MIT 6.875

Foundations of Cryptography Lecture 9

Lectures 7-10

Constructions of Public-key Encryption
D Diffie-Hellman/El Gamal

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security \&e Lattice-based Encryption

One-way Functions

Trapdoor One-way Functions

Trapdoor One-way Permutations

Trapdoor Functions: The Definition

Trapdoor Functions: The Definition

A function (family) $\mathscr{F}=\left\{\mathscr{F}_{n}\right\}_{n \in \mathbb{N}}$ where each \mathscr{F}_{n} is itself a collection of functions
$\mathscr{F}_{n}=\left\{F_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}\right\}_{i \in I_{n}}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor: There is a PPT algorithm $\operatorname{Gen}\left(1^{n}\right)$ that outputs a function index $i \in I_{n}$ together with a trapdoor t_{i}.

Trapdoor Functions: The Definition

A function (family) $\mathscr{F}=\left\{\mathscr{F}_{n}\right\}_{n \in \mathbb{N}}$ where each \mathscr{F}_{n} is itself a collection of functions
$\mathscr{F}_{n}=\left\{F_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}\right\}_{i \in I_{n}}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_{i}(x)$ given i and x.

Trapdoor Functions: The Definition

A function (family) $\mathscr{F}=\left\{\mathscr{F}_{n}\right\}_{n \in \mathbb{N}}$ where each \mathscr{F}_{n} is itself a collection of functions
$\mathscr{F}_{n}=\left\{F_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}\right\}_{i \in I_{n}}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_{i}(x)$ given i and x.
- Easy to compute an inverse of $F_{i}(x)$ given t_{i}.

Trapdoor Functions: The Definition

A function (family) $\mathscr{F}=\left\{\mathscr{F}_{n}\right\}_{n \in \mathbb{N}}$ where each \mathscr{F}_{n} is itself a collection of functions
$\mathscr{F}_{n}=\left\{F_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}\right\}_{i \in I_{n}}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_{i}(x)$ given i and x.
- Easy to compute an inverse of $F_{i}(x)$ given t_{i}.
- It is one-way: that is, for every p.p.t. A, there is a negligible function ${ }^{\text {n }} \mu$; ; x.t. $\leftarrow\{0,1\}^{n} ; y=F_{i}(x)$;

$$
\left\lfloor A\left(1^{n}, i, y\right)=x^{\prime}: y=F_{i}\left(x^{\prime}\right)\right.
$$

From Trapdoor Permutations to IND-Secure Public-key Encryption

- Gen $\left(1^{n}\right)$: Sample function index i with a trapdoor t_{i}. The public key is i and the private key is t_{i}.
- $\operatorname{Enc}(p k=i, m):$ Output $c=F_{i}(m)$ as the ciphertext.
- $\operatorname{Dec}\left(s k=t_{i}, c\right):$ Output $F_{i}^{-1}(c)$ computed using the private key t_{i}.

From Trapdoor Permutations to IND-Secure Public-key Encryption

- Gen $\left(1^{n}\right)$: Sample function index i with a trapdoor t_{i}. The public key is i and the private key is t_{i}.
- $\operatorname{Enc}(p k=i, m):$ Output $c=F_{i}(m)$ as the ciphertext.
- $\operatorname{Dec}\left(s k=t_{i}, c\right):$ Output $F_{i}^{-1}(c)$ computed using the private key t_{i}.

Could reveal partial info about m ! So, not IND-secure!

From Trapdoor Permutations to IND-Secure Public-key Encryption

- Gen $\left(1^{n}\right)$: Sample function index i with a trapdoor t_{i}. The public key is i and the private key is t_{i}.
- $\operatorname{Enc}(p k=i, m)$ where m is a bit: Pick a random r. Output $c=\left(\boldsymbol{F}_{i}(\boldsymbol{r}), \boldsymbol{H C B}(\boldsymbol{r}) \bigoplus m\right)$.
- $\operatorname{Dec}\left(s k=t_{i}, c\right):$ Recover r using the private key t_{i}, and using it m.

From Trapdoor Permutations to IND-Secure Public-key Encryption

- Gen $\left(1^{n}\right)$: Sample function index i with a trapdoor t_{i}. The public key is i and the private key is t_{i}.
- $\operatorname{Enc}(p k=i, m)$ where m is a bit: Pick a random r. Output $c=\left(\boldsymbol{F}_{i}(\boldsymbol{r}), \boldsymbol{H C B}(\boldsymbol{r}) \bigoplus m\right)$.
- $\operatorname{Dec}\left(s k=t_{i}, c\right):$ Recover r using the private key t_{i}, and usinn ind - CPA secure:
Proof by Hybrid argument (exercise).

Trapdoor Permutations: Candidates

Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):

- The RSA (Rivest-Shamir-Adleman) Function
- The Rabin/Blum-Williams Function

Trapdoor Permutations: Candidates

Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):

- The RSA (Rivest-Shamir-Adleman) Function
- The Rabin/Blum-Williams Function

Review: Number Theory

Let's review some number theory from L8.
Let $N=p q$ be a product of two large primes.
Fact: $\underline{Z}_{N}^{*}=\left\{a \in Z_{N}: \operatorname{gcd}(\mathrm{a}, \mathrm{N})=1\right\}$ is a group.

- group operation is multiplication $\bmod N$.
- inverses exist and are easy to compute.
- the order of the group is $\phi(N)=(p-1)(q-1)$

The RSA Trapdoor Permutation

Today: Let \underline{e} be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the map $F_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.
 compute \underline{x} given $\underline{x^{e}}$.

The RSA Trapdoor Permutation

Today: Let \underline{e} be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the $\operatorname{map} F_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.
 compute \underline{x} given $\underline{x^{e}}$.

Proof: $\left(x^{e}\right)^{d}=$

The RSA Trapdoor Permutation

Today: Let \underline{e} be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the map $F_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.
 compute \underline{x} given $\underline{x^{e}}$.

Proof: $\left(x^{e}\right)^{d}=x^{k \phi(N)+1}=$
(for some integer k)

The RSA Trapdoor Permutation

Today: Let \underline{e} be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the map $F_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.
 compute \underline{x} given \underline{x}.
Proof: $\left(x^{e}\right)^{d}=x^{k \phi(N)+1}=\left(x^{\phi(N)}\right)^{k} \cdot x=x$
(for some integer k)

The RSA Trapdoor Permutation

Today: Let \underline{e} be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the map $F_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.
 compute \underline{x} given \underline{x}.

Proof: $\left(x^{e}\right)^{d}=x^{k \phi(N)+1}=\left(x^{\phi(N)}\right)^{k} \cdot x=x \bmod N$ (for some integer k)

The RSA Trapdoor Permutation

Today: Let \underline{e} be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the $\operatorname{map} \underline{F}_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.
 compute \underline{x} given $\underline{x^{e}}$.

Proof: $\left(x^{e}\right)^{d}=x^{k \phi(N)+1}=\left(x^{\phi(N)}\right)^{k} \cdot x=x \bmod N$ (for some integer k)

This gives us the RSA trapdoor permutation collection.

$$
\left\{F_{N, e}: \operatorname{gcd}(e, N)=1\right\}
$$

Trapdoor for inversion: $d=e^{-1} \bmod \phi(N)$.

The RSA Trapdoor Permutation

Today: Let \underline{e} be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the $\operatorname{map} F_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption
given N, e (as above) and $x^{e} \bmod \mathrm{~N}$, hard to compute x.

The RSA Trapdoor Permutation

Today: Let \underline{e} be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the $\operatorname{map} \underline{F}_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption
given N, e (as above) and $x^{e} \bmod \mathrm{~N}$, hard to compute x.

We know that if factoring is easy, RSA is broken (and that's the only known way to break RSA)

The RSA Trapdoor Permutation

Today: Let \underline{e} be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the $\operatorname{map} \underline{F}_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption
given N, e (as above) and $x^{e} \bmod \mathrm{~N}$, hard to compute x.

We know that if factoring is easy, RSA is broken (and that's the only known way to break RSA)

Major Open Problem: Are factoring and RSA equivalent?

The RSA Trapdoor Permutation

Today: Let \underline{e} be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the $\operatorname{map} \underline{F}_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.

Hardcore bits (galore) for the RSA trapdoor one-way perm:

- The Goldreich-Levin bit $\mathrm{GL}\left(r ; r^{\prime}\right)=\left\langle r, r^{\prime}\right\rangle \bmod 2$
- The least significant bit $\operatorname{LSB}(r)$
- The "most significant bit" $H A L F_{N}(r)=1$ iff $r<N / 2$
- In fact, any single bit of r is hardcore.

RSA Encryption

- Gen $\left(1^{n}\right)$: Let $N=p q$ and (e, d) be such that $e d=1 \bmod \phi(N)$.

Let $p k=(N, e)$ and let $s k=d$.

RSA Encryption

- Gen $\left(1^{n}\right)$: Let $N=p q$ and (e, d) be such that $e d=1 \bmod \phi(N)$.

Let $p k=(N, e)$ and let $s k=d$.

- $\operatorname{Enc}(p k, b)$ where b is a bit: Generate random $r \in Z_{N}^{*}$ and output $r^{e} \bmod N$ and $\operatorname{LSB}(r) \bigoplus m$.

RSA Encryption

- $\operatorname{Gen}\left(1^{n}\right):$ Let $N=p q$ and (e, d) be such that $e d=1 \bmod \phi(N)$.

Let $p k=(N, e)$ and let $s k=d$.

- $\operatorname{Enc}(p k, b)$ where b is a bit: Generate random $r \in Z_{N}^{*}$ and output $r^{e} \bmod N$ and $\operatorname{LSB}(r) \bigoplus m$.
- $\operatorname{Dec}(s k, c)$: Recover r via RSA inversion.

RSA Encryption

- $\operatorname{Gen}\left(1^{n}\right)$: Let $N=p q$ and (e, d) be such that $e d=1 \bmod \phi(N)$.

Let $p k=(N, e)$ and let $s k=d$.

- $\operatorname{Enc}(p k, b)$ where b is a bit: Generate random $r \in Z_{N}^{*}$ and output $r^{e} \bmod N$ and $\operatorname{LSB}(r) \bigoplus m$.
- $\operatorname{Dec}(s k, c)$: Recover r via RSA inversion.

IND-secure under the RSA assumption: given $\underline{N, e}$ (as above) and $\underline{r^{e}} \bmod \mathrm{~N}$, hard to compute \underline{r}.

Lectures 8-10

Constructions of Public-key Encryption
\checkmark Diffie-Hellman/El Gamal
\checkmark Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security \& Lattice-based Encryption

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z_{P}^{*} are squares.
Define the Legendre Symbol $\binom{-x}{P}=1$ if x is a square,
-1 if x is not a square, and 0 if $x=0 \bmod P$.

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z_{P}^{*} are squares.
Define the Legendre Symbol $\binom{-x}{P}=1$ if x is a square,
-1 if x is not a square, and 0 if $\mathrm{x}=0 \bmod \mathrm{P}$.

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z_{P}^{*} are squares.
It is easy to compute square roots mod P. We will show it for the case where $P=3(\bmod 4)$.

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z_{P}^{*} are squares.
It is easy to compute square roots mod P. We will show it for the case where $P=3(\bmod 4)$.

Claim: The square roots of $x \bmod \mathrm{P}$ are $\pm x^{(P+1) / 4}$

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z_{P}^{*} are squares.
It is easy to compute square roots mod P. We will show it for the case where $P=3(\bmod 4)$.

Claim: The square roots of $x \bmod \mathrm{P}$ are $\pm x^{(P+1) / 4}$
Proof: $\left(\pm x^{(P+1) / 4}\right)^{2}=x^{(P+1) / 2}=x \bullet x^{(P-1) / 2}=x \bmod P$

Quadratic Residues mod \mathbf{N}

Now, let $\mathrm{N}=\mathrm{PQ}$ be a product of two primes and look at Z_{N}^{*}
x is square $\bmod N$ iff x is square $\bmod P$ and it is a square $\bmod Q$.

Quadratic Residues mod N

Define the Jacobi symbol $\binom{x}{N}=\binom{x}{P}\binom{x}{Q}$ to be +1 if
x is a square mod both P and Q or a non-square mod both P and Q.

Quadratic Residues mod \mathbf{N}

Surprising fact: Jacobi symbol $\binom{x}{N}=\binom{x}{P}\binom{x}{Q}$ is computable in poly time without knowing P and Q.

Quadratic Residues mod N

x is square $\bmod N$ iff x is square $\bmod P$ and it is a square $\bmod Q$.

$Q R_{N}$ is the set of squares mod N and $Q N R_{N}$ is the set of non-squares mod N with Jacobi symbol +1 .

Quadratic Residues mod N

x is square $\bmod N$ iff x is square $\bmod P$ and it is a square $\bmod Q$.

$Q R_{N}$ is the set of squares $\bmod N$ and $Q N R_{N}$ is the set of non-squares mod N with Jacobi symbol +1 .

Recognizing Squares mod \mathbf{N} ... seems hard

Let $N=P Q$ be a product of two large primes.
Quadratic Residuosity Assumption (QRA)
Let $N=P Q$ be a product of two large primes.
No PPT algorithm can distinguish between a random element of $Q R_{N}$ from a random element of $Q N R_{N}$ given onl ${ }^{-\pi}$

Finding Square Roots Mod N
 ... is as hard as factoring N

\Leftarrow Suppose you know P and Q and you want to find the square root of $x \bmod N$.

Find the square roots of $y \bmod P$ and $\bmod \mathrm{Q}$.

$$
x=y_{P}^{2} \bmod P \quad x=y_{Q}^{2} \bmod Q
$$

Use the Chinese remainder theorem. Let $\mathrm{y}=c_{P} y_{P}+c_{Q} y_{Q}$ where the CRT coefficients $c_{P}=1 \bmod P$ and $c_{P}=0 \bmod Q$

$$
c_{Q}=0 \bmod P \text { and } c_{Q}=1 \bmod Q
$$

Then y is a square root of $x \bmod N$.

Finding Square Roots Mod N
 ... is as hard as factoring N

Suppose you know P and Q and you want to find the square root of $x \bmod N$.

Find the square roots of $y \bmod P$ and $\bmod \mathrm{Q}$.

$$
x=y_{P}^{2} \bmod P \quad x=y_{Q}^{2} \bmod Q
$$

Let $\mathrm{y}=c_{P} y_{P}+c_{Q} y_{Q}$ where the CRT coefficients
$c_{P}=1 \bmod P$ and $0 \bmod Q$

$$
c_{Q}=0 \bmod P \text { and } 1 \bmod Q
$$

So, if \mathbf{x} is a square, it has 4 distinct square roots $\bmod \mathbf{N}$.

Finding Square Roots Mod N
 ... is as hard as factoring N

\Rightarrow Suppose you have a box that computes square roots $\bmod \mathrm{N}$. Can we use it to factor N ?

Feed the box $x=z^{2} \bmod N$ for a random z.
Claim (Pf on the board): with probability 1/2, $\operatorname{gcd}(\mathrm{z}+\mathrm{y}, \mathrm{N})$ is a non-trivial factor of N .

Goldwasser-Micali (GM) Encryption

Gen $\left(1^{n}\right)$: Generate random n-bit primes p and q and let $N=p q$. Let $y \in Q N R_{N}$ be some quadratic nonresidue with Jacobi symbol +1 .

Let $p k=(N, y)$ and let $s k=(p, q)$.

Goldwasser-Micali (GM) Encryption

Gen $\left(1^{n}\right)$: Generate random n-bit primes p and q and let $N=p q$. Let $y \in Q N R_{N}$ be some quadratic nonresidue with Jacobi symbol +1 .

Let $p k=(N, y)$ and let $s k=(p, q)$.
$\operatorname{Enc}(p k, b)$ where b is a bit:
Generate random $r \in Z_{N}^{*}$ and output $r^{2} \bmod N$ if $b=0$ and $r^{2} y \bmod N$ if $b=1$.

Goldwasser-Micali (GM) Encryption

Gen $\left(1^{n}\right)$: Generate random n-bit primes p and q and let $N=p q$. Let $y \in Q N R_{N}$ be some quadratic nonresidue with Jacobi symbol +1 .

Let $p k=(N, y)$ and let $s k=(p, q)$.
$\operatorname{Enc}(p k, b)$ where b is a bit:
Generate random $r \in Z_{N}^{*}$ and output $r^{2} \bmod N$ if $b=0$ and $r^{2} y \bmod N$ if $b=1$.
$\operatorname{Dec}(s k, c)$: Check if c $\in Z_{N}^{*}$ is a quadratic residue using p and q. If yes, output 0 else 1.

Goldwasser-Micali (GM) Encryption

$\operatorname{Enc}(p k, b)$ where b is a bit:
Generate random $r \in Z_{N}^{*}$ and output $r^{2} \bmod N$ if $b=0$ and $r^{2} y \bmod N$ if $b=1$.

IND-security follows directly from the quadratic residuosity assumption.

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of b^{\prime}, I can compute a GM-ciphertext of $b+b^{\prime} \bmod 2$.

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of b^{\prime}, I can compute a GM-ciphertext of $b+b^{\prime} \bmod 2$. without knowing anything about \boldsymbol{b} or \boldsymbol{b}^{\prime} !

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of b^{\prime}, I can compute a GM-ciphertext of $b+b^{\prime} \bmod 2$. without knowing anything about \boldsymbol{b} or \boldsymbol{b}^{\prime} !
$\operatorname{Enc}(p k, b)$ where b is a bit:
Generate random $r \in Z_{N}^{*}$ and output $r^{2} y^{b} \bmod N$.

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of b^{\prime}, I can compute a GM-ciphertext of $b+b^{\prime} \bmod 2$. without knowing anything about \boldsymbol{b} or \boldsymbol{b}^{\prime} !
$\operatorname{Enc}(p k, b)$ where b is a bit:
Generate random $r \in Z_{N}^{*}$ and output $r^{2} y^{b} \bmod N$.
Claim: $\operatorname{Enc}(p k, b) \cdot \operatorname{Enc}\left(p k, b^{\prime}\right)$ is an encryption of $b \bigoplus b^{\prime}=b+b^{\prime} \bmod 2$.

