MIT 6.875

Foundations of Cryptography
Lecture 9

Lectures 7-10

Constructions of Public-key Encryption

Diffie-Hellman/El Gamal

2: Trapdoor Permutations (RSA)
3: Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security & Lattice-based Encryption

One-way Functions

F

Easy to
compute

Hard to

invert
<«

domain

a
'

range

Trapdoor One-way Functions

F

>
Easy to
compute
>

Hard to

invert
<«

Easy to

invert
domain = <=
given a

W trapdoor range

Trapdoor One-way Permutations

B
>
Easy to
compute
Hard to
1nvert
Easy to
mvert
domain range

glven a

Ly trapdoor
Domain = Range

Trapdoor Functions: The Definition

Trapdoor Functions: The Definition

Afunction (family) & = {&,} _ where each &, is itself
a collection of functions

F, ={F:{0,1}" —» {O,l}m(”)}l.eln is a trapdoor one-way
function family if:

e Easy to sample function index with a trapdoor: There is
a PPT algorithm Gen(1") that outputs a function index
i € I, together with a trapdoor t,.

Trapdoor Functions: The Definition

A function (family) & = {g”’}ne/\/ where each & _ is itself

a collection of functions
F, = {F:{0,1}" —» {O,l}m(”)}l.eln is a trapdoor one-way
function family if:

« Easy to sample function index with a trapdoor.

* Easy to compute F/(x) given i and x.

Trapdoor Functions: The Definition

A function (family) & = {g”’}ne/\/ where each & _ is itself

a collection of functions
F, = {F:{0,1}" —» {O,l}m(”)}l.eln is a trapdoor one-way
function family if:

« Easy to sample function index with a trapdoor.
* Easy to compute Fi(x) given i and x.

* Easy to compute an inverse of F(x) given .

Trapdoor Functions: The Definition

Afunction (family) & = {&,} _ where each &, is itself
a collection of functions

F, ={F:{0,1}" —» {O,l}m(”)}ieln is a trapdoor one-way
function family if:

« Easy to sample function index with a trapdoor.
* Easy to compute Fi(x) given i and x.
* Easy to compute an inverse of F(x) given t,.

 |tis one-way: thatis, for every p.p.t. A, thereis a

el farGEait s = O = Eex)
A(l”, i,y) =x"1y= F(x)

From Trapdoor Permutations to
IND-Secure Public-key Encryption

Gen(l”) : Sample function index i with a trapdoor ¢,.

The public key is i and the private key is ;.
Enc(pk =i, m): Output ¢ = F;(m) as the ciphertext.

Dec(sk =3 c): Output Fl._l(c) computed using the
private key 7.

From Trapdoor Permutations to
IND-Secure Public-key Encryption

Gen(l”) : Sample function index i with a trapdoor ¢,.

The public key is i and the private key is ;.
Enc(pk =i, m): Output ¢ = F;(m) as the ciphertext.

Dec(sk =3 c): Output Fl._l(c) computed using the
private key 7.

Could reveal partial info about m!
So, not IND-secure!

From Trapdoor Permutations to
IND-Secure Public-key Encryption

Gen(l”) : Sample function index i with a trapdoor ¢,.

The public key is i and the private key is ;.

Enc(pk = i,m) where m is a bit: Pick a random r .
Output ¢ = (F,(r), HCB(r)EB m).

Dec(sk =1, c): Recover r using the private key t,

and using it m.

From Trapdoor Permutations to
IND-Secure Public-key Encryption

Gen(l”) : Sample function index i with a trapdoor ¢,.

The public key is i and the private key is ;.

Enc(pk = i,m) where m is a bit: Pick a random r .
Output ¢ = (F,(r), HCB(r)EB m).

Dec(sk =1, c): Recover r using the private key t,

HLIIYNDCPA secure:

Proof by Hybrid argument (exercise).

Trapdoor Permutations: Candidates

Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):
o The RSA (Rivest-Shamir-Adleman) Function

« The Rabin/Blum-Williams Function

Trapdoor Permutations: Candidates

Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):
« The RSA (Rivest-Shamir-Adleman) Function

« The Rabin/Blum-Williams Function

Review: Number Theory

Let’s review some number theory from LS.

Let N = pg be a product of two large primes.

Fact: Z, = {a € Z,:ged(a,N) = 1} is a group.

 group operation is multiplication mod N.
e inverses exist and are easy to compute.

« the order of the groupis ¢(N) = (p — 1)(q — 1)

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e. d)(N)) = 1. Then,

the map Fy (x) = x® mod N is a trapdoor permutation.

Key Fact: Given d such that ed = 1 mod ¢p(V), it is easy to
compute x given x°.

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e. d)(N)) = 1. Then,

the map Fy (x) = x® mod N is a trapdoor permutation.

Key Fact: Given d such that ed = 1 mod ¢p(V), it is easy to
compute x given x°.

Proof: (x€)? =

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e. (!)(N)) = 1. Then,

the map Fy (x) = x® mod N is a trapdoor permutation.

Key Fact: Given d such that ed = 1 mod ¢p(V), it is easy to
compute x given x°.

Proof: (x°)¢ = xkdN)+1 —

(for some integer k)

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e. (!)(N)) = 1. Then,

the map Fy (x) = x® mod N is a trapdoor permutation.

Key Fact: Given d such that ed = 1 mod ¢p(V), it is easy to
compute x given x°.

Proof: (x°)¢ = x N+l — (x Nk ¢ x = x

(for some integer k)

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e. (!)(N)) = 1. Then,

the map Fy (x) = x® mod N is a trapdoor permutation.

Key Fact: Given d such that ed = 1 mod ¢p(V), it is easy to
compute x given x°.

Proof: (x°)? = x*dN)+1 = (xd(NYk g x = x mod N

(for some integer k)

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e. (!)(N)) = 1. Then,

the map Fy (x) = x® mod N is a trapdoor permutation.

Key Fact: Given d such that ed = 1 mod ¢(IV), it is easy to
compute x given x°.

Proof: (x°)? = x*dN)+1 = (xd(NYk g x = x mod N

(for some integer k)

This gives us the RSA trapdoor permutation collection.
{FN,e:gcd(e, N)=1}

Trapdoor for inversion: d = e~'mod p(N).

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e. d)(N)) = 1. Then,
the map Fy (x) = x® mod N is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption

given N, e (as above) and x® mod N, hard to compute

X .

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e. (!)(N)) = 1. Then,

the map Fy (x) = x® mod N is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption

given N, e (as above) and x® mod N, hard to compute

X .

We know that if factoring is easy, RSA is broken (and
that’s the only known way to break RSA)

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e. (!)(N)) = 1. Then,
the map Fy (x) = x® mod N is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption

given N, e (as above) and x® mod N, hard to compute
X.

We know that if factoring is easy, RSA is broken (and
that’s the only known way to break RSA)

Major Open Problem: Are factoring and RSA equivalent?

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e. (!)(N)) = 1. Then,

the map Fy (x) = x® mod N is a trapdoor permutation.

Hardcore bits (galore) for the RSA trapdoor one-way perm:

* The Goldreich-Levin bit GL(r;r") = (r,r’) mod 2
 The least significant bit LSB(r)
 The “most significant bit” HALFxn(r) =1iffr < N/2

* |n fact, any single bit of r is hardcore.

RSA Encryption

. Gen(1"): Let N = pgand (e, d) be such that
ed = 1 mod ¢p(N).

Let pk = (N, e) and let sk = d.

RSA Encryption

. Gen(1"): Let N = pgand (e, d) be such that
ed = 1 mod ¢p(N).

Let pk = (N, e) and let sk = d.

. Enc(pk, b) where b is a bit: Generate random
r € Z and output r* mod N and LSB(r)@m.

RSA Encryption
Gen(1"): Let N = pg and (e, d) be such that
ed = 1 mod ¢p(N).

Let pk = (N, e) and let sk = d.

Enc(pk, b) where b is a bit: Generate random
r € Z and output r* mod N and LSB(r)@m.

Dec(sk, c): Recover r via RSA inversion.

RSA Encryption
. Gen(1"): Let N = pgand (e, d) be such that
ed = 1 mod ¢p(N).

Let pk = (N, e) and let sk = d.

. Enc(pk, b) where b is a bit: Generate random
r € Z and output r* mod N and LSB(r)EBm.

 Dec(sk,c): Recover r via RSA inversion.

IND-secure under the RSA assumption: given N, e (as

above) and r® mod N, hard to compute r.

Lectures 8-10

Constructions of Public-key Encryption

Diffie-Hellman/El Gamal

Trapdoor Permutations (RSA)
3: Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security & Lattice-based Encryption

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z7 are
squares.

Define the Legendre Symbol @) = 1 if xis a square,

-1 if x is not a square, and 0 if x =0 mod P.

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z7 are
squares.

Define the Legendre Symbol @) = 1 if xis a square,

-1 if x is not a square, and 0 if x =0 mod P.

So: x = x(P-D/2
P

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z7 are

squares. _
It is easy to compute square roots mod P. We will show

it for the case where P = 3 (mod 4).

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z7 are

squares. _
It is easy to compute square roots mod P. We will show

it for the case where P = 3 (mod 4).

Claim: The square roots of x mod P are + x4

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z7 are

squares. _
It is easy to compute square roots mod P. We will show

it for the case where P = 3 (mod 4).

Claim: The square roots of x mod P are + x4

Proof: (£ x(P+/4y2 = x(PrD2 — y ¢ x(P-1)2 = x mod P

Quadratic Residues mod N

Now, let N = PQ be a product of two primes and look at Z

x is square mod N iff x is square mod Pand itis a
square mod Q.

Quadratic Residues mod N

X X X
Define the Jacobi symbol = to be +1 if
N P/ \QO

X is a square mod both Pand QO or a non-square mod
both Pand Q.

Quadratic Residues mod N

Surprising fact: Jacobi bol * *)
urprisi ct: Jacobi symbo = is
p g y N P 0

computable in poly time without knowing Pand Q.

Quadratic Residues mod N

x is square mod N iff x is square mod Pand itis a

| Jac,
m

square mod Q.

OR, is the set of squares mod N and ONR, is the
set of non-squares mod N with Jacobi symbol +1.

Quadratic Residues mod N

x is square mod N iff x is square mod Pand itis a
square mod Q.

| Jac,
So: OR, = {x: <;> = (;) =41} m

OR, is the set of squares mod N and ONR, is the
set of non-squares mod N with Jacobi symbol +1.

Recognizing Squares mod N

... seems hard
Let N = PQ be a product of two large primes.
Quadratic Residuosity Assumption (QRA)

Let N = PQ be a product of two large primes.
No PPT algorithm can distinguish between a random

element of OR,, from a random element of ONR

givenonl - "’ | Jac, |
KN

Finding Square Roots Mod N

... i1s as hard as factoring N

< Suppose you know P and Q and you want to find
the square root of x mod N.

Find the square roots of y mod P and mod Q.
x = ysmod P x = y;mod O

Use the Chinese remainder theorem. Let
y = cpyp + cpyp Where the CRT coefficients

cp=1mod Pand cp =0 mod Q
co =0 mod Pand cg =1 mod Q

Then vy is a square root of x mod N.

Finding Square Roots Mod N

... i1s as hard as factoring N

Suppose you know P and Q and you want to find the
square root of x mod N.

Find the square roots of y mod P and mod Q.
x = ysmod P x = y;mod O

Let y = cpyp + cpyo Where the CRT coefficients

cp =1 mod Pand 0 mod Q
co =0 mod Pand 1 mod Q

So, if x is a square, it has 4 distinct square roots mod N.

Finding Square Roots Mod N

... i1s as hard as factoring N

= Suppose you have a box that computes square
roots mod N. Can we use it to factor N?

Feed the box x = z? mod N for a random z.

Claim (Pf on the board): with probability 1/2,
gcd(z + y, N) is a non-trivial factor of N.

Goldwasser-Micali (GM) Encryption

Gen(l”): Generate random n-bit primes p and g and

let N = pq. Let y € ONR, be some quadratic non-
residue with Jacobi symbol +1.

Let pk = (N, y) and let sk = (p, q).

Goldwasser-Micali (GM) Encryption

Gen(l”): Generate random n-bit primes p and g and

let N = pq. Let y € ONR, be some quadratic non-
residue with Jacobi symbol +1.

Let pk = (N, y) and let sk = (p, q).

Enc(pk, b) where b is a bit:
Generate random r € Z3 and output 7> mod N if
b=0andr’ymod Nifb=1.

Goldwasser-Micali (GM) Encryption

Gen(l”): Generate random n-bit primes p and g and

let N = pq. Let y € ONR, be some quadratic non-
residue with Jacobi symbol +1.

Let pk = (N, y) and let sk = (p, q).

Enc(pk, b) where b is a bit:
Generate random r € Z3 and output 7> mod N if
b=0andr’ymod Nifb=1.

Dec(sk,c): Check if c € Zy is a quadratic residue
using p and q. If yes, output O else 1.

Goldwasser-Micali (GM) Encryption

Enc(pk, b) where b is a bit:

Generate random r € Z3, and output 7> mod N if
b=0and r’ymod Nifb=1.

IND-security follows directly from the quadratic
residuosity assumption.

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of b/,
| can compute a GM-ciphertext of b + b'mod 2.

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of b/,

| can compute a GM-ciphertext of b + b'mod 2.
without knowing anything about b or b'!

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of b/,

| can compute a GM-ciphertext of b + b'mod 2.
without knowing anything about b or b'!

Enc(pk, b) where b is a bit:

Generate random r € Z), and output r’y’ mod N .

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of b/,

| can compute a GM-ciphertext of b + b'mod 2.
without knowing anything about b or b'!

Enc(pk, b) where b is a bit:
Generate random r € Z), and output r’y’ mod N .

Claim: Enc(pk, b) e Enc(pk, b’) is an encryption of
bE@P b = b+ bmod 2.

