MIT 6.875

Foundations of Cryptography Lecture 8

Lectures 7-10

- <u>Key Agreement and Public-key Encryption</u>: Definition and Properties
- <u>Constructions</u>
 - 1: Diffie-Hellman/El Gamal
 - 2: Trapdoor Permutations (RSA)
 - 3: Quadratic Residuosity/Goldwasser-Micali
 - 4: Learning with Errors/Regev

The Multiplicative Group \mathbb{Z}_N^* = {1 $\leq x < N: gcd(x, N) = 1$ }

<u>**Theorem</u>: \mathbb{Z}_N^* is a group under multiplication mod N.** Inverses exist: since gcd(x, N) = 1, there exist integers a and b s.t.</u>

$$ax + bN = 1$$
 (Bezout's identity)

Thus, $ax = 1 \pmod{N}$ or $a = x^{-1} \pmod{N}$.

The Multiplicative Group \mathbb{Z}_N^* = {1 $\leq x < N: gcd(x, N) = 1$ }

<u>**Theorem**</u>: \mathbb{Z}_N^* is a group under multiplication mod N.

Order of \mathbb{Z}_N^* = Euler's totient function $\varphi(N)$.

$$\varphi(P) = P - 1 \text{ if } P \text{ prime.}$$

$$\varphi(N) = (P - 1)(Q - 1) \text{ if } N = PQ, P \neq Q \text{ primes.}$$

$$\varphi(N) = \prod P_i^{\alpha_i - 1}(P_i - 1) \text{ if } N = \prod P_i^{\alpha_i}.$$

Theorem [Lagrange, Euler]: For every $a \in \mathbb{Z}_N^*$, $a^{\varphi(N)} = 1 \mod N$.

Examples

 $\mathbb{Z}_{2}^{*} = \{\mathbf{1}\}$ $\mathbb{Z}_3^* = \{1, 2\}$ $\mathbb{Z}_4^* = \{1, 3\}$ $\mathbb{Z}_5^* = \{1, 2, 3, 4\}$ $\mathbb{Z}_{6}^{*} = \{1, 5\}$ $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6, 7\}$

The Multiplicative Group \mathbb{Z}_p^*

 \mathbb{Z}_p^* : ({1, ..., p - 1}, group operation: $\cdot \mod p$)

- Computing the group operation is easy.
- Computing inverses is easy: Extended Euclid.
- Exponentiation (given $g \in \mathbb{Z}_p^*$ and $x \in \mathbb{Z}_{p-1}$, find $g^x \mod p$) is easy: **Repeated Squaring Algorithm.**
- The discrete logarithm problem (given a generator g and $h \in \mathbb{Z}_p^*$, find $x \in \mathbb{Z}_{p-1}$ s.t. $h = g^x \mod p$) is hard, to the best of our knowledge!

The Discrete Log Assumption

The discrete logarithm problem is: given a generator g and $h \in \mathbb{Z}_p^*$, find $x \in \mathbb{Z}_{p-1}$ s.t. $h = g^x \mod p$.

Distributions...

- Is the discrete log problem hard for a random p?
 Could it be easy for some p?
- 2. Given p: is the problem hard for all generators g?
- 3. Given p and g: is the problem hard for all x?

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm *A* s.t. $\Pr[A(p, g, g^x \mod p) = x] > 1/\operatorname{poly}(\log p)$ for some *p*, random generator *g* of \mathbb{Z}_p^* , and random *x* in \mathbb{Z}_{p-1} , then there is a p.p.t. algorithm *B* s.t. $B(p, g, g^x \mod p) = x$ for all g and x.

Proof: On the board.

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm *A* s.t. $Pr[A(p, g, g^x \mod p) = x] > 1/poly(\log p)$ for some *p*, random generator *g* of \mathbb{Z}_p^* , and random *x* in \mathbb{Z}_{p-1} , then there is a p.p.t. algorithm *B* s.t. $B(p, g, g^x \mod p) = x$ for all g and x.

- Given p: is the problem hard for all generators g?
 ... as hard for any generator is it for a random one.
- Given p and g: is the problem hard for all x?... as hard for any x is it for a random one.

Algorithms for Discrete Log (for General Groups)

- Baby Step-Giant Step algorithm: time --- and space --- $O(\sqrt{p})$.
- Pohlig-Hellman algorithm: time O(√q) where q is the largest prime factor of the order of group (e.g. p − 1 in the case of Z^{*}_p). That is, there are dlog-easy primes.

The Discrete Log (DLOG) Assumption

<u>W.r.t. a random prime</u>: for every p.p.t. algorithm A, there is a negligible function μ s.t.

$$\Pr\begin{bmatrix}p \leftarrow PRIMES_n; g \leftarrow GEN(\mathbb{Z}_p^*);\\x \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x \mod p) = x\end{bmatrix} = \mu(n)$$

Sophie-Germain Primes and Safe Primes

- A prime q is called a Sophie-Germain prime if p
 = 2q + 1 is also prime. In this case, q is called a
 safe prime.
- Safe primes are maximally hard for the Pohlig-Hellman algorithm.
- It is unknown if there are infinitely many safe primes, let alone that they are sufficiently dense.
 Yet, heuristically, about C/n² of n-bit integers seem to be safe primes (for some constant C).

The Discrete Log (DLOG) Assumption

(the "safe prime" version)

<u>W.r.t. a random safe prime</u>: for every p.p.t. algorithm A, there is a negligible function μ s.t.

$$\Pr\begin{bmatrix}p \leftarrow SAFEPRIMES_n; g \leftarrow GEN(\mathbb{Z}_p^*);\\x \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x \mod p) = x\end{bmatrix} = \mu(n)$$

One-way Permutation (Family)

$$F(p, g, x) = (p, g, g^x \bmod p)$$

$$\mathcal{F}_n = \{F_{n,p,g}\}$$
 where $F_{n,p,g}(x) = (p, g, g^x \mod p)$

Theorem: Under the discrete log assumption, F is a one-way permutation (resp. \mathcal{F}_n is a one-way permutation family).

Computational Diffie-Hellman (CDH) Assumption

<u>W.r.t. a random prime</u>: for every p.p.t. algorithm A, there is a negligible function μ s.t.

$$\Pr\left[\begin{array}{c} p \leftarrow PRIMES_n; g \leftarrow GEN(\mathbb{Z}_p^*);\\ x, y \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x, g^y) = g^{xy} \end{array}\right] = \mu(n)$$

Diffie-Hellman Key Exchange

p,g: Generator of our group Z_p^*

Pick a random number $x \in Z_{p-1}$

Shared key K = $g^{xy} \mod p$ = $(g^y)^x \mod p$ Pick a random number $y \in Z_{p-1}$

Shared key K = $g^{xy} \mod p$ = $(g^x)^y \mod p$

Diffie-Hellman/El Gamal Encryption

• $Gen(1^n)$: Generate an *n*-bit prime *p* and a generator g of Z_p^* . Choose a random number $x \in Z_{p-1}$

Let $pk = (p, g, g^x)$ and let sk = x.

- Enc(pk,m) where $m \in Z_p^*$: Generate random $y \in Z_{p-1}$ and output $(g^y, g^{xy} \cdot m)$
- Dec(sk = x, c): Compute g^{xy} using g^y and x and divide the second component to retrieve m.

How to make this really work? Is this Secure?

How to come up with a prime p

(1) **Prime number theorem**: $\approx 1/n$ fraction of *n*-bit numbers are prime.

(2) **Primality tests** [Miller'76, Rabin'80, Agrawal-Kayal-Saxena'02] Can test in time poly(n) if a given n-bit number is prime.

OPEN: Deterministically come up with an n-bit prime?

EXCITING NEW RESULT (TOC Colloq. Oct 3):

Pseudo-deterministic poly-time algorithm!

How to come up with a generator g

(1) There are lots of generators: $\approx 1/\log n$ fraction of \mathbb{Z}_p^* are generators (where p is an n-bit prime).

(2) Testing if g is a generator:

<u>Theorem</u>: let $q_1, ..., q_k$ be the prime factors of p - 1. Then, g is a generator of \mathbb{Z}_p^* if and only if $g^{(p-1)/q_i} \neq 1 \pmod{p}$ for all i.

OPEN: Can you test if g is a generator without knowing the prime factorization of p-1?

OPEN: Deterministically come up with a generator?

To Summarize

- Pick a random safe prime p. Therefore, I know the factorization of p 1 = 2q automatically!
- Pick a random element of \mathbb{Z}_p^* and test if it is a generator (using theorem from last slide).
- Continue step 2 until you hit a generator.

Squares mod P

Let P be prime. $x \in Z_P^*$ is a squares mod P (also called a "quadratic residue") if there is a $y \in Z_P^*$ s.t. $x = y^2 \mod P$.

Theorem: Exactly half of Z_P^* are squares mod P.

Squares mod P: A Characterization

Claim: Fix any generator g. Then, $x \in \mathbb{Z}_P^*$ is a square iff $DLOG_g(x) \mod p - 1$ is even.

Proof (*if*) If $x = g^a \mod P$ and a is even, then $g^{a/2} \mod P$ is a square root of x.

Proof (*iff*) If $x = g^a = (g^b)^2 \mod P$, then $a = 2b \pmod{P-1}$. So, a is even.

Now, an Efficient Characterization...

Claim: $x \mod P$ is a square iff $x^{(P-1)/2} = 1 \mod P$

Proof (*iff*) If $x = y^2 \mod P$, $x^{(P-1)/2} = y^{(P-1)} = 1 \mod P$.

Proof (*if*) Show that the discrete log of x has to be even and therefore (by previous slide) x is a square.

So, it is easy to detect whether a number mod P is a square.

The Problem

Claim: Given p, g, $g^x \mod p$ and $g^y \mod p$, adversary can **determine one** the form at is no applied to p.

Corollary: Therefore, additionally given $g^{xy} \cdot m \mod p$, the adversary can determine whether m is a square mod p, violating "IND-CPA security".

The Problem

Claim: Given p, g, $g^x \mod p$ and $g^y \mod p$, adversary can determine if $g^{xy} \mod p$ is a square mod p.

 $g^{xy} \mod p$ is a square $\Leftrightarrow xy \pmod{p-1}$ is even

$$\Leftrightarrow xy$$
 is even

$$\Leftrightarrow x \text{ is even or } y \text{ is even}$$

$$\Leftrightarrow x \pmod{p-1} \text{ is even or } y \pmod{p-1} \text{ is even}$$

$$\Leftrightarrow g^x \mod p \text{ or } g^y \mod p \text{ is a square}$$

This can be checked in poly time!

Diffie-Hellman/El Gamal Encryption

Claim: Given p, g, $g^x \mod p$ and $g^y \mod p$, adversary can determine if $g^{xy} \mod p$ is a square mod p.

More generally, dangerous to work with groups that have non-trivial subgroups (in our case, the subgroup of all squares mod p)

Lesson: Best to work over a group of prime order. Such groups have no non-trivial subgroups.

An Example: Let p = 2q + 1 where q is a prime itself. Then, the group of squares mod p has order $\frac{(p-1)}{2} = q$.

Diffie-Hellman/El Gamal Encryption

• $Gen(1^n)$: Generate an *n*-bit safe prime p = 2q + 1and a generator g of Z_p^* and let $h = g^2 \mod p$ be a generator of QR_p . Choose a random number $x \in Z_q$.

Let
$$pk = (p, h, h^x)$$
 and let $sk = x$.

- Enc(pk,m) where $m \in QR_p$: Generate random $y \in Z_q$ and output $(g^y, g^{xy} \cdot m)$
- Dec(sk = x, c): Compute g^{xy} using g^y and x and divide the second component to retrieve m.

Decisional Diffie-Hellman Assumption

Decisional Diffie-Hellman Assumption (DDHA):

Hard to distinguish between g^{xy} and a uniformly random group element, given g, g^x and g^y

That is, the following two distributions are computationally indistinguishable:

 $(g, g^x, g^y, g^{xy}) \approx (g, g^x, g^y, u)$

DH/El Gamal is IND-secure under the DDH assumption on the given group.

Which Group to Use?

(1) QR_P for a safe prime P = 2Q + 1 where Q is prime. The order of the group is Q.

Discrete log can be broken in *sub-exponential* time $2^{\sqrt{\log P \log \log P}}$ (better than poly(*P*) but worse than poly(log *P*).)

(2) Elliptic Curve Groups. The set of solutions (x, y) to the equation $y^2 = x^3 + ax + b \pmod{P}$ together with a very cool group addition law.

Best known Discrete log algorithm: $O(\sqrt{P})$ time! Much smaller keys: 160-bit P suffices for "80-bit security".