MIT 6.875

Foundations of Cryptography Lecture 8

Lectures 7-10

- Key Agreement and Public-key Encryption: Definition and Properties
- Constructions

1: Diffie-Hellman/El Gamal

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Learning with Errors/Regev

The Multiplicative Group \mathbb{Z}_{N}^{*}
 $$
=\{1 \leq x<\mathrm{N}: \operatorname{gcd}(\mathrm{x}, \mathrm{~N})=1\}
$$

Theorem: \mathbb{Z}_{N}^{*} is a group under multiplication $\bmod \mathrm{N}$.
Inverses exist: since $\operatorname{gcd}(\mathrm{x}, \mathrm{N})=1$, there exist integers a and b s.t.

$$
a x+b N=1 \text { (Bezout's identity) }
$$

Thus, $a x=1(\bmod N)$ or $a=x^{-1}(\bmod N)$.

The Multiplicative Group \mathbb{Z}_{N}^{*}
 $$
=\{1 \leq x<\mathrm{N}: \operatorname{gcd}(\mathrm{x}, \mathrm{~N})=1\}
$$

Theorem: \mathbb{Z}_{N}^{*} is a group under multiplication $\bmod \mathrm{N}$.
Order of $\mathbb{Z}_{N}^{*}=$ Euler's totient function $\varphi(N)$.

$$
\begin{aligned}
& \varphi(P)=P-1 \text { if } P \text { prime. } \\
& \varphi(N)=(P-1)(Q-1) \text { if } N=P Q, P \neq Q \text { primes. } \\
& \varphi(N)=\prod P_{i}^{\alpha_{i}-1}\left(P_{i}-1\right) \text { if } N=\prod P_{i}^{\alpha_{i}} .
\end{aligned}
$$

Theorem [Lagrange, Euler]:
For every a $\in \mathbb{Z}_{N}^{*}, a^{\varphi(N)}=1 \bmod N$.

Examples

$$
\begin{gathered}
\mathbb{Z}_{2}^{*}=\{1\} \\
\mathbb{Z}_{3}^{*}=\{1,2\} \\
\mathbb{Z}_{4}^{*}=\{1,3\} \\
\mathbb{Z}_{5}^{*}=\{1,2,3,4\} \\
\mathbb{Z}_{6}^{*}=\{1,5\} \\
\mathbb{Z}_{7}^{*}=\{1,2,3,4,5,6,7\}
\end{gathered}
$$

The Multiplicative Group \mathbb{Z}_{p}^{*}

$\mathbb{Z}_{p}^{*}:(\{1, \ldots, \mathrm{p}-1\}$, group operation: $\cdot \bmod p)$

- Computing the group operation is easy.
- Computing inverses is easy: Extended Euclid.
- Exponentiation (given $g \in \mathbb{Z}_{p}^{*}$ and $x \in \mathbb{Z}_{p-1}$, find $g^{x} \bmod p$) is easy: Repeated Squaring Algorithm.
- The discrete logarithm problem (given a generator g and $h \in \mathbb{Z}_{p}^{*}$, find $x \in \mathbb{Z}_{p-1}$ s.t. $\mathrm{h}=g^{x} \bmod \mathrm{p}$) is hard, to the best of our knowledge!

The Discrete Log Assumption

The discrete logarithm problem is: given a generator g and $h \in \mathbb{Z}_{p}^{*}$, find $x \in \mathbb{Z}_{p-1}$ s.t. $\mathrm{h}=g^{x} \bmod \mathrm{p}$.

Distributions...

1. Is the discrete log problem hard for a random p ? Could it be easy for some p?
2. Given p : is the problem hard for all generators g ?
3. Given p and g : is the problem hard for all x ?

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

$$
\operatorname{Pr}\left[A\left(p, g, g^{x} \bmod p\right)=x\right]>1 / \operatorname{poly}(\log p)
$$

for some p, random generator g of \mathbb{Z}_{p}^{*}, and random x in \mathbb{Z}_{p-1}, then there is a p.p.t. algorithm B s.t.

$$
B\left(p, g, g^{x} \bmod p\right)=x
$$

for all g and x .

Proof: On the board.

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

$$
\operatorname{Pr}\left[A\left(p, g, g^{x} \bmod p\right)=x\right]>1 / \operatorname{poly}(\log p)
$$

for some p, random generator g of \mathbb{Z}_{p}^{*}, and random x in \mathbb{Z}_{p-1}, then there is a p.p.t. algorithm B s.t.

$$
B\left(p, g, g^{x} \bmod p\right)=x
$$

for all g and x .
2. Given p : is the problem hard for all generators g ? ... as hard for any generator is it for a random one.
3. Given p and g : is the problem hard for all x ? ... as hard for any x is it for a random one.

Algorithms for Discrete Log (for General Groups)

- Baby Step-Giant Step algorithm: time --- and space --- $O(\sqrt{p})$.
- Pohlig-Hellman algorithm: time $O(\sqrt{q})$ where q is the largest prime factor of the order of group (e.g. $p-1$ in the case of Z_{p}^{*}). That is, there are dlog-easy primes.

The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A, there is a negligible function μ s.t.

$$
\operatorname{Pr}\left[\begin{array}{c}
p \leftarrow P R I M E S_{n} ; g \leftarrow \operatorname{GEN}\left(\mathbb{Z}_{p}^{*}\right) ; \\
x \leftarrow \mathbb{Z}_{p-1}: A\left(p, g, g^{x} \bmod p\right)=x
\end{array}\right]=\mu(n)
$$

Sophie-Germain Primes and Safe Primes

- A prime q is called a Sophie-Germain prime if p $=2 q+1$ is also prime. In this case, q is called a safe prime.
- Safe primes are maximally hard for the PohligHellman algorithm.
- It is unknown if there are infinitely many safe primes, let alone that they are sufficiently dense. Yet, heuristically, about C / n^{2} of n-bit integers seem to be safe primes (for some constant C).

The Discrete Log (DLOG) Assumption

(the "safe prime" version)
W.r.t. a random safe prime: for every p.p.t. algorithm A, there is a negligible function μ s.t.

$$
\operatorname{Pr}\left[\begin{array}{c}
p \leftarrow S A F E P R I M E S_{n} ; g \leftarrow G E N\left(\mathbb{Z}_{p}^{*}\right) ; \\
x \leftarrow \mathbb{Z}_{p-1}: A\left(p, g, g^{x} \bmod p\right)=x
\end{array}\right]=\mu(n)
$$

One-way Permutation (Family)

$$
\begin{gathered}
F(p, g, x)=\left(p, g, g^{x} \bmod \mathrm{p}\right) \\
\mathcal{F}_{n}=\left\{F_{n, p, g}\right\} \text { where } F_{n, p, g}(x)=\left(p, g, g^{x} \bmod \mathrm{p}\right)
\end{gathered}
$$

Theorem: Under the discrete log assumption, F is a one-way permutation (resp. \mathcal{F}_{n} is a one-way permutation family).

Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A, there is a negligible function μ s.t.

$$
\operatorname{Pr}\left[\begin{array}{c}
p \leftarrow P R I M E S_{n} ; g \leftarrow G E N\left(\mathbb{Z}_{p}^{*}\right) ; \\
x, y \leftarrow \mathbb{Z}_{p-1}: A\left(p, g, g^{x}, g^{y}\right)=g^{x y}
\end{array}\right]=\mu(n)
$$

CDH
DLOG

Diffie-Hellman Key Exchange

$$
p, g \text { : Generator of our group } Z_{p}^{*}
$$

$g^{x} \bmod p$

$g^{y} \bmod p$

Pick a random number $x \in Z_{p-1}$

Shared key K $=g^{x y} \bmod p$

$$
=\left(g^{y}\right)^{x} \bmod p
$$

Pick a random number $\mathrm{y} \in Z_{p-1}$

Shared key K $=g^{x y} \bmod p$

$$
=\left(g^{x}\right)^{y} \bmod p
$$

Diffie-Hellman/El Gamal Encryption

- $\operatorname{Gen}\left(1^{n}\right)$: Generate an n-bit prime p and a generator g of Z_{p}^{*}. Choose a random number $x \in Z_{p-1}$

Let $p k=\left(p, g, g^{x}\right)$ and let $s k=x$.

- $\operatorname{Enc}(p k, m)$ where $m \in Z_{p}^{*}$: Generate random y $\in Z_{p-1}$ and output $\left(g^{y}, g^{x y} \cdot m\right)$
- $\operatorname{Dec}(s k=x, c)$: Compute $g^{x y}$ using g^{y} and x and divide the second component to retrieve m.

How to come up with a prime p

(1) Prime number theorem: $\approx 1 / n$ fraction of \boldsymbol{n}-bit numbers are prime.
(2) Primality tests [Miller'76, Rabin'80, Agrawal-Kayal-Saxena’02] Can test in time poly (n) if a given n-bit number is prime.

OPEN: Deterministically come up with an n-bit prime? EXCITING NEW RESULT (TOC Colloq. Oct 3):

Pseudo-deterministic poly-time algorithm!

How to come up with a generator g

(1) There are lots of generators: $\approx 1 / \log n$ fraction of \mathbb{Z}_{p}^{*} are generators (where p is an n -bit prime).
(2) Testing if \boldsymbol{g} is a generator:

Theorem: let q_{1}, \ldots, q_{k} be the prime factors of $p-1$.
Then, g is a generator of \mathbb{Z}_{p}^{*} if and only if

$$
g^{(p-1) / q_{i}} \neq 1(\bmod p) \text { for all i. }
$$

OPEN: Can you test if g is a generator without knowing the prime factorization of $p-1$?
OPEN: Deterministically come up with a generator?

To Summarize

- Pick a random safe prime p. Therefore, I know the factorization of $p-1=2 q$ automatically!
- Pick a random element of \mathbb{Z}_{p}^{*} and test if it is a generator (using theorem from last slide).
- Continue step 2 until you hit a generator.

Squares mod P

Let P be prime. $x \in Z_{P}^{*}$ is a squares $\bmod \mathrm{P}$ (also called a "quadratic residue") if there is a $\mathrm{y} \in Z_{P}^{*}$ s.t.

$$
x=y^{2} \bmod P
$$

Theorem: Exactly half of Z_{P}^{*} are squares mod P .

Squares mod P: A Characterization

Claim: Fix any generator g. Then, $x \in \mathbb{Z}_{P}^{*}$ is a square iff $D L O G_{g}(x) \bmod p-1$ is even.

Proof (if)
If $x=g^{a} \bmod P$ and a is even, then $g^{a / 2} \bmod P$ is a square root of x.

Proof (iff)
If $x=g^{a}=\left(g^{b}\right)^{2} \bmod P$, then $a=2 b(\bmod P-1)$. So, a is even.

Now, an Efficient Characterization...

Claim: $x \bmod \mathrm{P}$ is a square iff $x^{(P-1) / 2}=1 \bmod P$
Proof (iff) If $x=y^{2} \bmod P, x^{(P-1) / 2}=y^{(P-1)}=1 \bmod P$.
Proof (if) Show that the discrete log of x has to be even and therefore (by previous slide) x is a square.

So, it is easy to detect whether a number mod P is a square.

The Problem

Claim: Given $\mathrm{p}, \mathrm{g}, g^{x} \bmod p$ and $g^{y} \bmod p$, adversary can

Corollary: Therefore, additionally given $g^{x y} \cdot m \bmod p$, the adversary can determine whether m is a square $\bmod p$, violating "IND-CPA security".

The Problem

Claim: Given $\mathrm{p}, \mathrm{g}, g^{x} \bmod p$ and $g^{y} \bmod p$, adversary can determine if $g^{x y} \bmod p$ is a square $\bmod p$.
$g^{x y} \bmod p$ is a square $\Leftrightarrow x y(\bmod p-1)$ is even
$\Leftrightarrow x y$ is even
$\Leftrightarrow x$ is even or y is even
$\Leftrightarrow x(\bmod p-1)$ is even or $y(\bmod \mathrm{p}-1)$ is even
$\Leftrightarrow g^{x} \bmod p$ or $g^{y} \bmod p$ is a square
This can be checked in poly time!

Diffie-Hellman/El Gamal Encryption

Claim: Given $\mathrm{p}, \mathrm{g}, g^{x} \bmod p$ and $g^{y} \bmod p$, adversary can determine if $g^{x y} \bmod p$ is a square $\bmod p$.

More generally, dangerous to work with groups that have non-trivial subgroups (in our case, the subgroup of all squares $\bmod p$)

Lesson: Best to work over a group of prime order. Such groups have no non-trivial subgroups.

An Example: Let $p=2 q+1$ where q is a prime itself.
Then, the group of squares $\bmod p$ has order $\frac{(p-1)}{2}=q$.

Diffie-Hellman/El Gamal Encryption

- $\operatorname{Gen}\left(1^{n}\right):$ Generate an n-bit safe prime $p=2 q+1$ and a generator g of Z_{p}^{*} and let $h=g^{2} \bmod p$ be a generator of $Q R_{p}$. Choose a random number $x \in Z_{q}$.

Let $p k=\left(p, h, h^{x}\right)$ and let $s k=x$.

- $\operatorname{Enc}(p k, m)$ where $m \in Q R_{p}$: Generate random y $\in Z_{q}$ and output $\left(g^{y}, g^{x y} \cdot m\right)$
- $\operatorname{Dec}(s k=x, c)$: Compute $g^{x y}$ using g^{y} and x and divide the second component to retrieve m.

Decisional Diffie-Hellman Assumption

Decisional Diffie-Hellman Assumption (DDHA):

Hard to distinguish between $g^{x y}$ and a uniformly random group element, given g, g^{x} and g^{y}

That is, the following two distributions are computationally indistinguishable:

$$
\left(g, g^{x}, g^{y}, g^{x y}\right) \approx\left(g, g^{x}, g^{y}, u\right)
$$

DH/El Gamal is IND-secure under the DDH assumption on the given group.

Which Group to Use?

(1) $Q R_{P}$ for a safe prime $\mathrm{P}=2 Q+1$ where Q is prime. The order of the group is Q .

Discrete log can be broken in sub-exponential time $2^{\sqrt{\log P \log \log P}}$ (better than poly (P) but worse than poly $(\log P)$.)
(2) Elliptic Curve Groups. The set of solutions (x, y) to the equation $y^{2}=x^{3}+a x+b(\bmod \mathrm{P})$ together with a very cool group addition law.

Best known Discrete log algorithm: $\mathrm{O}(\sqrt{P})$ time!
Much smaller keys: 160-bit P suffices for " 80 -bit security".

