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Lecture 9
Foundations of Cryptography



Lectures 7-10

Constructions of Public-key Encryption

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

✅ Diffie-Hellman/El Gamal

4: Post-Quantum Security & Lattice-based Encryption
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Trapdoor Functions: The Definition
A function (family  where each  is itself 
a collection of functions 

 is a trapdoor one-way 
function family if:  

• Easy to sample function index with a trapdoor: There is 
a PPT algorithm  that outputs a function index 

 together with a trapdoor . 

) ℱ =  {ℱ𝑛}𝑛∈ℕ
𝓕𝒏

ℱ𝑛 = {𝐹𝑖:{0,1}𝑛 → {0,1}𝑚(𝑛)}𝑖∈𝐼𝑛

𝐺𝑒𝑛(1𝑛)
𝑖 ∈ 𝐼𝑛 𝑡𝑖
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Trapdoor Functions: The Definition
A function (family  where each  is itself 
a collection of functions 

 is a trapdoor one-way 
function family if:  

• Easy to sample function index with a trapdoor. 
• Easy to compute  given  and . 
• Easy to compute an inverse of  given  

• It is one-way: that is, for every p.p.t. , there is a 
negligible function  s.t. 

) ℱ =  {ℱ𝑛}𝑛∈ℕ
𝓕𝒏

ℱ𝑛 = {𝐹𝑖:{0,1}𝑛 → {0,1}𝑚(𝑛)}𝑖∈𝐼𝑛

𝐹𝑖(𝑥) 𝑖 𝑥
𝐹𝑖(𝑥) 𝑡𝑖 .

𝐴
𝜇Pr[

(𝒊, 𝒕) ← 𝑮𝒆𝒏(𝟏𝒏);  𝑥 ← {0,1}𝑛; 𝑦 = 𝐹𝑖(𝑥);

𝐴(1𝑛, 𝑖, 𝑦) = 𝑥′ :𝑦 = 𝐹𝑖(𝑥′ ) ] ≤ 𝜇(𝑛)



From Trapdoor Permutations to  
IND-Secure Public-key Encryption

•  Sample function index  with a trapdoor . 
The public key is  and the private key is . 

   
•  Output  as the ciphertext.  

•  Output  computed using the 
private key .

𝐺𝑒𝑛(1𝑛): 𝑖 𝑡𝑖
𝑖  𝑡𝑖

𝐸𝑛𝑐(𝑝𝑘 = 𝑖, 𝑚): 𝑐 = 𝐹𝑖(𝑚)

𝐷𝑒𝑐(𝑠𝑘 = 𝑡𝑖, 𝑐): 𝐹−1
𝑖 (𝑐)

𝑡𝑖
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Could reveal partial info about m!
So, not IND-secure!



From Trapdoor Permutations to  
IND-Secure Public-key Encryption

•  Sample function index  with a trapdoor . 
The public key is  and the private key is . 

   
•  where  is a bit: Pick a random 

Output .  

•  Recover  using the private key , 
and using it .

𝐺𝑒𝑛(1𝑛): 𝑖 𝑡𝑖
𝑖  𝑡𝑖
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From Trapdoor Permutations to  
IND-Secure Public-key Encryption

•  Sample function index  with a trapdoor . 
The public key is  and the private key is . 

   
•  where  is a bit: Pick a random 

Output .  

•  Recover  using the private key , 
and using it .

𝐺𝑒𝑛(1𝑛): 𝑖 𝑡𝑖
𝑖  𝑡𝑖

𝐸𝑛𝑐(𝑝𝑘 = 𝑖, 𝑚) 𝑚 𝒓 .  
𝒄 = (𝑭𝒊(𝒓), 𝑯𝑪𝑩(𝒓)⨁𝒎)

𝐷𝑒𝑐(𝑠𝑘 = 𝑡𝑖, 𝑐): 𝑟 𝑡𝑖
𝑚This is IND-CPA secure:  

Proof by Hybrid argument (exercise). 



Trapdoor Permutations: Candidates

Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):

• The RSA (Rivest-Shamir-Adleman) Function

• The Rabin/Blum-Williams Function
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Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):

• The Rabin/Blum-Williams Function
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Review: Number Theory

Let’s review some number theory from L8.

Let  be a product of two large primes.𝑁 = 𝑝𝑞

Fact:  is a group.𝑍∗
𝑁 = {𝑎  ∈ 𝑍𝑁:gcd(a, N) = 1}

• group operation is multiplication mod .𝑁
• inverses exist and are easy to compute.

• the order of the group is ϕ(𝑁) = (𝑝 − 1)(𝑞 − 1)



The RSA Trapdoor Permutation

Today: Let  be an integer with  Then, 
the map  is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

Key Fact: Given  such that , it is easy to 
compute  given . 

𝑑 𝑒𝑑 = 1 mod ϕ(𝑁)
𝑥 𝑥𝑒

(for some integer k)
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The RSA Trapdoor Permutation

Today: Let  be an integer with  Then, 
the map  is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

{𝐹𝑁,𝑒:gcd(𝑒, 𝑁) = 1}

Key Fact: Given  such that , it is easy to 
compute  given . 

𝑑 𝑒𝑑 = 1 mod ϕ(𝑁)
𝑥 𝑥𝑒

Proof:   (𝑥𝑒)𝑑 = 𝑥𝑘ϕ(𝑁)+1 = (𝑥ϕ(𝑁))𝑘 ∙ 𝑥 = 𝑥 mod 𝑁
(for some integer k)

This gives us the RSA trapdoor permutation collection.

Trapdoor for inversion: .𝑑 = 𝑒−1mod ϕ(𝑁)
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Hardness of inversion without trapdoor = RSA assumption 

given  (as above) and mod N, hard to compute 𝑁, 𝑒 𝑥𝑒 
𝑥 .



The RSA Trapdoor Permutation

Today: Let  be an integer with  Then, 
the map  is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
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The RSA Trapdoor Permutation

Today: Let  be an integer with  Then, 
the map  is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

Hardness of inversion without trapdoor = RSA assumption 

We know that if factoring is easy, RSA is broken (and 
that’s the only known way to break RSA)

Major Open Problem:  Are factoring and RSA equivalent?

given  (as above) and mod N, hard to compute 𝑁, 𝑒 𝑥𝑒 
𝑥 .



The RSA Trapdoor Permutation

Today: Let  be an integer with  Then, 
the map  is a trapdoor permutation.

𝑒 gcd(𝑒, ϕ(𝑁)) = 1.
𝐹𝑁,𝑒(𝑥) = 𝑥𝑒 mod 𝑁

Hardcore bits (galore) for the RSA trapdoor one-way perm: 

• The Goldreich-Levin bit  GL(𝑟; 𝑟′ ) =  ⟨𝑟, 𝑟′ ⟩ mod 2

• The least significant bit LSB(𝑟)

• The “most significant bit”   iff  𝐻𝐴𝐿𝐹𝑁(𝑟) = 1 𝑟 < 𝑁/2

• In fact, any single bit of  is hardcore. 𝑟
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RSA Encryption
• Let  and  be such that 

.  
 
Let  and let .

𝐺𝑒𝑛(1𝑛):   𝑁 = 𝑝𝑞 (𝑒, 𝑑)
𝑒𝑑 = 1 𝑚𝑜𝑑 𝜙(𝑁)

𝑝𝑘 = (𝑁, 𝑒) 𝑠𝑘 = 𝑑

•  where  is a bit: Generate random 
and output  and .

𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏
𝑟 ∈ 𝑍∗

𝑁  𝑟𝑒 mod 𝑁 LSB(𝑟)⨁𝑚

• : Recover  via RSA inversion.𝐷𝑒𝑐(𝑠𝑘, 𝑐) 𝑟

IND-secure under the RSA assumption: given  (as 
above) and mod N, hard to compute 

𝑁, 𝑒
𝑟𝑒  𝑟 .
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Quadratic Residues mod P

Let P be prime. We saw that exactly half of  are 
squares.

𝑍∗
𝑃

Define the Legendre Symbol  if x is a square, 

-1 if x is not a square, and 0 if x = 0 mod P.  
(𝑥

𝑃) = 1
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-1 if x is not a square, and 0 if x = 0 mod P.  
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𝑃) = 1

𝐿𝑒𝑔−1 𝐿𝑒𝑔+1𝑍∗
𝑃

{𝑥:(𝑥
𝑃) = − 1} {𝑥:(𝑥

𝑃) = + 1}

So: (𝑥
𝑃) = 𝑥(𝑃−1)/2
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it for the case where P = 3 (mod 4).
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Quadratic Residues mod P

Let P be prime. We saw that exactly half of  are 
squares.

𝑍∗
𝑃

It is easy to compute square roots mod P. We will show 
it for the case where P = 3 (mod 4).

Claim: The square roots of  mod P are  𝑥 ± 𝑥(𝑃+1)/4

Proof:  (± 𝑥(𝑃+1)/4)2 = 𝑥(𝑃+1)/2 = 𝑥 ∙ 𝑥(𝑃−1)/2 = 𝑥 mod 𝑃



Quadratic Residues mod N

 is square mod  iff  is square mod  and it is a 
square mod . 
𝑥 𝑁 𝑥 𝑃

𝑄

Now, let N = PQ be a product of two primes and look at 𝑍∗
𝑁



Quadratic Residues mod N

𝐽𝑎𝑐−1 𝐽𝑎𝑐+1

𝑍∗
𝑁

{𝑥:( 𝑥
𝑁) = − 1} {𝑥:( 𝑥

𝑁) = + 1}

Define the Jacobi symbol  =   to be +1 if 

 is a square mod both  and  or a non-square mod 
both  and . 

( 𝒙
𝑵) (𝒙

𝑷) ( 𝒙
𝑸)

𝑥 𝑃 𝑄
𝑃 𝑄



Quadratic Residues mod N

𝐽𝑎𝑐−1 𝐽𝑎𝑐+1

𝑍∗
𝑁

{𝑥:( 𝑥
𝑁) = − 1} {𝑥:( 𝑥

𝑁) = + 1}

Surprising fact: Jacobi symbol  =   is 

computable in poly time without knowing  and .  
( 𝑥

𝑁) (𝑥
𝑃) ( 𝑥

𝑄)
𝑃 𝑄



Quadratic Residues mod N

 is square mod  iff  is square mod  and it is a 
square mod . 
𝑥 𝑁 𝑥 𝑃

𝑄

𝐽𝑎𝑐+1

 is the set of squares mod  and  is the 
set of non-squares mod  with Jacobi symbol +1.
𝑄𝑅𝑁 𝑁 𝑄𝑁𝑅𝑁

𝑁

𝑄𝑅𝑁

𝑄𝑁𝑅𝑁



Quadratic Residues mod N

 is square mod  iff  is square mod  and it is a 
square mod . 
𝑥 𝑁 𝑥 𝑃

𝑄

𝐽𝑎𝑐+1

 is the set of squares mod  and  is the 
set of non-squares mod  with Jacobi symbol +1.
𝑄𝑅𝑁 𝑁 𝑄𝑁𝑅𝑁

𝑁

𝑄𝑅𝑁

𝑄𝑁𝑅𝑁

So: 𝑄𝑅𝑁 =  {𝑥:(𝑥
𝑃) = ( 𝑥

𝑄) = + 1}

 𝑄𝑁𝑅𝑁 =  {𝑥:(𝑥
𝑃) = ( 𝑥

𝑄) = − 1}



Recognizing Squares mod N

Let  be a product of two large primes.𝑁 = 𝑃𝑄
Quadratic Residuosity Assumption (QRA)

Let  be a product of two large primes.  
No PPT algorithm can distinguish between a random 
element of  from a random element of  
given only .

𝑁 = 𝑃𝑄

𝑄𝑅𝑁 𝑄𝑁𝑅𝑁
𝑁

… seems hard

𝐽𝑎𝑐+1

𝑄𝑅𝑁

𝑄𝑁𝑅𝑁



Finding Square Roots Mod N
… is as hard as factoring N

 Suppose you know P and Q and you want to find 
the square root of x mod N.
⇐

Find the square roots of y mod P and mod Q.

𝑥 = 𝑦2
𝑃 mod 𝑃 𝑥 = 𝑦2

𝑄 mod 𝑄

Use the Chinese remainder theorem. Let 
 where the CRT coefficients 

      

 y = 𝑐𝑃𝑦𝑃 + 𝑐𝑄𝑦𝑄

𝑐𝑃 = 1 𝑚𝑜𝑑 𝑃 𝑎𝑛𝑑 𝑐𝑃 = 0 𝑚𝑜𝑑 𝑄
𝑐𝑄 = 0 𝑚𝑜𝑑 𝑃 𝑎𝑛𝑑 𝑐𝑄 = 1 𝑚𝑜𝑑 𝑄

Then  is a square root of x mod N. y



Finding Square Roots Mod N
… is as hard as factoring N

Suppose you know P and Q and you want to find the 
square root of x mod N.

Find the square roots of y mod P and mod Q.

𝑥 = 𝑦2
𝑃 mod 𝑃 𝑥 = 𝑦2

𝑄 mod 𝑄

Let  where the CRT coefficients 

           

 y = 𝑐𝑃𝑦𝑃 + 𝑐𝑄𝑦𝑄

𝑐𝑃 = 1 𝑚𝑜𝑑 𝑃 𝑎𝑛𝑑 0 𝑚𝑜𝑑 𝑄
𝑐𝑄 = 0 𝑚𝑜𝑑 𝑃 𝑎𝑛𝑑 1 𝑚𝑜𝑑 𝑄

So, if x is a square, it has 4 distinct square roots mod N.



Finding Square Roots Mod N
… is as hard as factoring N

Suppose you have a box that computes square 
roots mod N. Can we use it to factor N?
⇒  

𝑥  s.t. 𝑦 𝑦2 = 𝑥 𝑚𝑜𝑑 𝑁

Feed the box  for a random z.𝑥 = 𝑧2 𝑚𝑜𝑑 𝑁

Claim (Pf on the board): with probability 1/2, 
 is a non-trivial factor of N.gcd(z + y, N)



Goldwasser-Micali (GM) Encryption

Generate random -bit primes  and  and 
let . Let  be some quadratic non-
residue with Jacobi symbol +1.   
 
Let  and let .

𝐺𝑒𝑛(1𝑛):   𝑛 𝑝 𝑞
𝑁 = 𝑝𝑞 𝑦 ∈ 𝑄𝑁𝑅𝑁

𝑝𝑘 = (𝑁, 𝑦) 𝑠𝑘 = (𝑝, 𝑞)



Goldwasser-Micali (GM) Encryption

Generate random -bit primes  and  and 
let . Let  be some quadratic non-
residue with Jacobi symbol +1.   
 
Let  and let .

𝐺𝑒𝑛(1𝑛):   𝑛 𝑝 𝑞
𝑁 = 𝑝𝑞 𝑦 ∈ 𝑄𝑁𝑅𝑁

𝑝𝑘 = (𝑁, 𝑦) 𝑠𝑘 = (𝑝, 𝑞)

 where  is a bit:  
Generate random and output  if 

 and  if .

𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏
𝑟 ∈ 𝑍∗

𝑁  𝑟2 mod 𝑁
𝑏 = 0 𝑟2𝑦 mod 𝑁 𝑏 = 1



Goldwasser-Micali (GM) Encryption

Generate random -bit primes  and  and 
let . Let  be some quadratic non-
residue with Jacobi symbol +1.   
 
Let  and let .

𝐺𝑒𝑛(1𝑛):   𝑛 𝑝 𝑞
𝑁 = 𝑝𝑞 𝑦 ∈ 𝑄𝑁𝑅𝑁

𝑝𝑘 = (𝑁, 𝑦) 𝑠𝑘 = (𝑝, 𝑞)

 where  is a bit:  
Generate random and output  if 

 and  if .

𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏
𝑟 ∈ 𝑍∗

𝑁  𝑟2 mod 𝑁
𝑏 = 0 𝑟2𝑦 mod 𝑁 𝑏 = 1

: Check if is a quadratic residue 
using  and . If yes, output 0 else 1. 
𝐷𝑒𝑐(𝑠𝑘, 𝑐) c ∈ 𝑍∗

𝑁 
𝑝 𝑞



Goldwasser-Micali (GM) Encryption

 where  is a bit:  
Generate random and output  if 

 and  if .

𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏
𝑟 ∈ 𝑍∗

𝑁  𝑟2 mod 𝑁
𝑏 = 0 𝑟2𝑦 mod 𝑁 𝑏 = 1

IND-security follows directly from the quadratic 
residuosity assumption.



GM is a Homomorphic Encryption 

Given a GM-ciphertext of  and a GM-ciphertext of , 
I can compute a GM-ciphertext of   

𝑏 𝑏′ 

𝑏 + 𝑏′ 𝑚𝑜𝑑 2.
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𝑏 + 𝑏′ 𝑚𝑜𝑑 2.
without knowing anything about  or !𝒃 𝒃′ 



GM is a Homomorphic Encryption 

 where  is a bit:  
Generate random and output 
𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏

𝑟 ∈ 𝑍∗
𝑁  𝑟2𝑦𝑏 mod 𝑁 .

Given a GM-ciphertext of  and a GM-ciphertext of , 
I can compute a GM-ciphertext of   

𝑏 𝑏′ 

𝑏 + 𝑏′ 𝑚𝑜𝑑 2.
without knowing anything about  or !𝒃 𝒃′ 



GM is a Homomorphic Encryption 

 where  is a bit:  
Generate random and output 
𝐸𝑛𝑐(𝑝𝑘, 𝑏) 𝑏

𝑟 ∈ 𝑍∗
𝑁  𝑟2𝑦𝑏 mod 𝑁 .

Given a GM-ciphertext of  and a GM-ciphertext of , 
I can compute a GM-ciphertext of   

𝑏 𝑏′ 

𝑏 + 𝑏′ 𝑚𝑜𝑑 2.
without knowing anything about  or !𝒃 𝒃′ 

Claim:  is an encryption of 
. 

𝐸𝑛𝑐(𝑝𝑘, 𝑏) ∙ 𝐸𝑛𝑐(𝑝𝑘, 𝑏′ )
𝑏⨁𝑏′ =  𝑏 + 𝑏′ 𝑚𝑜𝑑 2


