MIT 6.875

Foundations of Cryptography Lecture 9

Lectures 7-10

Constructions of Public-key Encryption

V Diffie-Hellman/El Gamal

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security & Lattice-based Encryption

One-way Functions

Trapdoor One-way Functions

Trapdoor One-way Permutations

A function (family) $\mathscr{F} = \{\mathscr{F}_n\}_{n \in \mathbb{N}}$ where each \mathscr{F}_n is itself a collection of functions

 $\mathscr{F}_n = \{F_i: \{0,1\}^n \to \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

• Easy to sample function index with a trapdoor: There is a PPT algorithm $Gen(1^n)$ that outputs a function index $i \in I_n$ together with a trapdoor t_i .

A function (family) $\mathscr{F} = \{\mathscr{F}_n\}_{n \in \mathbb{N}}$ where each \mathscr{F}_n is itself a collection of functions

 $\mathscr{F}_n = \{F_i: \{0,1\}^n \to \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_i(x)$ given *i* and *x*.

A function (family) $\mathscr{F} = \{\mathscr{F}_n\}_{n \in \mathbb{N}}$ where each \mathscr{F}_n is itself a collection of functions

 $\mathscr{F}_n = \{F_i: \{0,1\}^n \to \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_i(x)$ given *i* and *x*.
- Easy to compute an inverse of $F_i(x)$ given t_i .

A function (family) $\mathscr{F} = \{\mathscr{F}_n\}_{n \in \mathbb{N}}$ where each \mathscr{F}_n is itself a collection of functions

 $\mathscr{F}_n = \{F_i: \{0,1\}^n \to \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_i(x)$ given *i* and *x*.
- Easy to compute an inverse of $F_i(x)$ given t_i .
- It is one-way: that is, for every p.p.t. A, there is a negligible function μ s.t. $A(1^n, i, y) = x': y = F_i(x')$ $\leq \mu(n)$

- $Gen(1^n)$: Sample function index *i* with a trapdoor t_i . The public key is *i* and the private key is t_i .
- Enc(pk = i, m): Output $c = F_i(m)$ as the ciphertext.
- $Dec(sk = t_i, c)$: Output $F_i^{-1}(c)$ computed using the private key t_i .

- $Gen(1^n)$: Sample function index *i* with a trapdoor t_i . The public key is *i* and the private key is t_i .
- Enc(pk = i, m): Output $c = F_i(m)$ as the ciphertext.
- $Dec(sk = t_i, c)$: Output $F_i^{-1}(c)$ computed using the private key t_i .

Could reveal partial info about m! So, not IND-secure!

- $Gen(1^n)$: Sample function index *i* with a trapdoor t_i . The public key is *i* and the private key is t_i .
- Enc(pk = i, m) where *m* is a bit: Pick a random *r*. Output $c = (F_i(r), HCB(r) \bigoplus m)$.
- $Dec(sk = t_i, c)$: Recover *r* using the private key t_i , and using it *m*.

- $Gen(1^n)$: Sample function index *i* with a trapdoor t_i . The public key is *i* and the private key is t_i .
- Enc(pk = i, m) where *m* is a bit: Pick a random *r*. Output $c = (F_i(r), HCB(r) \bigoplus m)$.
- $Dec(sk = t_i, c)$: Recover r using the private key t_i , and using it *m* **CPA secure: Proof by Hybrid argument (exercise).**

Trapdoor Permutations: Candidates

Trapdoor Permutations are *exceedingly* rare.

Two candidates (both need factoring to be hard):

- The RSA (Rivest-Shamir-Adleman) Function
- The Rabin/Blum-Williams Function

Trapdoor Permutations: Candidates

Trapdoor Permutations are *exceedingly* rare.

Two candidates (both need factoring to be hard):

- The RSA (Rivest-Shamir-Adleman) Function
- The Rabin/Blum-Williams Function

Review: Number Theory

Let's review some number theory from L8.

Let N = pq be a product of two large primes.

<u>Fact</u>: $Z_N^* = \{a \in Z_N : gcd(a, N) = 1\}$ is a group.

- group operation is multiplication mod N.
- inverses exist and are easy to compute.
- the order of the group is $\phi(N) = (p-1)(q-1)$

<u>Today</u>: Let <u>e</u> be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation. <u>Key Fact</u>: Given <u>d</u> such that $ed = 1 \mod \phi(N)$, it is easy to compute <u>x</u> given <u>x</u>^e.

<u>Today</u>: Let <u>e</u> be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $\underline{F}_{N,e}(x) = x^e \mod N$ is a trapdoor permutation. <u>Key Fact</u>: Given <u>d</u> such that $\underline{ed} = 1 \mod \phi(N)$, it is easy to compute <u>x</u> given \underline{x}^e .

Proof: $(x^{e})^{d} =$

<u>Today</u>: Let <u>e</u> be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation. <u>Key Fact</u>: Given <u>d</u> such that $ed = 1 \mod \phi(N)$, it is easy to compute <u>x</u> given <u>x</u>^e.

Proof: $(x^e)^d = x^{k\phi(N)+1} =$

(for some integer k)

<u>Today</u>: Let <u>e</u> be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation. <u>Key Fact</u>: Given <u>d</u> such that $ed = 1 \mod \phi(N)$, it is easy to compute <u>x</u> given <u>x</u>^e.

Proof:
$$(x^e)^d = x^{k\phi(N)+1} = (x^{\phi(N)})^k \bullet x = x$$

(for some integer k)

<u>Today</u>: Let <u>e</u> be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation. <u>Key Fact</u>: Given <u>d</u> such that $ed = 1 \mod \phi(N)$, it is easy to compute <u>x</u> given <u>x</u>^e.

Proof: $(x^e)^d = x^{k\phi(N)+1} = (x^{\phi(N)})^k \bullet x = x \mod N$ (for some integer k)

<u>Today</u>: Let <u>e</u> be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation. <u>Key Fact</u>: Given <u>d</u> such that $ed = 1 \mod \phi(N)$, it is easy to compute <u>x</u> given \underline{x}^e .

Proof: $(x^e)^d = x^{k\phi(N)+1} = (x^{\phi(N)})^k \bullet x = x \mod N$ (for some integer k)

This gives us the RSA trapdoor permutation collection. $\{F_{Ne}: gcd(e, N) = 1\}$

Trapdoor for inversion: $d = e^{-1} \mod \phi(N)$.

<u>Today</u>: Let <u>e</u> be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption

given N, e (as above) and $x^e \mod N$, hard to compute x.

<u>Today</u>: Let <u>e</u> be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption

given N, e (as above) and $x^e \mod N$, hard to compute x.

We know that if factoring is easy, RSA is broken (and that's the only *known* way to break RSA)

<u>Today</u>: Let <u>e</u> be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption

given N, e (as above) and $x^e \mod N$, hard to compute x.

We know that if factoring is easy, RSA is broken (and that's the only *known* way to break RSA)

Major Open Problem: Are factoring and RSA equivalent?

<u>Today</u>: Let <u>e</u> be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $\underline{F}_{N,e}(x) = x^e \mod N$ is a trapdoor permutation.

Hardcore bits (galore) for the RSA trapdoor one-way perm:

- The Goldreich-Levin bit $GL(r; r') = \langle r, r' \rangle \mod 2$
- The least significant bit LSB(r)
- The "most significant bit" $HALF_N(r) = 1$ iff r < N/2
- In fact, any single bit of *r* is hardcore.

• $Gen(1^n)$: Let N = pq and (e, d) be such that $ed = 1 \mod \phi(N)$.

Let pk = (N, e) and let sk = d.

• $Gen(1^n)$: Let N = pq and (e, d) be such that $ed = 1 \mod \phi(N)$.

Let pk = (N, e) and let sk = d.

• Enc(pk, b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^e \mod N$ and $LSB(r) \bigoplus m$.

• $Gen(1^n)$: Let N = pq and (e, d) be such that $ed = 1 \mod \phi(N)$.

Let pk = (N, e) and let sk = d.

- Enc(pk, b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^e \mod N$ and $LSB(r) \bigoplus m$.
- *Dec*(*sk*, *c*): Recover *r* via RSA inversion.

• $Gen(1^n)$: Let N = pq and (e, d) be such that $ed = 1 \mod \phi(N)$.

Let pk = (N, e) and let sk = d.

- Enc(pk, b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^e \mod N$ and $LSB(r) \bigoplus m$.
- *Dec*(*sk*, *c*): Recover *r* via RSA inversion.

<u>IND-secure under the RSA assumption</u>: given <u>N, e</u> (as above) and <u> r^e </u> mod N, hard to compute <u>r.</u>

Lectures 8-10

Constructions of Public-key Encryption

V Diffie-Hellman/El Gamal

V Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security & Lattice-based Encryption

Let P be prime. We saw that exactly half of Z_P^* are squares.

Define the Legendre Symbol $\begin{pmatrix} x \\ P \end{pmatrix} = 1$ if x is a square, -1 if x is not a square, and 0 if x = 0 mod P.

Let P be prime. We saw that exactly half of Z_P^* are squares.

Define the Legendre Symbol $\begin{pmatrix} x \\ P \end{pmatrix} = 1$ if x is a square,

-1 if x is not a square, and 0 if $x = 0 \mod P$.

So:
$$\begin{pmatrix} x \\ P \end{pmatrix} = x^{(P-1)/2}$$

Let P be prime. We saw that exactly half of Z_P^* are

squares. It is easy to compute square roots mod P. We will show it for the case where $P = 3 \pmod{4}$.

Let P be prime. We saw that exactly half of Z_P^* are

squares. It is easy to compute square roots mod P. We will show it for the case where $P = 3 \pmod{4}$.

Claim: The square roots of x mod P are $\pm x^{(P+1)/4}$

Let P be prime. We saw that exactly half of Z_P^* are

squares. It is easy to compute square roots mod P. We will show it for the case where $P = 3 \pmod{4}$.

Claim: The square roots of x mod P are $\pm x^{(P+1)/4}$

Proof: $(\pm x^{(P+1)/4})^2 = x^{(P+1)/2} = x \cdot x^{(P-1)/2} = x \mod P$

Now, let N = PQ be a product of two primes and look at Z_N^*

x is square mod N iff x is square mod P and it is a square mod Q.

Define the Jacobi symbol $\begin{pmatrix} x \\ N \end{pmatrix} = \begin{pmatrix} x \\ P \end{pmatrix} \begin{pmatrix} x \\ Q \end{pmatrix}$ to be +1 if

x is a square mod both P and Q or a non-square mod both P and Q.

Surprising fact: Jacobi symbol $\begin{pmatrix} x \\ N \end{pmatrix} = \begin{pmatrix} x \\ P \end{pmatrix} \begin{pmatrix} x \\ Q \end{pmatrix}$ is

computable in poly time without knowing P and Q.

x is square mod N iff x is square mod P and it is a square mod Q.

 QR_N is the set of squares mod N and QNR_N is the set of non-squares mod N with Jacobi symbol +1.

x is square mod N iff x is square mod P and it is a square mod Q.

So:
$$QR_N = \{x: \begin{pmatrix} x \\ P \end{pmatrix} = \begin{pmatrix} x \\ Q \end{pmatrix} = +1\}$$

 QR_N
 $QNR_N = \{x: \begin{pmatrix} x \\ P \end{pmatrix} = \begin{pmatrix} x \\ Q \end{pmatrix} = -1\}$
 QNR_N

 QR_N is the set of squares mod N and QNR_N is the set of non-squares mod N with Jacobi symbol +1.

Recognizing Squares mod N

... seems hard

Let N = PQ be a product of two large primes. <u>Quadratic Residuosity Assumption (QRA)</u>

Let N = PQ be a product of two large primes. No PPT algorithm can distinguish between a random element of QR_N from a random element of QNR_N given onl^{...}

Finding Square Roots Mod N

... is as hard as factoring N

⇐ Suppose you know P and Q and you want to find the square root of x mod N.

Find the square roots of y mod P and mod Q.

$$x = y_P^2 \mod P$$
 $x = y_Q^2 \mod Q$

Use the Chinese remainder theorem. Let $y = c_P y_P + c_Q y_Q$ where the CRT coefficients $c_P = 1 \mod P \pmod{c_P} = 0 \mod Q$ $c_Q = 0 \mod P \pmod{c_Q} = 1 \mod Q$

Then y is a square root of x mod N.

Finding Square Roots Mod N

... is as hard as factoring N

Suppose you know P and Q and you want to find the square root of x mod N.

Find the square roots of y mod P and mod Q.

$$x = y_P^2 \mod P$$
 $x = y_Q^2 \mod Q$

Let $y = c_P y_P + c_Q y_Q$ where the CRT coefficients $c_P = 1 \mod P \pmod{0} \mod Q$ $c_Q = 0 \mod P \pmod{1} \mod Q$

So, if x is a square, it has 4 distinct square roots mod N.

Finding Square Roots Mod N

... is as hard as factoring N

 \Rightarrow Suppose you have a box that computes square roots mod N. Can we use it to factor N?

$$x \qquad y \text{ s.t. } y^2 = x \mod N$$

Feed the box $x = z^2 \mod N$ for a random z.

Claim (Pf on the board): with probability 1/2, gcd(z + y, N) is a non-trivial factor of N.

 $Gen(1^n)$: Generate random *n*-bit primes *p* and *q* and let N = pq. Let $y \in QNR_N$ be some quadratic nonresidue with Jacobi symbol +1.

Let pk = (N, y) and let sk = (p, q).

 $Gen(1^n)$: Generate random *n*-bit primes *p* and *q* and let N = pq. Let $y \in QNR_N$ be some quadratic non-residue with Jacobi symbol +1.

Let pk = (N, y) and let sk = (p, q). Enc(pk, b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^2 \mod N$ if b = 0 and $r^2y \mod N$ if b = 1.

 $Gen(1^n)$: Generate random *n*-bit primes *p* and *q* and let N = pq. Let $y \in QNR_N$ be some quadratic non-residue with Jacobi symbol +1.

Let pk = (N, y) and let sk = (p, q). Enc(pk, b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^2 \mod N$ if b = 0 and $r^2y \mod N$ if b = 1.

Dec(sk, c): Check if $c \in Z_N^*$ is a quadratic residue using p and q. If yes, output 0 else 1.

Enc(pk, b) where *b* is a bit: Generate random $r \in Z_N^*$ and output $r^2 \mod N$ if

b = 0 and $r^2 y \mod N$ if b = 1.

IND-security follows directly from the quadratic residuosity assumption.

Given a GM-ciphertext of b and a GM-ciphertext of b', I can compute a GM-ciphertext of b + b'mod 2.

Given a GM-ciphertext of b and a GM-ciphertext of b', I can compute a GM-ciphertext of b + b'mod 2. without knowing anything about b or b'!

Given a GM-ciphertext of b and a GM-ciphertext of b', I can compute a GM-ciphertext of b + b'mod 2. without knowing anything about b or b'!

Enc(pk, b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^2y^b \mod N$.

Given a GM-ciphertext of b and a GM-ciphertext of b', I can compute a GM-ciphertext of b + b'mod 2. without knowing anything about b or b'!

Enc(pk, b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^2y^b \mod N$.

Claim: $Enc(pk, b) \bullet Enc(pk, b')$ is an encryption of $b \bigoplus b' = b + b' \mod 2$.