let’s consider the easier case of representing just li ∨ lj . Recall that we have nodes corresponding
to li and lj in G already. We want to create a new graph which is 3-colorable if and only if li or lj is
true. We do this as follows:

1. Add a new node to G corresponding to (li∨lj). We can require this node to match true by connecting
it in a triangle with false, base. To see why, observe that if (li ∨ lj) = false then we have two
adjacent false nodes in the graph, which is not 3-colorable (recall: false gets its own color).

2. Add two helper nodes l′i and l′j and connect them to (li ∨ lj) in a triangle, so one is forced to match
false (and the other one matches base).

3. Connect l′i to li and l′j to lj . This forces either li or lj to match true, since one is already connected
to base and is now connected to a helper node which matches false.

Now that we have a node corresponding to (li ∨ lj), representing (li ∨ lj ∨ lk) is quite simple.

1. Disconnect (li ∨ lj) from false, base, since we no longer require it to match true.

2. Follow the steps above to represent (li ∨ lj) ∨ lk.

(See fig. 4 for x1 ∨ ¬x2 ∨ x3.) We repeat this process for each of the m clauses in φ to obtain Gφ. Since
G originally had 2n+ 3 nodes and each clause adds 6 new nodes, Gφ will have 2n+ 6m+ 3 nodes.

Exercise 1. Verify that this reduction takes polynomial time.

Exercise 2. Recall that the k-clique problem takes a graph as input and asks whether the graph
has a clique, i.e. set of vertices all connected to one another, of size k. Taking inspiration from this
logic about what vertices and the edges connecting them should represent, reduce 3SAT to k-clique.
Hint: Set k = m (the number of clauses in the 3SAT formula).

2.3 Cook reductions
We can generalize this notion of reductions by allowing the solver T for problem A to make subroutine
calls to a solver S for problem B: this is called a Cook reduction. On any instance IA, T takes
a polynomial number of steps, where a “step” can be a standard unit of computation or a call to S
on some instance IB (think about how big IB can be in the length of IA).

2.3.1 Example: search-LWE → decision-LWE

The {search/decision}-LWE problem (originally introduced by Regev [2]) basically asks to solve a
system of noisy linear equations. Formally, LWEn,m,q,χ, for parameters n,m, q ∈ Z+ (we assume q
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Figure 4: This shows Gφ for φ = x1∨¬x2∨x3, with the original graph G (for just the three variables
x1, x2, x3) in black and the OR gadget graph highlighted in blue.

true false

base
v2

v2

v1

v1

v1 ∨ v2

v′1 v2
′

v3

v3

v′3 (v1 ∨ v2)′

v1 ∨ v2 ∨ v3

is prime) and an error distribution χ, gives as a challenge(
A

R← Zm×nq ,b ∈ Zmq
)
. // m× n matrix A and vector b of length m.

In the decision version of the problem, either b R← Zmq or b← As+ e for s R← Znq , e
R← χmq , and the

adversary has to determine which way b was generated. In the search version of the problem, we
always have b← As+ e, and asks the adversary to return the secret s.

We will show a Cook reduction from the search version of the problem to the decision version of
the problem [3]. Essentially, we will show that if we can decide whether we are seeing noisy linear
equations or random values, we can also find the secret (i.e. the solution to the noisy equations).
This will remind you of the distinguisher-predictor reduction we saw in class for PRG next-bit
unpredictability.
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Example 2: Search-LWE → Decision-LWE.

Given a distinguisher D for decision-LWEn,m,q,χ which runs in time T with distinguishing advantage
ε, we will build a algorithm A for search-LWEn,m′,q,χ where m′ = m · qn · c logn

ε2
, which runs in time

T ′ = T · nq · c logn
ε2

and is correct with probability 1− 1
n
(c is a constant).

Our approach to solve search-LWEn,m′,q,χ will be to “guess” the secret, one coordinate at a time. Let
s = (s1, . . . , sn). First we will describe Bi, which on input (A,b ← As+ e), guesses the ith coordinate
of s. At a high level, Bi iterates through guesses in Zq and determines if the current value is correct for
si. It does so by ensuring that (1) when the guess is correct, the distinguisher D gets a new LWE sample
as input and (2) when the guess is incorrect, D gets a uniformly random input. Because D succeeds
with probability 1

2
+ ε, Bi repeats this process L times, where we set L = c logn

ε2
for a sufficiently large

constant c, and takes the majority output.

Bi(A`,b`)

1 : for 0 ≤ j < q do

2 : guessi ← j

3 : for 1 ≤ ` ≤ L do

4 : choose a fresh block A` ∈ Zm×nq ,b` ∈ Zmq

5 : c`
R← Zmq , C` ∈ Zm×nq is all zeroes except the ith column is c`

6 : A′` ← A` +C`, b′` ← b` + guessi · c`
7 : d` ← D(A′`,b′`)
8 : endfor

9 : if majority(d1, . . . , dL) = 1 then return guessi

10 : endfor

A runs Bi for i ∈ [n] (feeding in new rows of A and b as needed) and returns (guess1, . . . , guessn).

Correctness. If the guess guessi is correct, then (A′`,b
′
`) is a fresh LWE sample, since

b′` = b` + guessi · c` = b` + si · c` = (A`s+ e`) + si · c`
= (A`s+ si · c`) + e` = (A` +C`) s+ e` = A′`s+ e`

On the other hand, if the guess guessi is incorrect, then b′` is uniformly random, since

b′` = b` + guessi · c` = (A`s+ e`) + guessi · c`
= (A`s+ guessi · c`) + e` = A′`s+ e` + (guessi − si) · c`

and the term (guessi − si) · c` is random and independent of A′`s+ e` because (1) (guessi − si) is
nonzero, (2) q is prime, and (3) c` is random and independent of A`, s, e`. It follows that D will
output 1 with probability at least 1

2
+ ε, in the case that guessi = si. Since we run D L = c logn

ε2

times, if we set c = 2(1 + 2ε) it follows from a Chernoff bound that if guessi = si, then we have
majority(d1, . . . , dL) 6= 1 with probability at most 1

n2 . Hence, by a union bound, with probability
at least 1− 1

n
, for all i ∈ [n] Bi guesses si correctly, i.e. A returns the correct answer.

Runtime. The runtime of single iteration of the inner for loop at line 3 is dominated by the runtime of
D, i.e. T . Bi runs L iterations of the inner loop for each of the (at most) q iterations of the outer
for loop at line 1, and we run Bi for every i ∈ [n]. Thus, A’s total runtime is T ′ = T · nq · c logn

ε2
.

Number of rows. Every call to D consumes m rows of A and b, so by the above analysis, we need
m′ = m · nq · c logn

ε2
rows of A and b.

Exercise 3. Reduce search-3SAT to decision-3SAT: that is, given an algorithm D which can
tell whether or not it’s been given a satisfiable or unsatisfiable 3-CNF formula with non-negligible
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advantage, build an algorithm A which can find a satisfying assignment for a 3-CNF formula.

3 Probabilistic reductions

3.1 Introduction
Both Cook and Karp reductions are deterministic; the reduction does not use any randomness, and
will always act the same way if you feed it the same input. A more general class of reductions, which
we will rely on heavily in this course, are probabilistic reductions. That is, the reduction has
its own random coins, and might act differently if you feed it the same input twice. It might even
succeed in solving the problem once and fail at solving the problem once. In Section 3.2 we will
consider a special kind of probabilistic reduction.

3.2 Random self-reducibility
Random self-reducibility of a problem states that no distribution over instances of the problem is any
harder than to solve with non-negligible advantage than the uniform distribution over instances of the
problem (here “harder” means “taking more computational time”). This is a reduction between the
same problem (hence the “self”), however, we reduce from a worst-case instance to an average-case
instance (implying that a random instance is just as difficult to solve as the worst-case instance).

3.2.1 Example: Quadratic-Residue (QR) problem

In this example we consider the problem of finding quadratic residues mod N . A quadratic
residue is a number y (mod N) such that there exists a number z (mod N) where

y = z2 (mod N).

It is widely believed that finding z given y (i.e., finding the square root of y (mod N)) is compu-
tationally intractable without knowing the prime factorization of N . The question we will answer in
this example is: does this apply to the average y or just a few worst-case instances? In this example,
our reduction will be probabilistic and occasionally fail. However, we will show that the probability
of failure is negligible.
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Example 3: Random self-reducibility for the Quadratic-Residue problem

Suppose we have a solver A that when given random y ∈ ZN as input, outputs z ∈ ZN such that
y = z2 (mod N) with some probability p. We will build a solver B that given a worst-case input y∗

(the “hardest” instance of the QR problem, which we don’t know ahead of time) will somehow use A
to recover a correct solution for y∗ with probability close to p. That is, B will come up with an input
that is distributed identically to a random instance of the QR problem so as to use A and thus recover
a solution for y∗.

The reduction: We construct B as follows.

B

1 : r
R← ZN // a random number 0 . . . N − 1

2 : y′ ← y∗ · (r2) (mod N)

3 : z′ ← A(y′)

4 : z ← z′ · r−1 (mod N)

Analysis. We have that y′ is a random quadratic residue mod N . This holds because:

ab2 = c2,

for some c, i.e., multiplying by a random quadratic residue results in a new (random) quadratic residue. A
works on uniformly random inputs, which in this case means it is expecting uniformly random quadratic
residues. As such, the input given to A by B is distributed correctly. Observe that the reduction doesn’t
work if we feed y′ := y∗ · r to A; try to understand why that is.

We now analyze the success probability of B. The probability that b is a valid solution is contingent on
r being invertible modulo N . When is r invertible modulo N? Some simple number theory tells us that
r is invertible if and only if GCD(r,N) = 1 (i.e., r is not a factor of N). Assuming that N = (q1q2) is a
composite of two λ-bit primes q1 and q2, then the probability that B succeeds is

Pr[A succeeds ∧ r is invertible] = p

A succeeds

·
(
φ(N)

N

)
r is invertible

= p

(
(q1 − 1)(q2 − 1)

N

)
= p

(
N − q1 − q2 + 1

N

)
= p

(
1− q1 + q2 − 1

N

)
≈ p− p

(
2λ+1

22λ

)
= p− p

(
1

2λ−1

)
= p− negl(λ).

We’ve just shown that if A exists for any random instance of the QR problem, then B exists to solve any
instance of the QR problem. We can therefore conclude that QR is random self-reducible. Observe that
we make no restrictions on the runtime of A, though we require the reduction itself to be polynomial
time and succeed with some “good” probability.

Exercise 4. Show that the reduction works for N consisting of k prime factors (for some constant k).

Exercise 5. Show that it is sufficient for B to succeed with any (non-negligible) probability q ≤ p for
the reduction to work. That is, we do not require B to succeed with probability that is negligibly close
to p. 9
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