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Lecture 8
Foundations of Cryptography



Lectures 7-10

• Key Agreement and Public-key Encryption: 
 Definition and Properties 

• Constructions

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

1: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev



The Multiplicative Group ℤ𝑵∗
= {1	 ≤ 𝑥 < N: gcd x, N = 1}

Theorem: ℤ𝑵∗ is a group under multiplication mod N.

Inverses exist: since gcd x, N = 1, there exist integers 𝑎 
and 𝑏 s.t.

𝑎𝑥 + 𝑏𝑁 = 1   (Bezout’s identity)

Thus, 𝑎𝑥 = 1 𝑚𝑜𝑑	𝑁  or 𝑎 = 𝑥#$	(𝑚𝑜𝑑	𝑁).  



The Multiplicative Group ℤ𝑵∗
= {1	 ≤ 𝑥 < N: gcd x, N = 1}

Theorem: ℤ𝑵∗ is a group under multiplication mod N.

Order of ℤ𝑵∗ = Euler’s totient function 𝜑(𝑁).

𝜑 𝑃 = 𝑃−1 if 𝑃 prime.

𝜑 𝑁 = (𝑃−1)(𝑄−1) if 𝑁 = 𝑃𝑄,𝑃	 ≠ 𝑄 primes.

𝜑 𝑁 =	∏𝑃%
&!#$(𝑃% −1) if 𝑁 =∏𝑃%

&!.

Theorem [Lagrange, Euler]: 
  For every a ∈ ℤ'∗ , 𝑎( ' = 1	𝑚𝑜𝑑	𝑁.



Examples

ℤ𝟐∗ = {𝟏}

ℤ𝟑∗ = {𝟏, 𝟐}

ℤ𝟒∗ = {𝟏, 𝟑}

ℤ𝟓∗ = {𝟏, 𝟐, 𝟑, 𝟒}

ℤ𝟔∗ = {𝟏, 𝟓}

ℤ𝟕∗ = {𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕}



The Multiplicative Group ℤ𝒑∗

ℤ/∗ : ({1, … , p − 1}, group operation: L mod 𝑝)

• Computing the group operation is easy.

• Computing inverses is easy: Extended Euclid.

• Exponentiation (given 𝑔 ∈ ℤ/∗ 	and 𝑥 ∈ ℤ/#$, find 
𝑔0  mod p) is easy: Repeated Squaring Algorithm.

• The discrete logarithm problem (given a generator 
𝑔	and	ℎ ∈ ℤ/∗ , find 𝑥 ∈ ℤ/#$ s.t. h = 𝑔0  mod p) is 
hard, to the best of our knowledge!



The Discrete Log Assumption

Distributions…

1. Is the discrete log problem hard for a random p? 
Could it be easy for some p?

2.   Given p: is the problem hard for all generators g?

3.   Given p and g: is the problem hard for all x?

The discrete logarithm problem is: given a generator 
𝑔	and	ℎ ∈ ℤ/∗ , find 𝑥 ∈ ℤ/#$ s.t. h = 𝑔0  mod p.



Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm 𝐴 s.t.   
   Pr 𝐴 𝑝, 𝑔, 𝑔0 	mod	𝑝 = 𝑥 > 1/poly(log 𝑝) 
for some 𝑝, random generator 𝑔 of ℤ/∗ , and random 𝑥 
in ℤ/#$, then there is a p.p.t. algorithm 𝐵 s.t.

𝐵 𝑝, 𝑔, 𝑔0 	mod	𝑝 = 𝑥
for all g and x.

Proof: On the board.



Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm 𝐴 s.t.   
   Pr 𝐴 𝑝, 𝑔, 𝑔0 	mod	𝑝 = 𝑥 > 1/poly(log 𝑝) 
for some 𝑝, random generator 𝑔 of ℤ/∗ , and random 𝑥 
in ℤ/#$, then there is a p.p.t. algorithm 𝐵 s.t.

𝐵 𝑝, 𝑔, 𝑔0 	mod	𝑝 = 𝑥
for all g and x.

2.   Given p: is the problem hard for all generators g?

3.   Given p and g: is the problem hard for all x?
… as hard for any generator is it for a random one.

… as hard for any x is it for a random one.



Algorithms for Discrete Log 
(for General Groups)

• Pohlig-Hellman algorithm: time 𝑂( 𝑞) where 𝑞 is 
the largest prime factor of the order of group 
(e.g. 𝑝 − 1 in the case of 𝑍/∗ ). That is, there are 
dlog-easy primes.

• Baby Step-Giant Step algorithm: time --- and 
space --- 𝑂( 𝑝) .



The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm 𝐴, 
there is a negligible function 𝜇 s.t.
  

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆1; 𝑔 ← 𝐺𝐸𝑁 ℤ/∗ ;
𝑥 ← ℤ/#$: 	𝐴 𝑝, 𝑔, 𝑔0 	mod	𝑝 = 𝑥

= 𝜇(𝑛) 



Sophie-Germain Primes and Safe Primes

• Safe primes are maximally hard for the Pohlig-
Hellman algorithm.

• A prime 𝑞 is called a Sophie-Germain prime if 𝑝
= 2𝑞 + 1 is also prime. In this case, 𝑞 is called a 
safe prime.

• It is unknown if there are infinitely many safe 
primes, let alone that they are sufficiently dense. 
Yet, heuristically, about 𝐶/𝑛2 of 𝑛-bit integers 
seem to be safe primes (for some constant 𝐶).



The Discrete Log (DLOG) Assumption

W.r.t. a random safe prime: for every p.p.t. algorithm 
𝐴, there is a negligible function 𝜇 s.t.
  

Pr
𝑝 ← 𝑆𝐴𝐹𝐸𝑃𝑅𝐼𝑀𝐸𝑆1; 𝑔 ← 𝐺𝐸𝑁 ℤ/∗ ;
𝑥 ← ℤ/#$: 	𝐴 𝑝, 𝑔, 𝑔0 	mod	𝑝 = 𝑥

= 𝜇(𝑛) 

(the “safe prime” version)



One-way Permutation (Family)

𝐹 𝑝, 𝑔, 𝑥 = (𝑝, 𝑔, 𝑔0 	mod	p)

ℱ1 = {𝐹1,/,4} where 𝐹1,/,4 𝑥 = (𝑝, 𝑔, 𝑔0 	mod	p)

Theorem: Under the discrete log assumption, 𝐹 is a 
one-way permutation (resp. ℱ1 is a one-way 
permutation family).



Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm 𝐴, 
there is a negligible function 𝜇 s.t.
  

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆1; 𝑔 ← 𝐺𝐸𝑁 ℤ/∗ ;

𝑥, 𝑦 ← ℤ/#$: 	𝐴 𝑝, 𝑔, 𝑔0 , 𝑔5 = 𝑔05
= 𝜇(𝑛) 

CDH DLOG
OPEN



Diffie-Hellman Key Exchange

Pick a random 
number 𝑥 ∈ 𝑍/#$

𝑔0 	mod	𝑝

𝑝, 𝑔: Generator of our group 𝑍!∗

Pick a random 
number y ∈ 𝑍/#$

𝑔5 	mod	𝑝

Shared key K = 𝑔05 	mod	𝑝
= (𝑔5)0 	mod	𝑝

Shared key K = 𝑔05 	mod	𝑝
= (𝑔0)5 	mod	𝑝



Diffie-Hellman/El Gamal Encryption

• 𝐺𝑒𝑛 11 :	Generate an 𝑛-bit prime 𝑝 and a generator 
𝑔 of 𝑍/∗ . Choose a random number 𝑥 ∈ 𝑍/#$

Let 𝑝𝑘 = (𝑝, 𝑔, 𝑔0) and let 𝑠𝑘 = 𝑥.

• 𝐸𝑛𝑐 𝑝𝑘,𝑚  where 𝑚 ∈ 𝑍/∗ : Generate random 𝑦
∈ 𝑍/#$	and output (𝑔5 , 𝑔05 L 𝑚)

• 𝐷𝑒𝑐 𝑠𝑘 = 𝑥, 𝑐 : Compute 𝑔05  using 𝑔5  and 𝑥 and 
divide the second component to retrieve 𝑚.

Is this Secure?How to make this really work?



How to come up with a prime p 
(1) Prime number theorem: ≈ 1/𝑛 fraction of 𝒏-bit 
numbers are prime.

(2) Primality tests [Miller’76, Rabin’80, Agrawal-
Kayal-Saxena’02] Can test in time poly(𝑛) if a given 
𝑛-bit number is prime. 

OPEN: Deterministically come up with an n-bit prime?  

EXCITING NEW RESULT (TOC Colloq. Oct 3): 
 Pseudo-deterministic poly-time algorithm!



How to come up with a generator g 

(1) There are lots of generators: ≈ 1/ log 𝑛 fraction 
of ℤ/∗  are generators (where p is an n-bit prime).

(2) Testing if 𝒈 is a generator: 

Theorem: let 𝑞$, … , 𝑞6  be the prime factors of 𝑝 − 1. 
Then, g is a generator of ℤ/∗  if and only if  
 𝑔(/#$)/:! ≠ 1	(mod	𝑝) for all i.

OPEN: Can you test if g is a generator without knowing the 
prime factorization of p-1?  
OPEN: Deterministically come up with a generator?  



To Summarize

• Pick a random safe prime 𝑝. Therefore, I know the 
factorization of 𝑝 − 1 = 2𝑞 automatically!

• Pick a random element of ℤ/∗  and test if it is a 
generator (using theorem from last slide). 

• Continue step 2 until you hit a generator.



Squares mod P

Let P be prime. 𝑥 ∈ 𝑍;∗  is a squares mod P (also called a 
“quadratic residue”) if there is a y ∈ 𝑍;∗  s.t. 
   𝑥 = 𝑦2	mod	𝑃.

Theorem: Exactly half of 𝑍;∗  are squares mod P.



Squares mod P: A Characterization

Claim: Fix any generator 𝑔. Then, 𝑥 ∈ ℤ;∗  is a square iff 
𝐷𝐿𝑂𝐺4(𝑥) mod 𝑝 − 1 is even.

Proof (if) 
If 𝑥 = 𝑔< 	mod	𝑃 and 𝑎 is even, then 𝑔</2	mod	𝑃 is a square 
root of 𝑥.

Proof (iff) 
If 𝑥 = 𝑔< = (𝑔=)2	mod	𝑃, then 𝑎 = 2𝑏	(mod	𝑃 − 1). So, 
𝑎 is even.



So, it is easy to detect whether a number mod P is a square.

Claim: 𝑥 mod P is a square iff  𝑥(;#$)/2 = 1	mod	𝑃

Proof (iff) If 𝑥 = 𝑦2	mod	𝑃, 𝑥(;#$)/2 = 𝑦(;#$) = 1	𝑚𝑜𝑑	𝑃.

Proof (if) Show that the discrete log of 𝑥 has to be even and 
therefore (by previous slide) 𝑥 is a square.

Now, an Efficient Characterization…



The Problem

Claim: Given p, g, 𝑔0 	mod	𝑝	and 𝑔5 	mod	𝑝, adversary can

Corollary: Therefore, additionally given 𝑔05 L 𝑚	mod	𝑝, the 
adversary can determine whether 𝑚 is a square mod 𝑝, 
violating “IND-CPA security”.

compute some information about 𝑔05 	mod	𝑝.determine if 𝑔05 	mod	𝑝 is a square mod	𝑝.



The Problem

Claim: Given p, g, 𝑔0 	mod	𝑝	and 𝑔5 	mod	𝑝, adversary can
determine if 𝑔05 	mod	𝑝 is a square mod	𝑝.

𝑔05 	mod	𝑝 is a square ⟺ 𝑥𝑦	(mod	𝑝 − 1) is even

⟺ 𝑥𝑦	is even
⟺ 𝑥	is even or 𝑦 is even 
⟺ 𝑥	(𝑚𝑜𝑑	𝑝 − 1)	is even or 𝑦	(mod	p − 1)	is even 
⟺ 𝑔0 	𝑚𝑜𝑑	𝑝 or 𝑔5 	𝑚𝑜𝑑	𝑝	is a square 

This can be checked in poly time!



Diffie-Hellman/El Gamal Encryption

Claim: Given p, g, 𝑔0 	mod	𝑝	and 𝑔5 	mod	𝑝, adversary can

Lesson: Best to work over a group of prime order. Such 
groups have no non-trivial subgroups.

More generally, dangerous to work with groups that have 
non-trivial subgroups (in our case, the subgroup of all 
squares mod p)

An Example: Let 𝑝 = 2𝑞 + 1 where 𝑞 is a prime itself. 
Then, the group of squares mod 𝑝 has order /#$

2
= 𝑞.

determine if 𝑔05 	mod	𝑝 is a square mod	𝑝.



Diffie-Hellman/El Gamal Encryption

• 𝐺𝑒𝑛 11 :	Generate an 𝑛-bit safe prime 𝑝 = 2𝑞 + 1 
and a generator 𝑔 of 𝑍/∗  and let ℎ = 𝑔2mod	𝑝 be a 
generator of 𝑄𝑅/ . Choose a random number 𝑥 ∈ 𝑍: . 

      Let 𝑝𝑘 = (𝑝, ℎ, ℎ0) and let 𝑠𝑘 = 𝑥.

• 𝐸𝑛𝑐 𝑝𝑘,𝑚  where 𝑚 ∈ 𝑄𝑅/ : Generate random 𝑦
∈ 𝑍: 	and output (𝑔5 , 𝑔05 L 𝑚)

• 𝐷𝑒𝑐 𝑠𝑘 = 𝑥, 𝑐 : Compute 𝑔05  using 𝑔5  and 𝑥 and 
divide the second component to retrieve 𝑚.



Decisional Diffie-Hellman Assumption

Hard to distinguish between 𝑔05  and a uniformly 
random group element, given 𝑔, 𝑔0  and 𝑔5

Decisional Diffie-Hellman Assumption (DDHA):

That is, the following two distributions are 
computationally indistinguishable: 

(𝑔, 𝑔0 , 𝑔5 , 𝑔05) ≈ (𝑔, 𝑔0 , 𝑔5 , 𝑢)

DH/El Gamal is IND-secure under the DDH assumption 
on the given group. 



Which Group to Use?
(1) 𝑄𝑅;  for a safe prime P = 2𝑄 + 1 where 𝑄 is prime. 
The order of the group is Q.

Discrete log can be broken in sub-exponential time 
2 >?@ ; >?@ >?@ ;  (better than poly(𝑃) but worse than 
poly(log 𝑃). ) 

2  Elliptic Curve Groups. The set of solutions (𝑥, 𝑦) to 
the equation 𝑦2 = 𝑥A + 𝑎𝑥 + 𝑏 (mod P) together with a 
very cool group addition law.

Best known Discrete log algorithm: O( 𝑃) time!

Much smaller keys: 160-bit P suffices for “80-bit security”.


