MIT 6.875

Foundations of Cryptography Lecture 7

The Goldreich-Levin (GL) Theorem

Let $\left\{B_{r}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}$ where

$$
B_{r}(x)=\langle r, x\rangle=\sum_{i=1}^{n} r_{i} x_{i} \bmod 2
$$

be a collection of predicates (one for each r). Then, a random B_{r} is hardcore for every one-way function F. That is, for every one-way function F, every PPT A, there is a negligible function μ s.t.
$\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n} ; r \leftarrow\{0,1\}^{n}: A(F(x), r)=B_{r}(x)\right] \leq \frac{1}{2}+\mu(n)$

GL Theorem: Alternative Interpretation

For every one-way function/permutation F, there is a related one-way function/permutation

$$
F^{\prime}(x, r)=(F(x), r)
$$

which has a deterministic hardcore predicate. In particular, the predicate $B(x, r)=\langle r, x\rangle \bmod 2$ is hardcore for F^{\prime}.
$\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n} ; r \leftarrow\{0,1\}^{n}: A\left(F^{\prime}(x, r)\right)=\langle r, x\rangle\right] \leq \frac{1}{2}+\mu(n)$

Key Point:

This statement is sufficient to construct PRGs from any OWP.

A Proof of the GL Theorem

Assume (after averaging) that for $\geq 1 / 2 p(n)$ fraction of the x, $\operatorname{Pr}\left[r \leftarrow\{0,1\}^{n}: P(F(x), r)=\langle r, x\rangle\right] \geq \frac{1}{2}+1 / 2 p(n)$

Recall the template:
Pick a random r, ask P for $\left\langle r+e_{i}, x\right\rangle$ and $\langle r, x\rangle$. Subtract the two to get $\left\langle e_{i}, x\right\rangle=x_{i}$. and guess $\langle\boldsymbol{r}, \boldsymbol{x}\rangle$

The idea: Parsimony in Guessing

Pick random "seed vectors" $s_{1}, \ldots, s_{\log (m+1)}$, and guess $c_{j}=\left\langle s_{j}, x\right\rangle$ for all j.
The probability that all guesses are correct is $\frac{1}{2^{\log (m+1)}}=1 /(m+1)$ which is not bad.

From the seed vectors, generate many more r_{i}.
Let T_{1}, \ldots, T_{m} denote all possible non-empty subsets of
$\{1,2, \ldots, \log (m+1)\}$. We will let

$$
r_{i}=\bigoplus_{j \in T_{i}} s_{j} \quad \text { and } \quad b_{i}=\bigoplus_{j \in T_{i}} c_{j}
$$

Key Observation: If the guesses $c_{1}, \ldots, c_{\log (m+1)}$ are all correct, then so are the b_{1}, \ldots, b_{m}.

The OWF Inverter

Generate random $s_{1}, \ldots, s_{\log (m+1)}$ and bits $c_{1}, \ldots, c_{\log (m+1)}$.
From them, derive $r_{1}, \ldots, r_{\log (m+1)}$ and bits b_{1}, \ldots, b_{m} as in the previous slide.

Repeat for each $i \in\{1,2, \ldots, n\}$:
Repeat $\mathbf{O}\left(\boldsymbol{n}(\boldsymbol{p}(\boldsymbol{n}))^{2}\right)$ times:
Ask P to tells us $\left\langle r_{i j}+e_{i}, x\right\rangle$. XOR P's reply with b_{i} to get a guess for x_{i}.
Compute the majority of all such guesses and set the bit as x_{i} Output the concatenation of all x_{i} as x.

Analysis of the Inverter

Let's condition on the guesses $c_{1}, \ldots, c_{\log (m+1)}$ being all correct.

The main issue: The r_{i} are not independent (can't do Chernoff)

Key Observation: The r_{i} are pairwise independent.
Therefore, can apply Chebyshev!

We will show that
$p:=\operatorname{Pr}[$ Inverter succeeds \mid all guesses correct, $\operatorname{good} \mathrm{x}] \geq 0.98$.
(We will prove this in a bit, but let's assume it for now)

Finishing the proof (assuming p is large)

$\operatorname{Pr}[$ Inverter succeeds]
$\geq \operatorname{Pr}[$ Inverter succeeds | all guesses correct, good $x]$.
$\operatorname{Pr}[$ all guesses correct $] \cdot \operatorname{Pr}[\operatorname{good} \mathrm{x}]$
$=p \cdot \frac{1}{m+1} \cdot \frac{1}{2 p(n)}=p \cdot \frac{1}{2 n^{2} p(n)^{3}}$

So, it suffices to show that p is large.

We will now show that $p \geq 0.98$, so we are done.

Can also make the success probability $\approx 1 / p(n)$ by enumerating over all the "guesses". Each guess results in a supposed inverse, but we can check which of them is the actual inverse!

Analysis of the Inverter: Estimating p

The probability that a single iteration of the inner loop gives the correct x_{i} is at least $\frac{1}{2}+1 / 2 p(n)$.

Let this be the good event E_{i} (for the $i^{t h}$ iteration of the inner loop).
The majority decision is correct if the number of events E_{i} that occur is at least $\frac{m}{2}=50 n(p(n))^{2}$.

The expected number of events that occur is

$$
\left(\frac{1}{2}+\frac{1}{2 p(n)}\right) .100 n(p(n))^{2}=50 n(p(n))^{2}+50 n p(n)
$$

The variance is

$$
\approx \frac{1}{2} \cdot 100 n(p(n))^{2}=50 n(p(n))^{2}
$$

Analysis of the Inverter: Estimating p

The expected number of events that occur is

$$
\left(\frac{1}{2}+\frac{1}{2 p(n)}\right) .100 n(p(n))^{2}=50 n(p(n))^{2}+50 n p(n)
$$

The variance is $\approx \frac{1}{2} \cdot 100 n(p(n))^{2}=50 n(p(n))^{2}$
By an application of Chebyshev, we have
$\operatorname{Pr}\left[\right.$ majority decision w.r.t x_{i} incorrect $] \leq \frac{50 n(p(n))^{2}}{(50 n p(n))^{2}}=\frac{1}{50 n}$

By an application of union bound, we have

$$
\operatorname{Pr}\left[\text { one of the } x_{i} \text { is incorrect }\right] \leq n \cdot \frac{1}{50 n}=1 / 50
$$

\therefore The inverter outputs the correct inverse w.p. p ≥ 0.98.

The Coding-Theoretic View of GL

$x \rightarrow(\langle x, r\rangle)_{r \in\{0,1\}^{n}}$ can be viewed as a highly redundant, exponentially long encoding of $x=$ the Hadamard code.
$P(F(x), r)$ can be thought of as providing access to a noisy codeword.

What we proved = unique decoding algorithm for Hadamard code with error rate $\frac{1}{4}-1 / p(n)$.

The real proof = list-decoding algorithm for Hadamard code with error rate $\frac{1}{2}-1 / p(n)$.

GL as Randomness Extraction

Randomness extractor: You get an n-bit string from a "source" (probability distribution) with large (min-)entropy, say $n / 2$. Can you run a deterministic procedure that outputs a single, nearly uniformly random, bit?

This is impossible.

But possible given a short, truly random, "seed". Leads to an entire theory of randomness extraction.

Back to our setting... the distribution of X conditioned on $f(X)$ does not have any entropy (since f is a permutation) but it does have "computational entropy". Can we extract a computationally random bit from it? This is what GL does!

Secret-Key Encryption

(also called symmetric encryption)

$$
c \leftarrow \operatorname{Enc}(\text { sk,m })
$$

sk

The Key Agreement Problem: How did Alice and Bob get the same sk to begin with?!

Secret-Key Encryption

The Key Agreement Problem: How did Alice and Bob get the same sk to begin with?!

Physical Exchange of Keys is Clunky and Impractical:

- What if Alice and Bob have never met in person?
- Even so, what if they need to refresh their keys?
- Too expensive and cumbersome:

Each user will need to store N keys, too expensive!

Secret-Key Encryption

$$
c \leftarrow \operatorname{Enc}(\mathrm{sk}, \mathrm{~m})
$$

sk

The Key Agreement Problem: Can Alice and Bob, who never previously met, exchange messages securely?

The Next Few Lectures

- Key Agreement and Public-key Encryption: Definition and Properties
- Constructions
l: Diffie-Hellman/El Gamal

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Learning with Errors/Regev
C.S. 244

FALL 1974

Topic:
Establishing secure communications between seperate secure sites over insecure communication lines.

Assumptions: No prior arrangements have been made between the two sites, and it is assumed that any information known
at either site is known to the enemy. The sites, however, are now secure, and any new information will not be divulged.
Method 1: Guessing. Both sites guess at keywords. These
guesses are one-way encrypted, and transmitted to the other site. If both sites should chance to guess at the same keyword, this fact will be discovered when the encrypted versions are compared, and this keyword will then be used to establish a communications link.
Discussion: No, I am not joking. If the keyword space is of size
N, then the probability that both sites will guess at
a common keyword rapidly approaches one after the number
of guesses exceeds sqrt(N). Anyone listening in on the
line must examine all N possibilities. In more concrete

I believe that it is possible for two people to communicate securely
without having made any prior arrangements that are not completely
public. My quarter project would be to investigate any method by which
this could be accomplished, and what advantages and disadvantages
these methods might have over other ways of establishing secure

Merkle (1974)

Programming
Techniques
S. L. Graham, R. L. Rivest Editors

Secure Communications Over Insecure Channels

Ralph C. Merkle
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Abstract

According to traditional conceptions of cryptographic security, it is necessary to transmit a key, by secret means, before encrypted messages can be sent securely. This paper shows that it is possible to select a key over open communications channels in such a fashion that communications security can be maintained. A method is described which forces any enemy to expend an amount of work which increases as the square of the work required of the two communicants to select the key. The method provides a logically new kind of protection against the passive eavesdropper. It suggests that further research on this topic will be highly rewarding, both in a theoretical and a practical sense.

Key Words and Phrases: security, cryptography, cryptology, communications security, wiretap, computer network security, passive eavesdropping, key distribution, public key cryptosystem

CR Categories: 3.56, 3.81

Merkle's Idea

Pick n random numbers x_{1}, \ldots, x_{n}

Pick n random numbers y_{1}, \ldots, y_{n}

Assume that $H:\left[n^{2}\right] \rightarrow\left[n^{2}\right]$ is an injective OWF.

Merkle’s Idea

$$
\begin{aligned}
& \xrightarrow[\left\{\boldsymbol{H}\left(\boldsymbol{x}_{1}\right), H\left(x_{2}\right), \ldots, H\left(x_{n}\right)\right\}]{ } \\
& \left\{H\left(y_{1}\right), \boldsymbol{H}\left(\boldsymbol{y}_{2}\right), \ldots, H\left(y_{n}\right)\right\}
\end{aligned}
$$

Pick n random numbers x_{1}, \ldots, x_{n}

Pick n random
numbers y_{1}, \ldots, y_{n}

There is a common number (say $x_{i}=y_{j}$ w.h.p.)
Alice and Bob can detect it in time $O(n)$, and they set it as their shared key.

Merkle's Idea

$$
\begin{aligned}
& \xrightarrow{\left\{\boldsymbol{H}\left(\boldsymbol{x}_{1}\right), H\left(x_{2}\right), \ldots, H\left(x_{n}\right)\right\}} \\
& \left\{H\left(y_{1}\right), \boldsymbol{H}\left(\boldsymbol{y}_{2}\right), \ldots, H\left(y_{n}\right)\right\}
\end{aligned}
$$

Pick n random numbers x_{1}, \ldots, x_{n}

Pick n random numbers y_{1}, \ldots, y_{n}

How long does it take Eve to compute the shared key?
She knows i and j, but she needs to invert the OWF. Assuming the OWF is very strong, that is $\Omega\left(n^{2}\right)$ time!

Assume that $H:\left[n^{2}\right] \rightarrow\left[n^{2}\right]$ is an injective OWF.

Merkle’s Idea

$$
\left\{\boldsymbol{H}\left(\boldsymbol{x}_{1}\right), H\left(x_{2}\right), \ldots, H\left(x_{n}\right)\right\}
$$

```
{H(\mp@subsup{y}{1}{}),\boldsymbol{H}(\mp@subsup{\boldsymbol{y}}{2}{}),\ldots,H(\mp@subsup{y}{n}{})}
```

Pick n random numbers x_{1}, \ldots, x_{n}

Pick n random
numbers y_{1}, \ldots, y_{n}

Problem: Only protects against quadratic-time Eves (still an excellent idea)

New Directions in Cryptography

whitfield diffie and martin e. hellman, member, ieee

Abstract-Two kinds of contemporary developments in cryp-
tography are examined. Widening applications of teleprocessing have given risx to a ned. Widening new applications of teleprocessing,
which h minimize the need for secure key distribtutraphic systems,
 ways to solve these currently open problems. It also discessess how
the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long stand-
ing.

1. Introduction

W $\begin{aligned} & \text { ESTAND } \\ & \text { cryparaphy. The development of cheap digital }\end{aligned}$ hardware has freed it from the design limitations of mechanical computing and brought the cost of high grade cryptographic devices down to where they can be used in
such commercial applications as remote cash dispensers and computer terminals. In turn, such applications create a need for new types of cryptographic systems which minimize the necessity of secure key distribution channels and supply the equivalent of a written signature. At the same time, theoretical developments in information theory secure cryptosystems, changing this ancient art into a science.
The development of computer controlled communication networks promises effortless and inexpensive contact between people or computers on opposite sides of the
world, replacing most mail and many excursions with telecommunications. For many applications these contacts must be made secure against hoth eavesdropping and the injection of illegitimate messages. At present, however, the solution of security problems lags well behind other areas of communications technology. Contemporary cryptography is unable to meet the requirements, in that its use
would impose such severe inconveniences on the system users, as to eliminate many of the benefits of teleprocessing.
 University, Stanford, DAepartment on the Electrical Engineering, Stanford
Oratory Stand Stand

The best known cryptographic problem is that of privacy: preventing the unauthorized extraction of information from communications over an insecure channel. In order to use cryptography to insure privacy, however, it is a key which is known to no one else. This is done by sending the key in advance over some secure channel such as private courier or registered mail. A private conversation between two people with no prior acquaintance is a com mon occurrence in business, however, and it is unrealistic to expect initial business contacts to be postponed lon The cost and delay imposed by this key distribution problem is a major barrier to the transfer of business communications to large teleprocessing networks. Section III proposes two approaches to transmitting
keying information over public (ie insecure) channe keying information over public (i.e., insecure) channels
without compromising the security of the system. In without compromising the security of the syster. governed by distinct keys, E and D, such that computing D from E is computationally infeasible (e.g., requiring 10^{100} instructions). The enciphering key E can thus be publicly disclosed without compromising the deciphering key D. Each user of the network can, therefore, place his
enciphering key in a public directory. This enables any use of the system to send a message to any other user enciphered in such a way that only the intended receiver is able to decipher it. As such, a public key cryptosystem is a multiple access cipher. A private conversation can therefore be held between any two individuals regardless of whether they have ever communicated before. Each one
sends messages to the other enciphered in the receiver's public enciphering key and deciphers the messages he receives using his own secret deciphering key.
We propose some techniques for developing public key cryptosystems, but the problem is still largely open.
Public key distribution systems offer Public key distribution systems offer a different ap-
proach to eliminating the need for a secure key distribution proach to eliminating the need fuch a system two users who wish to exchange a key communicate back and forth until they arrive at a key in common. A third party eavesdropping on this ex change must find it computationally infeasible to compute the key from the information overheard. A possible solu tion to the public key distribution problem is given in
Section III, and Merkle [1] has a partial solution of a dif ferent form.
A second problem, amenable to cryptographic solution which stands in the way of replacing contemporary busi-

Diffie \& Hellman 1976

Marked the birth of public-key cryptography.

Invented the Diffie-Hellman key exchange (conjectured to be secure against all poly-time attackers unlike Merkle).

Used to this day (e.g., TLS 1.3) albeit with different groups than what DH had in mind.

Turing Award 2015

I. Introduction
us: we crant "electronic mat [iu) may soon be upon us, we must ensure that two important properties of messages are private, and (h) messages can be cig: (a) We demonstrate in this paper how to build the Capabilifies into an clectronic mail system. At the heart of eur proposal is a new encryption
methend This me thad provides an implementation of nethod. This method provides an implementation of a publichey eryptosytem, an elegant conceet in-
vented by Diffic and Hellman [1]. Their atticle motivated vur research , ince they presented the concept her mot any practical implementation of such a system. Readers familiar with 111 may wish to skip directly to Sectan VIor a decription of our method
II. Public-Key Cryptossotems

In a "puthe-k ev iryptosymen" each user places in a puthic file an cherption procedure E. That is, the puble whe a drectury glemg the enceyplen procehis onferpondine derapion procelure D. These prow cedures have the follensing thur propertios
(a) Decipbering the enciphered form of a message M buthe M Fermath
$\mathrm{D}(\mathrm{F}(\mathrm{M})=\mathrm{M}$
(1) Bothe and D ate casy to compute
(0) By puhtich revaling E the user dow not reveal an mily ho conderat D. The cocr ped wit compute Defficiontly
phered M is the rowt deephered and then enci-
1- $\mathrm{D}(\mathrm{M})-\mathrm{M}$.
An cheryptan (wr decoption) procedure typially
 Eencrat methed. undier control of the hes. enciphers a
 eme general method: the securty of a given procedure encryption algunthm then means revealing the key. method of computing D(O) testing all possible mescages M until one such that $E(M)=C$ is found. If propery (c) is satisfid the number of such messages to At will be oo large that this approach is impractical.
A function F satisfying (a)-(c) is a "trap-door one-
waty function:" if it also catisfick (d) it is a "trap-door way duced the concept of trap-door one-way functions but

Rivest, Shamir \& Adleman 1978

Invented the RSA trapdoor permutation, public-key encryption and digital signatures.

RSA Signatures used to this day (e.g., TLS 1.3) in essentially the original form it was invented.

Turing Award 2002

Recetived February 3. 1983: revised Norember \&. 1983

A new probabilistic model of data eneryption is introduced. For this model, under suitable
complexity assumptions. it is proved that eatracting any information about the cleartex from complexity assumptions it is proved that atracting any information about the cleartexs from
the cypherext is hard on the average for an adversary with polynomialy bounded the cypherteat is hard on the average for an adersary wids polynomialy bounded
computational resources The proof holds for any message space mith any probsility
distribution. The first implementaion of this model is presented. The reovity of this distriution. The first implementation of this moded is presentad. The severity of this
implementation is proved under the istractability assumption of decidirg Quadratic
Residsosity modulo composite numbers whose factorizuion is unksown.

1. Introduction

This paper proposes an encryption scheme that possesses the following property:
Whatever is effelently computable about the cleartext given the cyphertext, is also efficiently computable without the cyphertext.
The security of our encryption scheme is based on complexity theory. Thus, when we say that it is "impossible" for an adversary to compute any information about the cleartext from the cyphertext we mean that it is not computationally feasible. The relatively young field of complexity theory has not yet been able to prove a noalinear lower bound for even one natural NP-complete problem. At the same time, despite the enormous mathematical effort, some problems in number theory have for centuries refused any "domestication." Thus, for concretely implementing our scheme, we assume the intractability of some problems in number theory such as factoring or deciding quadratic residuosity with respect to composite moduli. In this context, proving that a problem is hard means to prove it equivalent to one of the above mentioned problems. In other words, any threat to the security of the concrete implementation of our encryption scheme will result in an efficient algorithm for deciding quadratic residuosity modulo composite integers.
-This research was done vhen both authors were students at the University of Callifrnia at Berkeley and supported in part by NSF Grate MCS 82.04506 . The preparation of this matauseript was done when
the first author was an the Laboratory of Computer Science at MIT and supported by a Bantell the first author was at the Laboratory of Computer Sciesce at MIT and supported by a Bastrell
fellowship and an IBM faculay deverlopment awnd, and the second author was at the Compoter Science Department at the University of Teronto.
$0022.0000 / 8453.00$
270

Goldwasser \& Micali 1982

"Probabilistic Encryption": defined what is now the gold-standard of security for public-key encryption (two equivalent defs: indistinguishability and semantic security)

GM-encryption: based on the difficulty of the quadratic residuosity problem, the first homomorphic encryption.

Turing Award 2012

The Secret History of Public-key Encryption

Claimed to be invented in secret in early 1970s at the GCHQ (British NSA) by James Ellis, Clifford Cocks and Malcolm Williamson.

THE STORY OF NON-SECRET ENCRYPTION

Abstract

by J H ELLIS 1. Public-key cryptography (PKC) has been the subject of much discussion in the open literature since Diffie and Hellman suggested the possibility in their paper of April 1976 (reference 1). It has captured public imagination, and has been analysed and developed for practical use. Over the past decade there has been considerable academic activity in this field with many different schemes being proposed and, sometimes, analysed. 2. Cryptography is a most unusual science. Most professional scientists aim to be the first to publish their work, because it is through dissemination that the work realises its value. In contrast, the fullest value of cryptography is realised by minimising the information available to potential adversaries. Thus professional cryptographers normally work in closed communities to provide sufficient professional interaction to ensure quality while maintaining secrecy from outsiders. Revelation of these secrets is normally only sanctioned in the interests of historical accuracy after it has been demonstrated clearly that no further benefit can be obtained from continued secrecy. 3. In keeping with this tradition it is now appropriate to tell the story of the invention and development within CESG of non-secret encryption (NSE) which was our original name for what is now called PKC. The task of writing this paper has devolved on me because NSE was my idea and I can therefore describe these early developments from personal experience. No techniques not already public knowledge, or specific applications of NSE will be mentioned. Neither shall I venture into evaluation. This is a simple, personal account of the salient features, with only the absolute minimum of mathematics. 4. The story begins in the 60 's. The management of vast quantities of key material needed for secure communication was a headache for the armed forces. It was obvious to everyone, including me, that no secure communication was possible without secret key, some other secret knowledge, or at least some way in which the recipient was in a different position from an interceptor. After all, if they were in identical situations how could one possibly be able to receive what the other could not? Thus there was no incentive to look for something so clearly impossible. 5. The event which changed this view was the discovery of a wartime, Bell-Telephone report by an unknown author describing an ingenious idea for secure telephone speech (reference 2). It proposed that the recipient should mask the sender's speech by adding noise to the line. He could subtract the noise afterwards since he had added it and therefore knew what it was. The obvious practical disadvantages

^[]

Public-Key Encryption
 (also called asymmetric encryption)

Anyone can encrypt to Bob.
GOAL:
Bob, and only Bob, can decrypt.

Bob pk Public-Key Encryption

$$
\mathrm{m} \leftarrow \operatorname{Dec}(\mathbf{s k}, \mathrm{c})
$$

sk
(1) Bob generates a pair of keys, a public key pk, and a private (or secret) key sk.
(2) Bob "publishes" pk and keeps sk to himself.
(3) Alice encrypts m to Bob using pk
(4) Bob decrypts using sk

Public-Key Encryption

A triple of PPT algorithms (Gen, Enc, Dec) s.t.

路

- $(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$.

PPT Key generation algorithm generates a public-private key pair.

- $c \leftarrow \operatorname{Enc}(p k, m)$. 园

Encryption algorithm uses the public key to encrypt message m.

- $m \leftarrow \operatorname{Dec}(s k, c)$.

Decryption algorithm uses the private key to decrypt ciphertext c.

Correctness: For all pk, sk, m: $\operatorname{Dec}(s k, \operatorname{Enc}(p k, m))=\mathrm{m}$.

How to Define Security

Eve knows Bob's public key pk
Eve sees polynomially many ciphertexts c_{1}, c_{2}, \ldots of messages m_{1}, m_{2}, \ldots
Given this: Eve should not get any partial information about the set of messages.

IND-Security (also called IND-CPA)

Challenger
$(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$

Eve

$$
\begin{aligned}
& \stackrel{\overrightarrow{m_{0}}}{\stackrel{\longleftrightarrow}{m_{1}}}=\left(m_{0}^{1}, m_{0}^{2}, \ldots, m_{0}^{L}, m_{1}^{2}, \ldots, m_{1}^{L}\right)
\end{aligned} \text { s.t. }\left|\boldsymbol{m}_{0}^{i}\right|=\left|m_{1}^{i}\right| \text { for all } \boldsymbol{i}
$$

$$
b \leftarrow\{0,1\}
$$

$$
c_{i} \leftarrow E n c\left(p k, m_{b}^{i}\right)
$$

Eve wins if $b^{\prime}=b$. The encryption scheme is IND-secure if no PPT Eve can win in this game with probability better than $\frac{1}{2}+\operatorname{negl}(n)$.

An Alternative Definition

"Semantic Security": the computational analog of Shannon's perfect secrecy definition.

Turns out to be equivalent to IND-security (just as in Lec 1 but the proof is more complex)

We will stick to IND-security as it's easy to work with.

Simplifying the Definition: One Message to Many Message Security

Eve wins if $b^{\prime}=b$. The encryption scheme is single-message-IND-
secure if no PPT Eve can win with prob. better than $\frac{1}{2}+\operatorname{negl}(n)$.

Simplifying the Definition: One Message to Many Message Security

Theorem: A public-key encryption scheme is INDsecure iff it is single-message IND-secure.

Constructions of Public-key Encryption

1: Diffie-Hellman/El Gamal

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Learning with Errors/Regev

Groups

Group G : (finite set S, group operation $*: S \times S \rightarrow S$)
Associative: $\left(g_{1} * g_{2}\right) * g_{3}=g_{1} *\left(g_{2} * g_{3}\right)$
Commutative: $g_{1} * g_{2}=g_{2} * g_{1}$
Identity: $\mathrm{Id} * g=g * I d=g$
Inverse: for every g, there is a g^{\prime} s.t.

$$
g * g^{\prime}=g^{\prime} * g=I d
$$

Order

Order of a Group $G=(S, *)$ is simply $|S|$ (sometimes we will just write $|G|$).

Order of an element $g \in G$, denoted $\operatorname{ord}(g)$ is the minimum $n>0$ s.t.

$$
g * g * \cdots * g=I d
$$

Lagrange's Theorem: ord (g) always divides $|G|$.
A generator is an element of order $|G|$.
A cyclic group is one that has a generator.

The Additive Group \mathbb{Z}_{N}

$\mathbb{Z}_{N}:(\{0,1, \ldots, \mathrm{~N}-1\}$, group operation: $+\bmod N)$

- Order?
- Generators?

The Additive Group \mathbb{Z}_{N}

$\mathbb{Z}_{N}:(\{0,1, \ldots, N-1\}$, group operation: $+\bmod N)$

- Computing the group operation is easy

$$
\text { (= poly }(\log N) \text { time })
$$

- Computing inverses is easy.
- Iterated group operations ("exponentiation")

Given $g \in \mathbb{Z}_{N}$ and $n \in \mathbb{Z}$, compute $\underbrace{g+g+\cdots+g}_{n \text { times }}$

The Additive Group \mathbb{Z}_{N}

$\mathbb{Z}_{N}:(\{0,1, \ldots, \mathrm{~N}-1\}$, group operation: $+\bmod N)$

- Computing the group operation is easy (=poly time).
- Computing inverses is easy.
- Exponentiation is easy.
- The discrete logarithm problem is

Given $\begin{aligned} g, h \in \mathbb{Z}_{p}, \text { find } n \in \mathbb{Z} \text {, s.t. } h & =g+g+\cdots+g \\ & =n g \text { (傗ibdes) }\end{aligned}$
Extended Euclidean algorithm: $n=h g^{-1}(\bmod N)$

The Multiplicative Group \mathbb{Z}_{p}^{*}

$\mathbb{Z}_{p}^{*}:(\{1, \ldots, \mathrm{p}-1\}$, group operation: $\cdot \bmod p): \mathbf{p}$ prime

- Order the group $=\varphi(p)=p-1$
(Euler's totient function $\varphi(N)=|\{1 \leq \mathrm{x}<\mathrm{N}: \operatorname{gcd}(\mathrm{x}, \mathrm{N})=1\}|$
- If p is prime, \mathbb{Z}_{p}^{*} is cyclic.

The Multiplicative Group \mathbb{Z}_{p}^{*}

$\mathbb{Z}_{p}^{*}:(\{1, \ldots, \mathrm{p}-1\}$, group operation: $\cdot \bmod p)$

- Computing the group operation is easy.
- Computing inverses is
- Exponentiation (given $g \in \mathbb{Z}_{p}^{*}$ and $x \in \mathbb{Z}_{p-1}$, find $g^{x} \bmod \mathrm{p}$)
- The discrete logarithm problem given $g, h \in \mathbb{Z}_{p}^{*}$, find $x \in \mathbb{Z}_{p-1}$ s.t. $\mathrm{h}=g^{x} \bmod \mathrm{p}$) is

Diffie-Hellman Key Exchange

Commutativity in the exponent: $\quad\left(g^{x}\right)^{y}=\left(g^{y}\right)^{x}$ (where g is an element of some group)

So, you can compute $g^{x y}$ given either g^{x} and y, or g^{y} and x.

Diffie-Hellman Assumption (DHA):
Hard to compute $g^{x y}$ given only g, g^{x} and g^{y}

Diffie-Hellman Key Exchange

Diffie-Hellman Assumption (DHA):
Hard to compute it given only g, g^{x} and g^{y}

We know that if discrete log is easy, DHA is false.

Major Open Problem:
Are discrete log and DHA equivalent?

Diffie-Hellman Key Exchange

$$
p, g \text { : Generator of our group } Z_{p}^{*}
$$

$g^{x} \bmod p$

$g^{y} \bmod p$

Pick a random number $x \in Z_{p-1}$

Shared key K $=g^{x y} \bmod p$

$$
=\left(g^{y}\right)^{x} \bmod p
$$

Pick a random number $\mathrm{y} \in Z_{p-1}$

Shared key K $=g^{x y} \bmod p$

$$
=\left(g^{x}\right)^{y} \bmod p
$$

Diffie-Hellman/El Gamal Encryption

- $\operatorname{Gen}\left(1^{n}\right)$: Generate an n-bit prime p and a generator g of Z_{p}^{*}. Choose a random number $x \in Z_{p-1}$

Let $p k=\left(p, g, g^{x}\right)$ and let $s k=x$.

- $\operatorname{Enc}(p k, m)$ where $m \in Z_{p}^{*}$: Generate random $y \in$ Z_{p-1} and output $\left(g^{y}, g^{x y} \cdot m\right)$
- $\operatorname{Dec}(s k=x, c)$: Compute $g^{x y}$ using g^{y} and x and divide the second component to retrieve m.

How to come up with a prime p

- How to come up with a group $\mathbb{Z}_{p}^{*}=$ how to generate a large prime p ?
(1) Prime number theorem: $\approx 1 / n$ fraction of \boldsymbol{n}-bit numbers are prime.
(2) Primality tests [Miller'76, Rabin'80, Agrawal-Kayal-Saxena'02] Can test in time $\operatorname{poly}(n)$ if a given n-bit number is prime.

How to come up with a generator g

- If p is prime, \mathbb{Z}_{p}^{*} is cyclic (so generators exist).
- How to come up with a generator of \mathbb{Z}_{p}^{*} ?
(1) There are lots of generators: $\approx 1 / n$ fraction of \boldsymbol{n} bit numbers are prime.
(2) Testing if \boldsymbol{g} is a generator:

Theorem: let q_{1}, \ldots, q_{k} be the prime factors of p. Then, g is a generator of \mathbb{Z}_{p}^{*} if and only if

$$
g^{(p-1) / q_{i}} \neq 1(\bmod p) \text { for all i. }
$$

To Summarize

- Pick a random prime p together with its prime factorization (Adam Kalai 2000 paper)
- Pick a random element of \mathbb{Z}_{p}^{*} and test if it is a generator (using theorem from last slide).
- Continue this process until you hit a generator. The density of generators is large enough that this will converge in expected poly $(\log p)$ time.
- Another, more commonly used method, in the next lecture.

Next Lecture: More on Diffie-Hellman Key Exchange

