
MIT 6.875

Lecture 9
Foundations of Cryptography

Lectures 7-10

Constructions of Public-key Encryption

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

✅ Diffie-Hellman/El Gamal

4: Post-Quantum Security & Lattice-based Encryption

One-way Functions

F

domain
range

Easy to
compute

Hard to
invert

F

domain
range

Easy to
compute

Hard to
invert

Easy to
invert

given a
trapdoor

Trapdoor One-way Functions

F

domain

Easy to
compute

Hard to
invert

Easy to
invert

given a
trapdoor

range

Trapdoor One-way Permutations

Domain = Range

Trapdoor Functions: The Definition

Trapdoor Functions: The Definition
A function (family where each is itself
a collection of functions

 is a trapdoor one-way
function family if:

• Easy to sample function index with a trapdoor: There is
a PPT algorithm that outputs a function index

 together with a trapdoor .

) ℱ = {ℱ𝑛}𝑛∈ℕ
𝓕𝒏

ℱ𝑛 = {𝐹𝑖:{0,1}𝑛 → {0,1}𝑚(𝑛)}𝑖∈𝐼𝑛

𝐺𝑒𝑛(1𝑛)
𝑖 ∈ 𝐼𝑛 𝑡𝑖

Trapdoor Functions: The Definition
A function (family where each is itself
a collection of functions

 is a trapdoor one-way
function family if:

• Easy to sample function index with a trapdoor.

• Easy to compute given and .

) ℱ = {ℱ𝑛}𝑛∈ℕ
𝓕𝒏

ℱ𝑛 = {𝐹𝑖:{0,1}𝑛 → {0,1}𝑚(𝑛)}𝑖∈𝐼𝑛

𝐹𝑖(𝑥) 𝑖 𝑥

Trapdoor Functions: The Definition
A function (family where each is itself
a collection of functions

 is a trapdoor one-way
function family if:

• Easy to sample function index with a trapdoor.
• Easy to compute given and .

• Easy to compute an inverse of given

) ℱ = {ℱ𝑛}𝑛∈ℕ
𝓕𝒏

ℱ𝑛 = {𝐹𝑖:{0,1}𝑛 → {0,1}𝑚(𝑛)}𝑖∈𝐼𝑛

𝐹𝑖(𝑥) 𝑖 𝑥

𝐹𝑖(𝑥) 𝑡𝑖 .

Trapdoor Functions: The Definition
A function (family where each is itself
a collection of functions

 is a trapdoor one-way
function family if:

• Easy to sample function index with a trapdoor.
• Easy to compute given and .
• Easy to compute an inverse of given

• It is one-way: that is, for every p.p.t. , there is a
negligible function s.t.

) ℱ = {ℱ𝑛}𝑛∈ℕ
𝓕𝒏

ℱ𝑛 = {𝐹𝑖:{0,1}𝑛 → {0,1}𝑚(𝑛)}𝑖∈𝐼𝑛

𝐹𝑖(𝑥) 𝑖 𝑥
𝐹𝑖(𝑥) 𝑡𝑖 .

𝐴
𝜇Pr[

(𝒊, 𝒕) ← 𝑮𝒆𝒏(𝟏𝒏); 𝑥 ← {0,1}𝑛; 𝑦 = 𝐹𝑖(𝑥);

𝐴(1𝑛, 𝑖, 𝑦) = 𝑥′ :𝑦 = 𝐹𝑖(𝑥′)] ≤ 𝜇(𝑛)

From Trapdoor Permutations to
IND-Secure Public-key Encryption

• Sample function index with a trapdoor .
The public key is and the private key is .

• Output as the ciphertext.

• Output computed using the
private key .

𝐺𝑒𝑛(1𝑛): 𝑖 𝑡𝑖
𝑖 𝑡𝑖

𝐸𝑛𝑐(𝑝𝑘 = 𝑖, 𝑚): 𝑐 = 𝐹𝑖(𝑚)

𝐷𝑒𝑐(𝑠𝑘 = 𝑡𝑖, 𝑐): 𝐹−1
𝑖 (𝑐)

𝑡𝑖

From Trapdoor Permutations to
IND-Secure Public-key Encryption

• Sample function index with a trapdoor .
The public key is and the private key is .

• Output as the ciphertext.

• Output computed using the
private key .

𝐺𝑒𝑛(1𝑛): 𝑖 𝑡𝑖
𝑖 𝑡𝑖

𝐸𝑛𝑐(𝑝𝑘 = 𝑖, 𝑚): 𝑐 = 𝐹𝑖(𝑚)

𝐷𝑒𝑐(𝑠𝑘 = 𝑡𝑖, 𝑐): 𝐹−1
𝑖 (𝑐)

𝑡𝑖

Could reveal partial info about m!
So, not IND-secure!

From Trapdoor Permutations to
IND-Secure Public-key Encryption

• Sample function index with a trapdoor .
The public key is and the private key is .

• where is a bit: Pick a random

Output .

• Recover using the private key ,
and using it .

𝐺𝑒𝑛(1𝑛): 𝑖 𝑡𝑖
𝑖 𝑡𝑖

𝐸𝑛𝑐(𝑝𝑘 = 𝑖, 𝑚) 𝑚 𝒓 .
𝒄 = (𝑭𝒊(𝒓), 𝑯𝑪𝑩(𝒓)⨁𝒎)

𝐷𝑒𝑐(𝑠𝑘 = 𝑡𝑖, 𝑐): 𝑟 𝑡𝑖
𝑚

From Trapdoor Permutations to
IND-Secure Public-key Encryption

• Sample function index with a trapdoor .
The public key is and the private key is .

• where is a bit: Pick a random

Output .

• Recover using the private key ,
and using it .

𝐺𝑒𝑛(1𝑛): 𝑖 𝑡𝑖
𝑖 𝑡𝑖

𝐸𝑛𝑐(𝑝𝑘 = 𝑖, 𝑚) 𝑚 𝒓 .
𝒄 = (𝑭𝒊(𝒓), 𝑯𝑪𝑩(𝒓)⨁𝒎)

𝐷𝑒𝑐(𝑠𝑘 = 𝑡𝑖, 𝑐): 𝑟 𝑡𝑖
𝑚This is IND-CPA secure:

Proof by Hybrid argument (exercise).

Trapdoor Permutations: Candidates

Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):

• The RSA (Rivest-Shamir-Adleman) Function

• The Rabin/Blum-Williams Function

Trapdoor Permutations: Candidates

Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):

• The Rabin/Blum-Williams Function

• The RSA (Rivest-Shamir-Adleman) Function

Review: Number Theory

Let’s review some number theory from L8.

Let be a product of two large primes.𝑁 = 𝑝𝑞

Fact: is a group.𝑍∗
𝑁 = {𝑎 ∈ 𝑍𝑁:gcd(a, N) = 1}

• group operation is multiplication mod .𝑁
• inverses exist and are easy to compute.

• the order of the group is ϕ(𝑁) = (𝑝 − 1)(𝑞 − 1)

The RSA Trapdoor Permutation

Today: Let be an integer with Then,
the map is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

Key Fact: Given such that , it is easy to
compute given .

𝑑 𝑒𝑑 = 1 mod ϕ(𝑁)
𝑥 𝑥𝑒

(for some integer k)

The RSA Trapdoor Permutation

Today: Let be an integer with Then,
the map is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

Key Fact: Given such that , it is easy to
compute given .

𝑑 𝑒𝑑 = 1 mod ϕ(𝑁)
𝑥 𝑥𝑒

Proof: (𝑥𝑒)𝑑 = 𝑥𝑘ϕ(𝑁)+1 = (𝑥ϕ(𝑁))𝑘 ∙ 𝑥 = 𝑥 mod 𝑁
(for some integer k)

The RSA Trapdoor Permutation

Today: Let be an integer with Then,
the map is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

Key Fact: Given such that , it is easy to
compute given .

𝑑 𝑒𝑑 = 1 mod ϕ(𝑁)
𝑥 𝑥𝑒

Proof: (𝑥𝑒)𝑑 = 𝑥𝑘ϕ(𝑁)+1 = (𝑥ϕ(𝑁))𝑘 ∙ 𝑥 = 𝑥 mod 𝑁
(for some integer k)

The RSA Trapdoor Permutation

Today: Let be an integer with Then,
the map is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

Key Fact: Given such that , it is easy to
compute given .

𝑑 𝑒𝑑 = 1 mod ϕ(𝑁)
𝑥 𝑥𝑒

Proof: (𝑥𝑒)𝑑 = 𝑥𝑘ϕ(𝑁)+1 = (𝑥ϕ(𝑁))𝑘 ∙ 𝑥 = 𝑥 mod 𝑁
(for some integer k)

The RSA Trapdoor Permutation

Today: Let be an integer with Then,
the map is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

Key Fact: Given such that , it is easy to
compute given .

𝑑 𝑒𝑑 = 1 mod ϕ(𝑁)
𝑥 𝑥𝑒

Proof: (𝑥𝑒)𝑑 = 𝑥𝑘ϕ(𝑁)+1 = (𝑥ϕ(𝑁))𝑘 ∙ 𝑥 = 𝑥 mod 𝑁
(for some integer k)

The RSA Trapdoor Permutation

Today: Let be an integer with Then,
the map is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

{𝐹𝑁,𝑒:gcd(𝑒, 𝑁) = 1}

Key Fact: Given such that , it is easy to
compute given .

𝑑 𝑒𝑑 = 1 mod ϕ(𝑁)
𝑥 𝑥𝑒

Proof: (𝑥𝑒)𝑑 = 𝑥𝑘ϕ(𝑁)+1 = (𝑥ϕ(𝑁))𝑘 ∙ 𝑥 = 𝑥 mod 𝑁
(for some integer k)

This gives us the RSA trapdoor permutation collection.

Trapdoor for inversion: .𝑑 = 𝑒−1mod ϕ(𝑁)

The RSA Trapdoor Permutation

Today: Let be an integer with Then,
the map is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

Hardness of inversion without trapdoor = RSA assumption

given (as above) and mod N, hard to compute 𝑁, 𝑒 𝑥𝑒
𝑥 .

The RSA Trapdoor Permutation

Today: Let be an integer with Then,
the map is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

Hardness of inversion without trapdoor = RSA assumption

We know that if factoring is easy, RSA is broken (and
that’s the only known way to break RSA)

given (as above) and mod N, hard to compute 𝑁, 𝑒 𝑥𝑒
𝑥 .

The RSA Trapdoor Permutation

Today: Let be an integer with Then,
the map is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

Hardness of inversion without trapdoor = RSA assumption

We know that if factoring is easy, RSA is broken (and
that’s the only known way to break RSA)

Major Open Problem: Are factoring and RSA equivalent?

given (as above) and mod N, hard to compute 𝑁, 𝑒 𝑥𝑒
𝑥 .

The RSA Trapdoor Permutation

Today: Let be an integer with Then,
the map is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

Hardcore bits (galore) for the RSA trapdoor one-way perm:

• The Goldreich-Levin bit GL(𝑟; 𝑟′) = ⟨𝑟, 𝑟′ ⟩ mod 2

• The least significant bit LSB(𝑟)

• The “most significant bit” iff 𝐻𝐴𝐿𝐹𝑁(𝑟) = 1 𝑟 < 𝑁/2

• In fact, any single bit of is hardcore. 𝑟

RSA Encryption
• Let and be such that

.

Let and let .

𝐺𝑒𝑛(1𝑛): 𝑁 = 𝑝𝑞 (𝑒, 𝑑)
𝑒𝑑 = 1 𝑚𝑜𝑑 𝜙(𝑁)

𝑝𝑘 = (𝑁, 𝑒) 𝑠𝑘 = 𝑑

RSA Encryption
• Let and be such that

.

Let and let .

𝐺𝑒𝑛(1𝑛): 𝑁 = 𝑝𝑞 (𝑒, 𝑑)
𝑒𝑑 = 1 𝑚𝑜𝑑 𝜙(𝑁)

𝑝𝑘 = (𝑁, 𝑒) 𝑠𝑘 = 𝑑

• where is a bit: Generate random
and output and .

𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏
𝑟 ∈ 𝑍∗

𝑁 𝑟𝑒 mod 𝑁 LSB(𝑟)⨁𝑚

RSA Encryption
• Let and be such that

.

Let and let .

𝐺𝑒𝑛(1𝑛): 𝑁 = 𝑝𝑞 (𝑒, 𝑑)
𝑒𝑑 = 1 𝑚𝑜𝑑 𝜙(𝑁)

𝑝𝑘 = (𝑁, 𝑒) 𝑠𝑘 = 𝑑

• where is a bit: Generate random
and output and .

𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏
𝑟 ∈ 𝑍∗

𝑁 𝑟𝑒 mod 𝑁 LSB(𝑟)⨁𝑚

• : Recover via RSA inversion.𝐷𝑒𝑐(𝑠𝑘, 𝑐) 𝑟

RSA Encryption
• Let and be such that

.

Let and let .

𝐺𝑒𝑛(1𝑛): 𝑁 = 𝑝𝑞 (𝑒, 𝑑)
𝑒𝑑 = 1 𝑚𝑜𝑑 𝜙(𝑁)

𝑝𝑘 = (𝑁, 𝑒) 𝑠𝑘 = 𝑑

• where is a bit: Generate random
and output and .

𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏
𝑟 ∈ 𝑍∗

𝑁 𝑟𝑒 mod 𝑁 LSB(𝑟)⨁𝑚

• : Recover via RSA inversion.𝐷𝑒𝑐(𝑠𝑘, 𝑐) 𝑟

IND-secure under the RSA assumption: given (as
above) and mod N, hard to compute

𝑁, 𝑒
𝑟𝑒 𝑟 .

Lectures 8-10

Constructions of Public-key Encryption

✅ Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

✅ Diffie-Hellman/El Gamal

4: Post-Quantum Security & Lattice-based Encryption

Quadratic Residues mod P

Let P be prime. We saw that exactly half of are
squares.

𝑍∗
𝑃

Define the Legendre Symbol if x is a square,

-1 if x is not a square, and 0 if x = 0 mod P.
(𝑥

𝑃) = 1

𝐿𝑒𝑔−1 𝐿𝑒𝑔+1𝑍∗
𝑃

{𝑥:(𝑥
𝑃) = − 1} {𝑥:(𝑥

𝑃) = + 1}

Quadratic Residues mod P

Let P be prime. We saw that exactly half of are
squares.

𝑍∗
𝑃

Define the Legendre Symbol if x is a square,

-1 if x is not a square, and 0 if x = 0 mod P.
(𝑥

𝑃) = 1

𝐿𝑒𝑔−1 𝐿𝑒𝑔+1𝑍∗
𝑃

{𝑥:(𝑥
𝑃) = − 1} {𝑥:(𝑥

𝑃) = + 1}

So: (𝑥
𝑃) = 𝑥(𝑃−1)/2

Quadratic Residues mod P

Let P be prime. We saw that exactly half of are
squares.

𝑍∗
𝑃

It is easy to compute square roots mod P. We will show
it for the case where P = 3 (mod 4).

Quadratic Residues mod P

Let P be prime. We saw that exactly half of are
squares.

𝑍∗
𝑃

It is easy to compute square roots mod P. We will show
it for the case where P = 3 (mod 4).

Claim: The square roots of mod P are 𝑥 ± 𝑥(𝑃+1)/4

Quadratic Residues mod P

Let P be prime. We saw that exactly half of are
squares.

𝑍∗
𝑃

It is easy to compute square roots mod P. We will show
it for the case where P = 3 (mod 4).

Claim: The square roots of mod P are 𝑥 ± 𝑥(𝑃+1)/4

Proof: (± 𝑥(𝑃+1)/4)2 = 𝑥(𝑃+1)/2 = 𝑥 ∙ 𝑥(𝑃−1)/2 = 𝑥 mod 𝑃

Quadratic Residues mod N

 is square mod iff is square mod and it is a
square mod .
𝑥 𝑁 𝑥 𝑃

𝑄

Now, let N = PQ be a product of two primes and look at 𝑍∗
𝑁

Quadratic Residues mod N

𝐽𝑎𝑐−1 𝐽𝑎𝑐+1

𝑍∗
𝑁

{𝑥:(𝑥
𝑁) = − 1} {𝑥:(𝑥

𝑁) = + 1}

Define the Jacobi symbol = to be +1 if

 is a square mod both and or a non-square mod
both and .

(𝒙
𝑵) (𝒙

𝑷) (𝒙
𝑸)

𝑥 𝑃 𝑄
𝑃 𝑄

Quadratic Residues mod N

𝐽𝑎𝑐−1 𝐽𝑎𝑐+1

𝑍∗
𝑁

{𝑥:(𝑥
𝑁) = − 1} {𝑥:(𝑥

𝑁) = + 1}

Surprising fact: Jacobi symbol = is

computable in poly time without knowing and .
(𝑥

𝑁) (𝑥
𝑃) (𝑥

𝑄)
𝑃 𝑄

Quadratic Residues mod N

 is square mod iff is square mod and it is a
square mod .
𝑥 𝑁 𝑥 𝑃

𝑄

𝐽𝑎𝑐+1

 is the set of squares mod and is the
set of non-squares mod with Jacobi symbol +1.
𝑄𝑅𝑁 𝑁 𝑄𝑁𝑅𝑁

𝑁

𝑄𝑅𝑁

𝑄𝑁𝑅𝑁

Quadratic Residues mod N

 is square mod iff is square mod and it is a
square mod .
𝑥 𝑁 𝑥 𝑃

𝑄

𝐽𝑎𝑐+1

 is the set of squares mod and is the
set of non-squares mod with Jacobi symbol +1.
𝑄𝑅𝑁 𝑁 𝑄𝑁𝑅𝑁

𝑁

𝑄𝑅𝑁

𝑄𝑁𝑅𝑁

So: 𝑄𝑅𝑁 = {𝑥:(𝑥
𝑃) = (𝑥

𝑄) = + 1}

 𝑄𝑁𝑅𝑁 = {𝑥:(𝑥
𝑃) = (𝑥

𝑄) = − 1}

Recognizing Squares mod N

Let be a product of two large primes.𝑁 = 𝑃𝑄
Quadratic Residuosity Assumption (QRA)

Let be a product of two large primes.
No PPT algorithm can distinguish between a random
element of from a random element of
given only .

𝑁 = 𝑃𝑄

𝑄𝑅𝑁 𝑄𝑁𝑅𝑁
𝑁

… seems hard

𝐽𝑎𝑐+1

𝑄𝑅𝑁

𝑄𝑁𝑅𝑁

Finding Square Roots Mod N
… is as hard as factoring N

 Suppose you know P and Q and you want to find
the square root of x mod N.
⇐

Find the square roots of y mod P and mod Q.

𝑥 = 𝑦2
𝑃 mod 𝑃 𝑥 = 𝑦2

𝑄 mod 𝑄

Use the Chinese remainder theorem. Let
 where the CRT coefficients

 y = 𝑐𝑃𝑦𝑃 + 𝑐𝑄𝑦𝑄

𝑐𝑃 = 1 𝑚𝑜𝑑 𝑃 𝑎𝑛𝑑 𝑐𝑃 = 0 𝑚𝑜𝑑 𝑄
𝑐𝑄 = 0 𝑚𝑜𝑑 𝑃 𝑎𝑛𝑑 𝑐𝑄 = 1 𝑚𝑜𝑑 𝑄

Then is a square root of x mod N. y

Finding Square Roots Mod N
… is as hard as factoring N

Suppose you know P and Q and you want to find the
square root of x mod N.

Find the square roots of y mod P and mod Q.

𝑥 = 𝑦2
𝑃 mod 𝑃 𝑥 = 𝑦2

𝑄 mod 𝑄

Let where the CRT coefficients

 y = 𝑐𝑃𝑦𝑃 + 𝑐𝑄𝑦𝑄

𝑐𝑃 = 1 𝑚𝑜𝑑 𝑃 𝑎𝑛𝑑 0 𝑚𝑜𝑑 𝑄
𝑐𝑄 = 0 𝑚𝑜𝑑 𝑃 𝑎𝑛𝑑 1 𝑚𝑜𝑑 𝑄

So, if x is a square, it has 4 distinct square roots mod N.

Finding Square Roots Mod N
… is as hard as factoring N

Suppose you have a box that computes square
roots mod N. Can we use it to factor N?
⇒

𝑥 s.t. 𝑦 𝑦2 = 𝑥 𝑚𝑜𝑑 𝑁

Feed the box for a random z.𝑥 = 𝑧2 𝑚𝑜𝑑 𝑁

Claim (Pf on the board): with probability 1/2,
 is a non-trivial factor of N.gcd(z + y, N)

Goldwasser-Micali (GM) Encryption

Generate random -bit primes and and
let . Let be some quadratic non-
residue with Jacobi symbol +1.

Let and let .

𝐺𝑒𝑛(1𝑛): 𝑛 𝑝 𝑞
𝑁 = 𝑝𝑞 𝑦 ∈ 𝑄𝑁𝑅𝑁

𝑝𝑘 = (𝑁, 𝑦) 𝑠𝑘 = (𝑝, 𝑞)

Goldwasser-Micali (GM) Encryption

Generate random -bit primes and and
let . Let be some quadratic non-
residue with Jacobi symbol +1.

Let and let .

𝐺𝑒𝑛(1𝑛): 𝑛 𝑝 𝑞
𝑁 = 𝑝𝑞 𝑦 ∈ 𝑄𝑁𝑅𝑁

𝑝𝑘 = (𝑁, 𝑦) 𝑠𝑘 = (𝑝, 𝑞)

 where is a bit:
Generate random and output if

 and if .

𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏
𝑟 ∈ 𝑍∗

𝑁 𝑟2 mod 𝑁
𝑏 = 0 𝑟2𝑦 mod 𝑁 𝑏 = 1

Goldwasser-Micali (GM) Encryption

Generate random -bit primes and and
let . Let be some quadratic non-
residue with Jacobi symbol +1.

Let and let .

𝐺𝑒𝑛(1𝑛): 𝑛 𝑝 𝑞
𝑁 = 𝑝𝑞 𝑦 ∈ 𝑄𝑁𝑅𝑁

𝑝𝑘 = (𝑁, 𝑦) 𝑠𝑘 = (𝑝, 𝑞)

 where is a bit:
Generate random and output if

 and if .

𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏
𝑟 ∈ 𝑍∗

𝑁 𝑟2 mod 𝑁
𝑏 = 0 𝑟2𝑦 mod 𝑁 𝑏 = 1

: Check if is a quadratic residue
using and . If yes, output 0 else 1.
𝐷𝑒𝑐(𝑠𝑘, 𝑐) c ∈ 𝑍∗

𝑁
𝑝 𝑞

Goldwasser-Micali (GM) Encryption

 where is a bit:
Generate random and output if

 and if .

𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏
𝑟 ∈ 𝑍∗

𝑁 𝑟2 mod 𝑁
𝑏 = 0 𝑟2𝑦 mod 𝑁 𝑏 = 1

IND-security follows directly from the quadratic
residuosity assumption.

GM is a Homomorphic Encryption

Given a GM-ciphertext of and a GM-ciphertext of ,
I can compute a GM-ciphertext of

𝑏 𝑏′

𝑏 + 𝑏′ 𝑚𝑜𝑑 2.

GM is a Homomorphic Encryption

Given a GM-ciphertext of and a GM-ciphertext of ,
I can compute a GM-ciphertext of

𝑏 𝑏′

𝑏 + 𝑏′ 𝑚𝑜𝑑 2.
without knowing anything about or !𝒃 𝒃′

GM is a Homomorphic Encryption

 where is a bit:
Generate random and output
𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏

𝑟 ∈ 𝑍∗
𝑁 𝑟2𝑦𝑏 mod 𝑁 .

Given a GM-ciphertext of and a GM-ciphertext of ,
I can compute a GM-ciphertext of

𝑏 𝑏′

𝑏 + 𝑏′ 𝑚𝑜𝑑 2.
without knowing anything about or !𝒃 𝒃′

GM is a Homomorphic Encryption

 where is a bit:
Generate random and output
𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏

𝑟 ∈ 𝑍∗
𝑁 𝑟2𝑦𝑏 mod 𝑁 .

Given a GM-ciphertext of and a GM-ciphertext of ,
I can compute a GM-ciphertext of

𝑏 𝑏′

𝑏 + 𝑏′ 𝑚𝑜𝑑 2.
without knowing anything about or !𝒃 𝒃′

Claim: is an encryption of
.

𝐸𝑛𝑐(𝑝𝑘, 𝑏) ∙ 𝐸𝑛𝑐(𝑝𝑘, 𝑏′)
𝑏⨁𝑏′ = 𝑏 + 𝑏′ 𝑚𝑜𝑑 2

