
A Note on the Non-Uniform Model of Computation

1 Non-Uniform Turing Machines and Circuits
Recall that our goal is to construct cryptographic schemes that are secure against “poly-size” adversaries, as
opposed to “poly-time” adversaries.

Definition 1 (Poly-size (non-uniform) Turing machine). A poly-size (non-uniform) Turing machine is a
polynomial-time Turing machine M augmented with an infinite collection of advice strings {an}n∈N of poly-
nomial size (i.e. |an| = O(nd) for some constant c). On input x ∈ {0, 1}n, the Turing machine is allowed to
utilize the advice corresponding to its input length, and produce output M(x, an).

The set of languages decided by poly-size (non-uniform) Turing machines is denoted by P/poly.
An equivalent way to formalize the non-uniform model of computation is using circuits. Circuits by

definition operate on inputs of a fixed length, so to decide a language L ⊆ {0, 1}∗, we need a family of
circuits {Cn}n∈N, one circuit Cn for every input length n ∈ N.

To see why these two models are equivalent, think of of the circuit Cn for input length n as the advice
an given to the non-uniform Turing machine when operating on inputs of length n.

2 The Power of Non-Uniform Computation
From the non-uniform Turing machine definition, it is easy see that P ⊆ P/poly; the non-uniform Turing
machine to decide L ∈ P just runs the uniform Turing machine for L on the empty advice string for all input
lengths.

Does non-uniform advice buy us any additional power? Well, for one, unlike the case for P, we actually
know that BPP ⊆ P/poly.

2.1 Randomness is (provably) for free
Theorem 1 (Adleman, Bennett, Gill). BPP ⊆ P/poly.

Proof. For any language L ∈ BPP, we will give a P/poly machine that decides L. Let M be a BPP machine
such that for every x ∈ L,

Pr
r
[M(x; r) = 1] ≥ 2/3

and for every x /∈ L,
Pr
r
[M(x; r) = 1] ≤ 1/3.

Let M ′ be the Turing machine that samples m independent random strings r1, . . . , rm and outputs the
majority vote of M(x; ri). By the Chernoff bound, for every x ∈ {0, 1}n, by choosing m = Ω(n), we can get
that for every x ∈ L

Pr
r1,...,rm

[M ′(x; r1, . . . , rm) ̸= 1x∈L] <
1

en
.

1

where 1x∈L = 1 if x ∈ L and 0 otherwise. By a union bound over all x ∈ {0, 1}n,

Pr
r1,...,rm

[∃x : M ′(x; r1, . . . , rm) ̸= 1x∈L] <
2n

en
< 1.

Therefore, there must exist some choice of R∗
n = (r∗1 , . . . , r

∗
m) such that M ′(x;R∗

n) = 1x∈L for all x ∈ {0, 1}n.
Thus, M ′ is a non-uniform Turing machine with advice string R∗

n for input length n that decides L. □

This, on its own, is not a convincing argument that P/poly is stronger than P, since we believe that
BPP = P. Next, we will show that in fact, P/poly is strictly larger than P—it contains the unary versions of
undecidable languages.

2.2 Undecidable problems in P/poly

Define the Unary Halting problem by the language

UHALT = {1n | The binary decomposition of n can be interpreted as ⟨M,w⟩ such that M halts on input w}.

Theorem 2. UHALT ∈ P/poly.

Proof. For n ∈ N, let an = 1 if M halts on w and 0 otherwise, where ⟨M,w⟩ = binary-decomposition(n).
Define the non-uniform Turing machine M ′ as follows:

M ′(x) =

{
a|x| if x = 1|x|

0 otherwise

Therefore M ′ decides UHALT. □

Remark 1. Another way to see that non-uniform computation is much more powerful than uniform com-
putation is to observe that the number of uniform Turing machines is countably infinite, but the number of
non-uniform Turing machines is uncountably infinite.

2.3 Wait, is this even reasonable?
The fact that some non-uniform adversaries can solve undecidable problems might lead to some skepticism
about considering such a model. What hope can we have of finding assumptions that might reasonably be
hard against potentially (much more powerful) adversaries?

It is here that we note that while non-uniform programs are a strictly stronger model of computation
than uniform ones, we don’t think that such adversaries can necessarily solve all interesting hard problems.

For those who may have more complexity theory background, there is some indirect evidence for this
viewpoint: a result of Karp and Lipton shows that if NP ⊆ P/poly, then the polynomial hierarchy collapses
(which is widely believed not to be the case).

Theorem 3 (Karp-Lipton). NP ⊆ P/poly =⇒ ΣP
2 = ΠP

2 .

Thus, we believe that at the very least, not all hard problems are necessarily easy for non-uniform
adversaries.1 And of course, heuristically, most of our cryptographic assumptions have withstood decades of
cryptanalysis and suggested attacks, even against non-uniform adversaries.

1Note that most cryptographic problems are not NP-complete, so Karp-Lipton does not directly apply, but it still gives some
justification as to why considering non-uniform adversaries is not wholly unreasonable.

2

3 Why do we care about non-uniform adversaries in cryptography?
As we have seen above, the non-uniform model of computation is strictly more powerful than the uniform
model of computation, so if we can prove a cryptographic scheme is secure against more powerful non-uniform
adversaries, we should do it! This is why nearly all the definitions that cryptographers write down allow for
non-uniform adversaries.

But as we have also seen, the non-uniform model of computation can at times be unreasonably powerful.
So why are cryptographers so diligent about making their schemes secure against non-uniform adversaries?
Does it ever matter in practice? A concrete way to phrase this question is as follows: is there a cryptosystem
that is secure when considering uniform adversaries that suddenly becomes insecure in when considering
non-uniform adversaries?

Non-uniformity captures an important aspect of adversaries in the real-world—namely, precomputation. If
it was possible for and adversary to spend a lot of resources and time into a precomputation/pre-processing
step that then made solving a large set of instances of a problem easy, then a cryptosystem that relied
on the hardness of instances from this set would be broken. Non-uniformity tries to capture this kind of
precomputation attack when the set of problems made easy is the set of all inputs of a certain length.

For example, suppose a scheme relies on the hardness of computing the discrete log over a given group
G. Namely, the assumption is that given gx it is hard to compute x. Suppose an adversary performs a lot
of precomputation on the specific group G, that makes the discrete log problem in that group easy. That
is, after this precomputation step on G, given an instance gx, the adversary is able to quickly find x. This
would completely break the security of the scheme. In fact, this is not a hypothetical attack! The Number
Field Sieve algorithm was used to do exactly this for Diffie-Hellman key exchange when the group was chosen
to be a fixed prime order!

4 A final remark
Lastly, we want to emphasize a distinction between the uniformity of the security reduction in our proofs
and the uniformity of the adversaries we consider.

Namely, oftentimes when proving that a certain cryptographic protocol or primitive is secure assuming
some assumption (or another primitive), our proof goes as follows: we take a (supposed) adversary A for the
construction and use it to build another adversary B that breaks the underlying primitive or assumption,
thereby reducing the security of our construction to the security of the assumption or simpler primitive.

This reduction may have the property that for uniform adversaries A, the resulting adversary B is also
uniform; in this case, we say that the reduction itself is uniform. However, although the reduction
itself is uniform, it still applies to non-uniform adversaries. Indeed, it is not hard to see that any
uniform reduction (which is proven only with respect to uniform adversaries) will also convert non-uniform
adversaries A to non-uniform adversaries B, so uniform reductions are at least as strong as non-uniform
reductions. Moreover, most natural cryptographic reductions (including the ones in this course) will usually
be uniform.2

Thus, when describing security reductions, it may be preferable to try to construct uniform security
reductions when possible (and we may even phrase our reductions in this language if it makes the proof
simpler). Still, this is merely an additional property that may be convenient but not necessary for our
reductions to have, and may not always even be possible!3

2There are also specific circumstances where we might need uniform security reductions (for example if we are focusing only
on uniform adversaries), and sometimes, our impossibility results can only rule out the more restricted category of uniform
reductions.

3Indeed, there are certain situations where a non-uniform security reduction is necessary or simpler (and a uniform reduction
will provably fail or is much more difficult to construct). As an example, working with uniform adversaries when dealing with
zero-knowledge proofs (a concept we will encounter later in this course) is often quite tricky.

3

https://en.wikipedia.org/wiki/Logjam_(computer_security)

	Non-Uniform Turing Machines and Circuits
	The Power of Non-Uniform Computation
	Randomness is (provably) for free
	Undecidable problems in P/poly
	Wait, is this even reasonable?

	Why do we care about non-uniform adversaries in cryptography?
	A final remark

