
MIT 6.875

Lecture 6
Foundations of Cryptography

Roadmap of the Course: The Crypto Worlds

Roadmap of the Course: The Crypto Worlds

PRG (Stateful)
Secret-key
encryption

Roadmap of the Course: The Crypto Worlds

PRG

Secret-key
encryptionPRF

(Stateful)
Secret-key
encryption

Roadmap of the Course: The Crypto Worlds

PRG

Secret-key
encryptionPRF

MAC
CCA-secure
Secret-key
enc.

(Stateful)
Secret-key
encryption

Roadmap of the Course: The Crypto Worlds

PRG

Secret-key
encryptionPRF

Lecture 2-7,
11-12

Minicrypt:

MAC

OWF

Hashing

Digital
Signatur
es

Bit
Commitment

Zero-
Knowledge
proofs

OWF

CCA-secure
Secret-key
enc.

(Stateful)
Secret-key
encryption

Roadmap of the Course: The Crypto Worlds

PRG

Secret-key
encryptionPRF

Lecture 2-7,
11-12

Public-key
encryptionLecture 8-10,…

…

Minicrypt:

Cryptomania:

MAC

OWF

Hashing

Digital
Signatur
es

Bit
Commitment

Zero-
Knowledge
proofs

OWF

CCA-secure
Secret-key
enc.

(Stateful)
Secret-key
encryption

Roadmap of the Course: The Crypto Worlds

PRG

Secret-key
encryptionPRF

Lecture 2-7,
11-12

Public-key
encryptionLecture 8-10,…

…

Minicrypt:

Cryptomania:

MAC

OWF

Hashing

Digital
Signatur
es

Bit
Commitment

Zero-
Knowledge
proofs

OWF

CCA-secure
Secret-key
enc.

(Stateful)
Secret-key
encryption

This Week

1. Define one-way functions (OWF).

2. Define Hardcore bits (HCB).

4. Goldreich-Levin Theorem: every OWF has a H

3. Show that one-way functions* + HCB ⇒ PRG

One-way Functions (Informally)
F

domain

range

Easy to
compute

Hard to
invert

One-way Functions (Take 1)

A function (family) 𝐹𝐹𝑛𝑛 𝑛𝑛∈ℕ where 𝐹𝐹𝑛𝑛: {0,1}𝑛𝑛→ {0,1}𝑚𝑚(𝑛𝑛) is
one-way if for every p.p.t. adversary 𝐴𝐴, there is a negligible
function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐹𝐹𝑛𝑛 𝑥𝑥 :𝐴𝐴 1𝑛𝑛,𝑦𝑦 = 𝑥𝑥 ≤ 𝜇𝜇(𝑛𝑛)

One-way Functions (Take 1)

A function (family) 𝐹𝐹𝑛𝑛 𝑛𝑛∈ℕ where 𝐹𝐹𝑛𝑛: {0,1}𝑛𝑛→ {0,1}𝑚𝑚(𝑛𝑛) is
one-way if for every p.p.t. adversary 𝐴𝐴, there is a negligible
function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐹𝐹𝑛𝑛 𝑥𝑥 :𝐴𝐴 1𝑛𝑛,𝑦𝑦 = 𝑥𝑥 ≤ 𝜇𝜇(𝑛𝑛)

Consider 𝑭𝑭𝒏𝒏 𝒙𝒙 = 𝟎𝟎 for all x.

One-way Functions (Take 1)

A function (family) 𝐹𝐹𝑛𝑛 𝑛𝑛∈ℕ where 𝐹𝐹𝑛𝑛: {0,1}𝑛𝑛→ {0,1}𝑚𝑚(𝑛𝑛) is
one-way if for every p.p.t. adversary 𝐴𝐴, there is a negligible
function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐹𝐹𝑛𝑛 𝑥𝑥 :𝐴𝐴 1𝑛𝑛,𝑦𝑦 = 𝑥𝑥 ≤ 𝜇𝜇(𝑛𝑛)

Consider 𝑭𝑭𝒏𝒏 𝒙𝒙 = 𝟎𝟎 for all x.

This is one-way according to the above definition.
In fact, impossible to find the inverse even if 𝐴𝐴 has unbounded
time.

One-way Functions (Take 1)

A function (family) 𝐹𝐹𝑛𝑛 𝑛𝑛∈ℕ where 𝐹𝐹𝑛𝑛: {0,1}𝑛𝑛→ {0,1}𝑚𝑚(𝑛𝑛) is
one-way if for every p.p.t. adversary 𝐴𝐴, there is a negligible
function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐹𝐹𝑛𝑛 𝑥𝑥 :𝐴𝐴 1𝑛𝑛,𝑦𝑦 = 𝑥𝑥 ≤ 𝜇𝜇(𝑛𝑛)

Consider 𝑭𝑭𝒏𝒏 𝒙𝒙 = 𝟎𝟎 for all x.

This is one-way according to the above definition.
In fact, impossible to find the inverse even if 𝐴𝐴 has unbounded
time.

Conclusion: not a useful/meaningful definition.

One-way Functions (Take 1)

A function (family) 𝐹𝐹𝑛𝑛 𝑛𝑛∈ℕ where 𝐹𝐹𝑛𝑛: {0,1}𝑛𝑛→ {0,1}𝑚𝑚(𝑛𝑛) is
one-way if for every p.p.t. adversary 𝐴𝐴, there is a negligible
function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐹𝐹𝑛𝑛 𝑥𝑥 :𝐴𝐴 1𝑛𝑛,𝑦𝑦 = 𝑥𝑥 ≤ 𝜇𝜇(𝑛𝑛)

The Right Definition: Impossible to find an inverse in p.p.t.

One-way Functions: The Definition

A function (family) 𝐹𝐹𝑛𝑛 𝑛𝑛∈ℕ where 𝐹𝐹𝑛𝑛: {0,1}𝑛𝑛→ {0,1}𝑚𝑚(𝑛𝑛) is
one-way if for every p.p.t. adversary 𝐴𝐴, there is a negligible
function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛;𝑦𝑦 = 𝐹𝐹𝑛𝑛 𝑥𝑥 ;𝐴𝐴 1𝑛𝑛,𝑦𝑦 = 𝒙𝒙′:𝒚𝒚 = 𝑭𝑭𝒏𝒏 𝒙𝒙′ ≤ 𝜇𝜇(𝑛𝑛)

One-way Functions: The Definition

A function (family) 𝐹𝐹𝑛𝑛 𝑛𝑛∈ℕ where 𝐹𝐹𝑛𝑛: {0,1}𝑛𝑛→ {0,1}𝑚𝑚(𝑛𝑛) is
one-way if for every p.p.t. adversary 𝐴𝐴, there is a negligible
function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛;𝑦𝑦 = 𝐹𝐹𝑛𝑛 𝑥𝑥 ;𝐴𝐴 1𝑛𝑛,𝑦𝑦 = 𝒙𝒙′:𝒚𝒚 = 𝑭𝑭𝒏𝒏 𝒙𝒙′ ≤ 𝜇𝜇(𝑛𝑛)

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic polynomial time

One-way Functions: The Definition

A function (family) 𝐹𝐹𝑛𝑛 𝑛𝑛∈ℕ where 𝐹𝐹𝑛𝑛: {0,1}𝑛𝑛→ {0,1}𝑚𝑚(𝑛𝑛) is
one-way if for every p.p.t. adversary 𝐴𝐴, there is a negligible
function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛;𝑦𝑦 = 𝐹𝐹𝑛𝑛 𝑥𝑥 ;𝐴𝐴 1𝑛𝑛,𝑦𝑦 = 𝒙𝒙′:𝒚𝒚 = 𝑭𝑭𝒏𝒏 𝒙𝒙′ ≤ 𝜇𝜇(𝑛𝑛)

One-way Permutations:
One-to-one one-way functions with 𝑚𝑚 𝑛𝑛 = 𝑛𝑛.

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic polynomial time

Today

1. Define one-way functions (OWF).

2. Define Hardcore bits (HCB).

4. Goldreich-Levin Theorem: every OWF has a H

3. Show that one-way permutations (OWP) ⇒ PR

Hardcore Bits

If 𝐹𝐹 is a one-way function, we know it’s hard to compute a
pre-image of 𝐹𝐹 𝑥𝑥 for a randomly chosen 𝑥𝑥.

How about computing partial information about an inverse?

Hardcore Bits

If 𝐹𝐹 is a one-way function, we know it’s hard to compute a
pre-image of 𝐹𝐹 𝑥𝑥 for a randomly chosen 𝑥𝑥.

How about computing partial information about an inverse?

Exercise: There are one-way functions for which it is easy to
compute the first half of the bits of an inverse.

Hardcore Bits

If 𝐹𝐹 is a one-way function, we know it’s hard to compute a
pre-image of 𝐹𝐹 𝑥𝑥 for a randomly chosen 𝑥𝑥.

Nevertheless, there has to be a hardcore set of hard to invert
inputs. Concretely: Does there necessarily exist some bit of 𝑥𝑥
that is hard to compute?

Hardcore Bits

If 𝐹𝐹 is a one-way function, we know it’s hard to compute a
pre-image of 𝐹𝐹 𝑥𝑥 for a randomly chosen 𝑥𝑥.

Nevertheless, there has to be a hardcore set of hard to invert
inputs. Concretely: Does there necessarily exist some bit of 𝑥𝑥
that is hard to compute?

• Any bit can be guessed correctly w.p. 1/2

• So, “hard to compute” → “hard to guess with
probability non-negligibly better than 1/2”

Hardcore Bits

If 𝐹𝐹 is a one-way function, we know it’s hard to compute a
pre-image of 𝐹𝐹 𝑥𝑥 for a randomly chosen 𝑥𝑥.

Nevertheless, there has to be a hardcore set of hard to invert
inputs. Concretely: Does there exist some bit of 𝑥𝑥 that is hard
to guess with probability non-negligibly better than 1/2?

Hardcore Bits

If 𝐹𝐹 is a one-way function, we know it’s hard to compute a
pre-image of 𝐹𝐹 𝑥𝑥 for a randomly chosen 𝑥𝑥.

Nevertheless, there has to be a hardcore set of hard to invert
inputs. Concretely: Does there exist some bit of 𝑥𝑥 that is hard
to guess with probability non-negligibly better than 1/2?

HARDCORE BIT (Take 1)

Hardcore Bits

If 𝐹𝐹 is a one-way function, we know it’s hard to compute a
pre-image of 𝐹𝐹 𝑥𝑥 for a randomly chosen 𝑥𝑥.

HARDCORE BIT (Take 1)

For any function (family) 𝐹𝐹: {0,1}𝑛𝑛→ {0,1}𝑚𝑚, a bit 𝑖𝑖 = 𝑖𝑖(𝑛𝑛) is
hardcore if for every p.p.t. adversary 𝐴𝐴, there is a negligible
function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐹𝐹 𝑥𝑥 :𝐴𝐴 𝑦𝑦 = 𝑥𝑥𝑖𝑖 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Does every one-way function
have a hardcore bit?

Does every one-way function
have a hardcore bit?

PS2: There are functions that are one-way, yet every bit is
somewhat easy to predict (say, with probability 1

2
+ 1/𝑛𝑛).

So, we will generalize the notion of a hardcore “bit”.

Hardcore Bits

HARDCORE PREDICATE (Definition)

For any function (family) 𝐹𝐹: {0,1}𝑛𝑛→ {0,1}𝑚𝑚, a function
𝐵𝐵: {0,1}𝑛𝑛→ {0,1} is a hardcore predicate if for every p.p.t.
adversary 𝐴𝐴, there is a negligible function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛;𝑦𝑦 = 𝐹𝐹 𝑥𝑥 :𝐴𝐴 𝑦𝑦 = 𝐵𝐵(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

For us, henceforth, a hardcore bit will mean a hardcore
predicate.

Hardcore Predicate (in pictures)

x

F(x)

B(x)

Hard to
compute

Discussion on the Definition
HARDCORE PREDICATE (Definition)

For any function (family) 𝐹𝐹: {0,1}𝑛𝑛→ {0,1}𝑚𝑚, a bit 𝐵𝐵: {0,1}𝑛𝑛→
{0,1} is a hardcore predicate (HCP) if for every p.p.t.
adversary 𝐴𝐴, there is a negligible function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛;𝑦𝑦 = 𝐹𝐹 𝑥𝑥 :𝐴𝐴 𝑦𝑦 = 𝐵𝐵(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

1. Definition of HCP makes sense for any function family, not
just one-way functions.

Discussion on the Definition
HARDCORE PREDICATE (Definition)

For any function (family) 𝐹𝐹: {0,1}𝑛𝑛→ {0,1}𝑚𝑚, a bit 𝐵𝐵: {0,1}𝑛𝑛→
{0,1} is a hardcore predicate (HCP) if for every p.p.t.
adversary 𝐴𝐴, there is a negligible function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛;𝑦𝑦 = 𝐹𝐹 𝑥𝑥 :𝐴𝐴 𝑦𝑦 = 𝐵𝐵(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

1. Definition of HCP makes sense for any function family, not
just one-way functions.
2. Some functions can have information-theoretically hard to
guess predicates (e.g., compressing functions)

Discussion on the Definition
HARDCORE PREDICATE (Definition)

For any function (family) 𝐹𝐹: {0,1}𝑛𝑛→ {0,1}𝑚𝑚, a bit 𝐵𝐵: {0,1}𝑛𝑛→
{0,1} is a hardcore predicate (HCP) if for every p.p.t.
adversary 𝐴𝐴, there is a negligible function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛;𝑦𝑦 = 𝐹𝐹 𝑥𝑥 :𝐴𝐴 𝑦𝑦 = 𝐵𝐵(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

1. Definition of HCP makes sense for any function family, not
just one-way functions.
2. Some functions can have information-theoretically hard to
guess predicates (e.g., compressing functions)

3. We’ll be interested in settings where 𝑥𝑥 is uniquely determined
given F(𝑥𝑥), yet B(𝑥𝑥) is hard to predict given F(𝑥𝑥)

Today

1. Define one-way functions (OWF).

2. Define Hardcore bits (HCB).

4. Goldreich-Levin Theorem: every OWF has a H

3. Show that one-way permutations (OWP) ⇒ PR

OWP ⇒ PRG

Let 𝐹𝐹 be a one-way permutation, and 𝐵𝐵 an associated
hardcore predicate for 𝐹𝐹.

CONSTRUCTION

Then, define 𝐺𝐺 𝑥𝑥 = F 𝑥𝑥 | B(𝑥𝑥) .

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

(Note that 𝐺𝐺 stretches by one bit. We already know how to
turn this into a 𝐺𝐺′ that stretches to any poly number of bits.)

OWP ⇒ PRG

Let 𝐹𝐹 be a one-way permutation, and 𝐵𝐵 an associated
hardcore predicate for 𝐹𝐹.

CONSTRUCTION

Then, define 𝐺𝐺 𝑥𝑥 = F 𝑥𝑥 | B(𝑥𝑥) .

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

Proof (next slide): Use next-bit unpredictability.

OWP ⇒ PRG

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺𝐺 is not a PRG.
Therefore, there is a next-bit predictor 𝐷𝐷, and index 𝑖𝑖, and a
polynomial function 𝑝𝑝 such that

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐺𝐺 𝑥𝑥 :𝐷𝐷 𝑦𝑦1…𝑖𝑖−1 = 𝑦𝑦𝑖𝑖 ≥
1
2

+ 1/𝑝𝑝(𝑛𝑛)

OWP ⇒ PRG

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺𝐺 is not a PRG.
Therefore, there is a next-bit predictor 𝐷𝐷, and index 𝑖𝑖, and a
polynomial function 𝑝𝑝 such that

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐺𝐺 𝑥𝑥 :𝐷𝐷 𝑦𝑦1…𝑖𝑖−1 = 𝑦𝑦𝑖𝑖 ≥
1
2

+ 1/𝑝𝑝(𝑛𝑛)

Observation: The index 𝑖𝑖 has to be 𝑛𝑛 + 1. Do you see why?

OWP ⇒ PRG

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺𝐺 is not a PRG.
Therefore, there is a next-bit predictor 𝐷𝐷, and index 𝑖𝑖, and a
polynomial function 𝑝𝑝 such that

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐺𝐺 𝑥𝑥 :𝐷𝐷 𝑦𝑦1…𝑖𝑖−1 = 𝑦𝑦𝑖𝑖 ≥
1
2

+ 1/𝑝𝑝(𝑛𝑛)

Observation: The index 𝑖𝑖 has to be 𝑛𝑛 + 1. Do you see why?

Hint: 𝐺𝐺 𝑥𝑥 = F 𝑥𝑥 | B(𝑥𝑥) and F is a one-way permutation.

OWP ⇒ PRG

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺𝐺 is not a PRG.
Therefore, there is a next-bit predictor 𝐷𝐷 and a polynomial
function 𝑝𝑝 such that

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐺𝐺 𝑥𝑥 :𝐷𝐷 𝑦𝑦1…𝑛𝑛 = 𝑦𝑦𝑛𝑛+1 ≥
1
2

+ 1/𝑝𝑝(𝑛𝑛)

OWP ⇒ PRG

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺𝐺 is not a PRG.
Therefore, there is a next-bit predictor 𝐷𝐷 and a polynomial
function 𝑝𝑝 such that

Pr 𝑥𝑥 ← 0,1 𝑛𝑛:𝐷𝐷(𝐹𝐹(𝑥𝑥)) = 𝐵𝐵(𝑥𝑥) ≥
1
2

+ 1/𝑝𝑝(𝑛𝑛)

So, 𝐷𝐷 is a hardcore bit predictor! QED.

Today

1. Define one-way functions (OWF).

2. Define Hardcore bits (HCB).

4. Goldreich-Levin Theorem: every OWF has a H

3. Show that one-way permutations (OWP) ⇒ PR

A Hardcore Predicate for all OWF

Let’s shoot for a universal hardcore predicate.

i.e., a single predicate 𝐵𝐵 where it is hard to guess 𝐵𝐵(𝑥𝑥) given F(𝑥𝑥)

A Hardcore Predicate for all OWF

Let’s shoot for a universal hardcore predicate.

i.e., a single predicate 𝐵𝐵 where it is hard to guess 𝐵𝐵(𝑥𝑥) given F(𝑥𝑥)

Is this possible?

A Hardcore Predicate for all OWF

Let’s shoot for a universal hardcore predicate.

i.e., a single predicate 𝐵𝐵 where it is hard to guess 𝐵𝐵(𝑥𝑥) given F(𝑥𝑥)

Is this possible?

Turns out the answer is “no”.

A Hardcore Predicate for all OWF

Let’s shoot for a universal hardcore predicate.

i.e., a single predicate 𝐵𝐵 where it is hard to guess 𝐵𝐵(𝑥𝑥) given F(𝑥𝑥)

Is this possible?

Turns out the answer is “no”.

You will tell me why in PS2.

A Hardcore Predicate for all OWF

Let’s shoot for a universal hardcore predicate.

i.e., a single predicate 𝐵𝐵 where it is hard to guess 𝐵𝐵(𝑥𝑥) given F(𝑥𝑥)

Is this possible?

Turns out the answer is “no”.

So, what is one to do?

You will tell me why in PS2.

Goldreich-Levin (GL) Theorem

Let {𝐵𝐵𝑟𝑟: {0,1}𝑛𝑛→ {0,1}} where

be a collection of predicates (one for each 𝑟𝑟). Then, a random
𝐵𝐵𝑟𝑟 is hardcore for every one-way function 𝐹𝐹. That is, for every
one-way function F, every PPT A, there is a negligible function
𝜇𝜇 s.t.

𝐵𝐵𝑟𝑟 𝑥𝑥 = 𝑟𝑟, 𝑥𝑥 = ∑𝑖𝑖=1𝑛𝑛 𝑟𝑟𝑖𝑖𝑥𝑥𝑖𝑖 mod 2

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝐴𝐴 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝐵𝐵𝑟𝑟(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

GL Theorem: Alternative Interpretation

For every one-way function/permutation 𝐹𝐹, there is a related
one-way function/permutation

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝐴𝐴 𝐹𝐹𝐹 𝑥𝑥, 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝐹𝐹′ 𝑥𝑥, 𝑟𝑟 = (𝐹𝐹 𝑥𝑥 , 𝑟𝑟)

which has a deterministic hardcore predicate. In particular,
the predicate 𝐵𝐵 𝑥𝑥, 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 mod 2 is hardcore for 𝐹𝐹′.

GL Theorem: Alternative Interpretation

For every one-way function/permutation 𝐹𝐹, there is a related
one-way function/permutation

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝐴𝐴 𝐹𝐹𝐹 𝑥𝑥, 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝐹𝐹′ 𝑥𝑥, 𝑟𝑟 = (𝐹𝐹 𝑥𝑥 , 𝑟𝑟)

which has a deterministic hardcore predicate. In particular,
the predicate 𝐵𝐵 𝑥𝑥, 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 mod 2 is hardcore for 𝐹𝐹′.

GL Theorem: Alternative Interpretation

For every one-way function/permutation 𝐹𝐹, there is a related
one-way function/permutation

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝐴𝐴 𝐹𝐹𝐹 𝑥𝑥, 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝐹𝐹′ 𝑥𝑥, 𝑟𝑟 = (𝐹𝐹 𝑥𝑥 , 𝑟𝑟)

which has a deterministic hardcore predicate. In particular,
the predicate 𝐵𝐵 𝑥𝑥, 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 mod 2 is hardcore for 𝐹𝐹′.

Key Point:
This statement is sufficient to construct PRGs from any OWP.

Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
1
2

+ 1/𝑝𝑝(𝑛𝑛)

We will need to show an inverter 𝐴𝐴 for 𝐹𝐹

Pr 𝑥𝑥 ← 0,1 𝑛𝑛 ∶ 𝐴𝐴 𝐹𝐹 𝑥𝑥 = 𝑥𝑥′:𝐹𝐹 𝑥𝑥′ = 𝐹𝐹(𝑥𝑥) ≥ 1/𝑝𝑝𝑝(𝑛𝑛)

Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

We will need to show an inverter 𝐴𝐴 for 𝐹𝐹

Pr 𝑥𝑥 ← 0,1 𝑛𝑛 ∶ 𝐴𝐴 𝐹𝐹 𝑥𝑥 = 𝑥𝑥′:𝐹𝐹 𝑥𝑥′ = 𝐹𝐹(𝑥𝑥) ≥ 1/𝑝𝑝𝑝(𝑛𝑛)

Let’s make our lives easier: assume a perfect predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 = 1

Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

The inverter 𝐴𝐴 works as follows:

On input y = 𝐹𝐹 𝑥𝑥 , 𝐴𝐴 runs the predictor 𝑃𝑃 𝑛𝑛 times, on
inputs 𝑦𝑦, 𝑒𝑒1 , 𝑦𝑦, 𝑒𝑒2 , … , and (𝑦𝑦, 𝑒𝑒𝑛𝑛) where 𝑒𝑒1 =
100. . 0, 𝑒𝑒2 = 010 … 0,… are the unit vectors.

Let’s make our lives easier: assume a perfect predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 = 1

Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

The inverter 𝐴𝐴 works as follows:

On input y = 𝐹𝐹 𝑥𝑥 , 𝐴𝐴 runs the predictor 𝑃𝑃 𝑛𝑛 times, on
inputs 𝑦𝑦, 𝑒𝑒1 , 𝑦𝑦, 𝑒𝑒2 , … , and (𝑦𝑦, 𝑒𝑒𝑛𝑛) where 𝑒𝑒1 =
100. . 0, 𝑒𝑒2 = 010 … 0,… are the unit vectors.

Let’s make our lives easier: assume a perfect predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 = 1

Since 𝐴𝐴 is perfect, it returns 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖, the 𝑖𝑖𝑡𝑡𝑡 bit of 𝑥𝑥 on the
𝑖𝑖𝑡𝑡𝑡 invocation.

Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃
OK, now let’s assume less: assume a pretty good predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/𝑝𝑝(𝑛𝑛)

Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

First, we need an averaging argument.

OK, now let’s assume less: assume a pretty good predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/𝑝𝑝(𝑛𝑛)

Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

First, we need an averaging argument.

OK, now let’s assume less: assume a pretty good predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/𝑝𝑝(𝑛𝑛)

Claim: For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)

Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

First, we need an averaging argument.

OK, now let’s assume less: assume a pretty good predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/𝑝𝑝(𝑛𝑛)

Claim: For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)

Proof: Exercise in counting.

Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

First, we need an averaging argument.

OK, now let’s assume less: assume a pretty good predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/𝑝𝑝(𝑛𝑛)

Claim: For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)

Call these the good 𝑥𝑥.

Proof: Exercise in counting.

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Key Idea: Linearity

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (Pr P predicts 𝑟𝑟, 𝑥𝑥 wrong +

Pr P predicts 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong)
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (Pr P predicts 𝑟𝑟, 𝑥𝑥 wrong +

Pr P predicts 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong)
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (Pr P predicts 𝑟𝑟, 𝑥𝑥 wrong +

Pr P predicts 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong)
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (Pr P predicts 𝑟𝑟, 𝑥𝑥 wrong +

Pr P predicts 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong)
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (Pr P predicts 𝑟𝑟, 𝑥𝑥 wrong +

Pr P predicts 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong)
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)

(by union bound)

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (Pr P predicts 𝑟𝑟, 𝑥𝑥 wrong +

Pr P predicts 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong)
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)

(by union bound)

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two answers to get a guess for 𝑥𝑥𝑖𝑖.

Inverter A:

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two answers to get a guess for 𝑥𝑥𝑖𝑖.

Repeat log𝑛𝑛 ∗ 𝑝𝑝(𝑛𝑛) times:

Compute the majority of all such guesses and set the bit as 𝑥𝑥𝑖𝑖

Inverter A:

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two answers to get a guess for 𝑥𝑥𝑖𝑖.

Repeat log𝑛𝑛 ∗ 𝑝𝑝(𝑛𝑛) times:

Compute the majority of all such guesses and set the bit as 𝑥𝑥𝑖𝑖

Repeat for each 𝑖𝑖 ∈ 1,2, … ,𝑛𝑛 :

Output the concatenation of all 𝑥𝑥𝑖𝑖 as 𝑥𝑥.

Inverter A:

Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two answers to get a guess for 𝑥𝑥𝑖𝑖.

Repeat log𝑛𝑛 ∗ 𝑝𝑝(𝑛𝑛) times:

Compute the majority of all such guesses and set the bit as 𝑥𝑥𝑖𝑖

Repeat for each 𝑖𝑖 ∈ 1,2, … ,𝑛𝑛 :

Output the concatenation of all 𝑥𝑥𝑖𝑖 as 𝑥𝑥.

Inverter A:

Analysis: Chernoff + Union Bound

Now the real Proof…

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (𝑷𝑷𝑷𝑷 P predicts 𝒓𝒓,𝒙𝒙 wrong +

𝑷𝑷𝑷𝑷 P predicts 𝒓𝒓 + 𝒆𝒆𝒊𝒊,𝒙𝒙 wrong)
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)

(by union bound)

Who’s the culprit here?

Now on to the Real Proof

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Key Idea: Pairwise independence

A Proof of the GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

For a minute, assume we have a bit of help/advice.

(attributed to Charlie Rackoff)

A Proof of the GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

For a minute, assume we have a bit of help/advice.

Pick a random 𝑟𝑟, ask the Oracle to tells us 𝑟𝑟, 𝑥𝑥
and ask 𝑃𝑃 to tell us 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . Subtract the two
answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

(attributed to Charlie Rackoff)

A Proof of the GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

For a minute, assume we have a bit of help/advice.

Pick a random 𝑟𝑟, ask the Oracle to tells us 𝑟𝑟, 𝑥𝑥
and ask 𝑃𝑃 to tell us 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . Subtract the two
answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ 𝑷𝑷𝑷𝑷 P predicts 𝒓𝒓 + 𝒆𝒆𝒊𝒊,𝒙𝒙 correctly ≥ 1

2
+ 1/2𝑝𝑝(𝑛𝑛)

(attributed to Charlie Rackoff)

A Proof of the GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

For a minute, assume we have a bit of help/advice.

Pick a random 𝑟𝑟, ask the Oracle to tells us 𝑟𝑟, 𝑥𝑥
and ask 𝑃𝑃 to tell us 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . Subtract the two
answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ 𝑷𝑷𝑷𝑷 P predicts 𝒓𝒓 + 𝒆𝒆𝒊𝒊,𝒙𝒙 correctly ≥ 1

2
+ 1/2𝑝𝑝(𝑛𝑛)

(attributed to Charlie Rackoff)

A Proof of the GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pick a random 𝑟𝑟, ask the Oracle to tells us 𝑟𝑟, 𝑥𝑥
and ask 𝑃𝑃 to tell us 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . Subtract the two
answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ 𝑷𝑷𝑷𝑷 P predicts 𝒓𝒓 + 𝒆𝒆𝒊𝒊,𝒙𝒙 correctly ≥ 1

2
+ 1/2𝑝𝑝(𝑛𝑛)

(attributed to Charlie Rackoff)

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

A Proof of the GL Theorem
(attributed to Charlie Rackoff)

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pick a random 𝑟𝑟, guess 𝑟𝑟, 𝑥𝑥 and ask 𝑃𝑃 to tell us 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

A Proof of the GL Theorem
(attributed to Charlie Rackoff)

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pick a random 𝑟𝑟, guess 𝑟𝑟, 𝑥𝑥 and ask 𝑃𝑃 to tell us 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

If our guesses are all correct, then the analysis works out just
as before.

A Proof of the GL Theorem
(attributed to Charlie Rackoff)

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥,

Pick a random 𝑟𝑟, guess 𝑟𝑟, 𝑥𝑥 and ask 𝑃𝑃 to tell us 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 .
Subtract the two to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

If our guesses are all correct, then the analysis works out just
as before.

But what’s the chance…?
The number of 𝑟𝑟’s is 𝑚𝑚 = O(𝑛𝑛 log𝑛𝑛 (𝑝𝑝(𝑛𝑛))2).

A Proof of the GL Theorem
(attributed to Charlie Rackoff)

Parsimony in Guessing

Parsimony in Guessing
Pick random “seed vectors” 𝑠𝑠1, … , 𝑠𝑠log(𝑚𝑚+1), and guess 𝑐𝑐𝑗𝑗 = 𝑠𝑠𝑗𝑗 , 𝑥𝑥
for all j.

Parsimony in Guessing
Pick random “seed vectors” 𝑠𝑠1, … , 𝑠𝑠log(𝑚𝑚+1), and guess 𝑐𝑐𝑗𝑗 = 𝑠𝑠𝑗𝑗 , 𝑥𝑥
for all j.

The probability that all guesses are correct is 1
2log(𝑚𝑚+1) = 1/(𝑚𝑚 + 1)

which is not bad.

Parsimony in Guessing
Pick random “seed vectors” 𝑠𝑠1, … , 𝑠𝑠log(𝑚𝑚+1), and guess 𝑐𝑐𝑗𝑗 = 𝑠𝑠𝑗𝑗 , 𝑥𝑥
for all j.

The probability that all guesses are correct is 1
2log(𝑚𝑚+1) = 1/(𝑚𝑚 + 1)

which is not bad.

From the seed vectors, generate many more 𝒓𝒓𝒊𝒊.

Let 𝑇𝑇1, … ,𝑇𝑇𝑚𝑚 denote all possible non-empty subsets of
{1,2, … , log (𝑚𝑚 + 1)}. We will let

𝑟𝑟𝑖𝑖 =⊕𝑗𝑗∈𝑇𝑇𝑖𝑖 𝑠𝑠𝑗𝑗 and 𝑏𝑏𝑖𝑖 =⊕𝑗𝑗∈𝑇𝑇𝑖𝑖 𝑐𝑐𝑗𝑗

Parsimony in Guessing
Pick random “seed vectors” 𝑠𝑠1, … , 𝑠𝑠log(𝑚𝑚+1), and guess 𝑐𝑐𝑗𝑗 = 𝑠𝑠𝑗𝑗 , 𝑥𝑥
for all j.

The probability that all guesses are correct is 1
2log(𝑚𝑚+1) = 1/(𝑚𝑚 + 1)

which is not bad.

From the seed vectors, generate many more 𝒓𝒓𝒊𝒊.

Let 𝑇𝑇1, … ,𝑇𝑇𝑚𝑚 denote all possible non-empty subsets of
{1,2, … , log (𝑚𝑚 + 1)}. We will let

𝑟𝑟𝑖𝑖 =⊕𝑗𝑗∈𝑇𝑇𝑖𝑖 𝑠𝑠𝑗𝑗 and 𝑏𝑏𝑖𝑖 =⊕𝑗𝑗∈𝑇𝑇𝑖𝑖 𝑐𝑐𝑗𝑗

Key Observation: If the guesses 𝑐𝑐1, … , 𝑐𝑐log(𝑚𝑚+1) are all correct,
then so are the 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚.

The OWF Inverter

Generate random 𝑠𝑠1, … , 𝑠𝑠log(𝑚𝑚+1) and bits 𝑐𝑐1, … , 𝑐𝑐log(𝑚𝑚+1).

From them, derive 𝑟𝑟1, … , 𝑟𝑟log(𝑚𝑚+1) and bits 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚 as in the
previous slide.

Ask 𝑃𝑃 to tells us 𝑟𝑟𝑖𝑖 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . XOR P’s reply with 𝑏𝑏𝑖𝑖 to get
a guess for 𝑥𝑥𝑖𝑖.

Repeat 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏(𝒑𝒑(𝒏𝒏))𝟐𝟐 times:

Compute the majority of all such guesses and set the bit as 𝑥𝑥𝑖𝑖

Repeat for each 𝑖𝑖 ∈ 1,2, … ,𝑛𝑛 :

Output the concatenation of all 𝑥𝑥𝑖𝑖 as 𝑥𝑥.

The OWF Inverter

Generate random 𝑠𝑠1, … , 𝑠𝑠log(𝑚𝑚+1) and bits 𝑐𝑐1, … , 𝑐𝑐log(𝑚𝑚+1).

From them, derive 𝑟𝑟1, … , 𝑟𝑟log(𝑚𝑚+1) and bits 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚 as in the
previous slide.

Analysis of the Inverter

Let’s condition on the guesses 𝑐𝑐1, … , 𝑐𝑐log(𝑚𝑚+1) being all correct.

Analysis of the Inverter

Let’s condition on the guesses 𝑐𝑐1, … , 𝑐𝑐log(𝑚𝑚+1) being all correct.

The main issue: The 𝑟𝑟𝑖𝑖 are not independent (can’t do Chernoff)

Analysis of the Inverter

Let’s condition on the guesses 𝑐𝑐1, … , 𝑐𝑐log(𝑚𝑚+1) being all correct.

The main issue: The 𝑟𝑟𝑖𝑖 are not independent (can’t do Chernoff)

Key Observation: The 𝑟𝑟𝑖𝑖 are pairwise independent.

Therefore, can apply Chebyshev!

Analysis of the Inverter

Let’s condition on the guesses 𝑐𝑐1, … , 𝑐𝑐log(𝑚𝑚+1) being all correct.

The main issue: The 𝑟𝑟𝑖𝑖 are not independent (can’t do Chernoff)

Key Observation: The 𝑟𝑟𝑖𝑖 are pairwise independent.

Therefore, can apply Chebyshev!

(Pf. on the board, also in the next two slides)

We have that
𝑝𝑝 ≔ Pr[Inverter succeeds | all guesses correct, good x] ≥ 0.99.

Analysis of the Inverter

Analysis of the Inverter

The probability that a single iteration of the inner loop gives the
correct 𝑥𝑥𝑖𝑖 is at least 1

2
+ 1/2𝑝𝑝(𝑛𝑛).

Analysis of the Inverter

The probability that a single iteration of the inner loop gives the
correct 𝑥𝑥𝑖𝑖 is at least 1

2
+ 1/2𝑝𝑝(𝑛𝑛).

Let this be the good event 𝐸𝐸𝑖𝑖 (for the 𝑖𝑖𝑡𝑡𝑡 iteration of the inner loop).

The majority decision is correct if the number of events 𝐸𝐸𝑖𝑖 that
occur is at least 𝑚𝑚

2
= 50 𝑛𝑛(𝑝𝑝(𝑛𝑛))2.

Analysis of the Inverter

The probability that a single iteration of the inner loop gives the
correct 𝑥𝑥𝑖𝑖 is at least 1

2
+ 1/2𝑝𝑝(𝑛𝑛).

Let this be the good event 𝐸𝐸𝑖𝑖 (for the 𝑖𝑖𝑡𝑡𝑡 iteration of the inner loop).

The majority decision is correct if the number of events 𝐸𝐸𝑖𝑖 that
occur is at least 𝑚𝑚

2
= 50 𝑛𝑛(𝑝𝑝(𝑛𝑛))2.

The expected number of events that occur is
(1
2

+ 1
2𝑝𝑝 𝑛𝑛

). 100 𝑛𝑛(𝑝𝑝(𝑛𝑛))2= 50 𝑛𝑛(𝑝𝑝(𝑛𝑛))2+50𝑛𝑛𝑝𝑝 𝑛𝑛 .

Analysis of the Inverter

The probability that a single iteration of the inner loop gives the
correct 𝑥𝑥𝑖𝑖 is at least 1

2
+ 1/2𝑝𝑝(𝑛𝑛).

Let this be the good event 𝐸𝐸𝑖𝑖 (for the 𝑖𝑖𝑡𝑡𝑡 iteration of the inner loop).

The majority decision is correct if the number of events 𝐸𝐸𝑖𝑖 that
occur is at least 𝑚𝑚

2
= 50 𝑛𝑛(𝑝𝑝(𝑛𝑛))2.

The expected number of events that occur is
(1
2

+ 1
2𝑝𝑝 𝑛𝑛

). 100 𝑛𝑛(𝑝𝑝(𝑛𝑛))2= 50 𝑛𝑛(𝑝𝑝(𝑛𝑛))2+50𝑛𝑛𝑝𝑝 𝑛𝑛 .

The variance is
≈ 1

4
� 100 𝑛𝑛 𝑝𝑝 𝑛𝑛 2 = 25𝑛𝑛 𝑝𝑝 𝑛𝑛 2

Analysis of the Inverter
The expected number of events that occur is

(1
2

+ 1
2𝑝𝑝 𝑛𝑛

). 100 𝑛𝑛(𝑝𝑝(𝑛𝑛))2= 50 𝑛𝑛(𝑝𝑝(𝑛𝑛))2+50𝑛𝑛𝑝𝑝 𝑛𝑛 .

The variance is ≈ 1
4
� 100 𝑛𝑛 𝑝𝑝 𝑛𝑛 2 = 25𝑛𝑛 𝑝𝑝 𝑛𝑛 2

Analysis of the Inverter
The expected number of events that occur is

(1
2

+ 1
2𝑝𝑝 𝑛𝑛

). 100 𝑛𝑛(𝑝𝑝(𝑛𝑛))2= 50 𝑛𝑛(𝑝𝑝(𝑛𝑛))2+50𝑛𝑛𝑝𝑝 𝑛𝑛 .

The variance is ≈ 1
4
� 100 𝑛𝑛 𝑝𝑝 𝑛𝑛 2 = 25𝑛𝑛 𝑝𝑝 𝑛𝑛 2

By an application of Chebyshev, we have

Pr 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤. 𝑟𝑟. 𝑡𝑡 𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 25𝑛𝑛 𝑝𝑝 𝑛𝑛 2

50𝑛𝑛𝑛𝑛 𝑛𝑛 2 = 1
100𝑛𝑛

Analysis of the Inverter
The expected number of events that occur is

(1
2

+ 1
2𝑝𝑝 𝑛𝑛

). 100 𝑛𝑛(𝑝𝑝(𝑛𝑛))2= 50 𝑛𝑛(𝑝𝑝(𝑛𝑛))2+50𝑛𝑛𝑝𝑝 𝑛𝑛 .

The variance is ≈ 1
4
� 100 𝑛𝑛 𝑝𝑝 𝑛𝑛 2 = 25𝑛𝑛 𝑝𝑝 𝑛𝑛 2

By an application of Chebyshev, we have

Pr 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤. 𝑟𝑟. 𝑡𝑡 𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 25𝑛𝑛 𝑝𝑝 𝑛𝑛 2

50𝑛𝑛𝑛𝑛 𝑛𝑛 2 = 1
100𝑛𝑛

By an application of union bound, we have
Pr 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡 𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛 � 1

100𝑛𝑛
= 1/100

Analysis of the Inverter
The expected number of events that occur is

(1
2

+ 1
2𝑝𝑝 𝑛𝑛

). 100 𝑛𝑛(𝑝𝑝(𝑛𝑛))2= 50 𝑛𝑛(𝑝𝑝(𝑛𝑛))2+50𝑛𝑛𝑝𝑝 𝑛𝑛 .

The variance is ≈ 1
4
� 100 𝑛𝑛 𝑝𝑝 𝑛𝑛 2 = 25𝑛𝑛 𝑝𝑝 𝑛𝑛 2

By an application of Chebyshev, we have

Pr 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤. 𝑟𝑟. 𝑡𝑡 𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 25𝑛𝑛 𝑝𝑝 𝑛𝑛 2

50𝑛𝑛𝑛𝑛 𝑛𝑛 2 = 1
100𝑛𝑛

By an application of union bound, we have
Pr 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡 𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛 � 1

100𝑛𝑛
= 1/100

∴ The inverter outputs the correct inverse w.p. p ≥ 0.99.

Putting it all together
Pr[Inverter succeeds]
≥ Pr[Inverter succeeds | all guesses correct, good x] �

Pr[all guesses correct] � Pr[good x]
= 𝑝𝑝 � 1

𝑚𝑚+1
� 1
2𝑝𝑝(𝑛𝑛)

= 𝑝𝑝 � 1
2𝑛𝑛2𝑝𝑝 𝑛𝑛 3

Putting it all together
Pr[Inverter succeeds]
≥ Pr[Inverter succeeds | all guesses correct, good x] �

Pr[all guesses correct] � Pr[good x]
= 𝑝𝑝 � 1

𝑚𝑚+1
� 1
2𝑝𝑝(𝑛𝑛)

= 𝑝𝑝 � 1
2𝑛𝑛2𝑝𝑝 𝑛𝑛 3

So, it suffices to show that 𝑝𝑝 is large.

Putting it all together
Pr[Inverter succeeds]
≥ Pr[Inverter succeeds | all guesses correct, good x] �

Pr[all guesses correct] � Pr[good x]
= 𝑝𝑝 � 1

𝑚𝑚+1
� 1
2𝑝𝑝(𝑛𝑛)

= 𝑝𝑝 � 1
2𝑛𝑛2𝑝𝑝 𝑛𝑛 3

So, it suffices to show that 𝑝𝑝 is large.

By our calculation (last two slides), 𝑝𝑝 ≥ 0.99, so we are done.

Putting it all together
Pr[Inverter succeeds]
≥ Pr[Inverter succeeds | all guesses correct, good x] �

Pr[all guesses correct] � Pr[good x]
= 𝑝𝑝 � 1

𝑚𝑚+1
� 1
2𝑝𝑝(𝑛𝑛)

= 𝑝𝑝 � 1
2𝑛𝑛2𝑝𝑝 𝑛𝑛 3

So, it suffices to show that 𝑝𝑝 is large.

By our calculation (last two slides), 𝑝𝑝 ≥ 0.99, so we are done.

Putting it all together
Pr[Inverter succeeds]
≥ Pr[Inverter succeeds | all guesses correct, good x] �

Pr[all guesses correct] � Pr[good x]
= 𝑝𝑝 � 1

𝑚𝑚+1
� 1
2𝑝𝑝(𝑛𝑛)

= 𝑝𝑝 � 1
2𝑛𝑛2𝑝𝑝 𝑛𝑛 3

So, it suffices to show that 𝑝𝑝 is large.

By our calculation (last two slides), 𝑝𝑝 ≥ 0.99, so we are done.

Can also make the success probability ≈ 1/𝑝𝑝(𝑛𝑛) by enumerating
over all the “guesses”. Each guess results in a supposed inverse,
but we can check which of them is the actual inverse!

The Coding-Theoretic View of GL

𝑥𝑥 → (𝑥𝑥, 𝑟𝑟)𝑟𝑟∈{0,1}𝑛𝑛 can be viewed as a highly redundant,
exponentially long encoding of 𝑥𝑥 = the Hadamard code.

The Coding-Theoretic View of GL

𝑥𝑥 → (𝑥𝑥, 𝑟𝑟)𝑟𝑟∈{0,1}𝑛𝑛 can be viewed as a highly redundant,
exponentially long encoding of 𝑥𝑥 = the Hadamard code.

𝑃𝑃(𝐹𝐹 𝑥𝑥 , 𝑟𝑟) can be thought of as providing access to a noisy
codeword.

The Coding-Theoretic View of GL

𝑥𝑥 → (𝑥𝑥, 𝑟𝑟)𝑟𝑟∈{0,1}𝑛𝑛 can be viewed as a highly redundant,
exponentially long encoding of 𝑥𝑥 = the Hadamard code.

𝑃𝑃(𝐹𝐹 𝑥𝑥 , 𝑟𝑟) can be thought of as providing access to a noisy
codeword.

What we proved = unique decoding algorithm for Hadamard code
with error rate 1

4
− 1/𝑝𝑝(𝑛𝑛).

The Coding-Theoretic View of GL

𝑥𝑥 → (𝑥𝑥, 𝑟𝑟)𝑟𝑟∈{0,1}𝑛𝑛 can be viewed as a highly redundant,
exponentially long encoding of 𝑥𝑥 = the Hadamard code.

𝑃𝑃(𝐹𝐹 𝑥𝑥 , 𝑟𝑟) can be thought of as providing access to a noisy
codeword.

The real proof = list-decoding algorithm for Hadamard code with
error rate 1

2
− 1/𝑝𝑝(𝑛𝑛).

What we proved = unique decoding algorithm for Hadamard code
with error rate 1

4
− 1/𝑝𝑝(𝑛𝑛).

Hardcore Predicates from any
List-Decodable Code

(due to Impagliazzo and Sudan)

Hardcore Predicates from any
List-Decodable Code

𝑥𝑥 → 𝐶𝐶(𝑥𝑥) is the encoding.

(due to Impagliazzo and Sudan)

Hardcore Predicates from any
List-Decodable Code

𝑥𝑥 → 𝐶𝐶(𝑥𝑥) is the encoding.

Given a 𝐶𝐶(𝑥𝑥) that is incorrect at 1
2
− 𝜀𝜀 fraction of the locations, a

list-decoder outputs a list {𝑥𝑥1, … , 𝑥𝑥𝑚𝑚} of possibilities for 𝑥𝑥.

(due to Impagliazzo and Sudan)

Hardcore Predicates from any
List-Decodable Code

𝑥𝑥 → 𝐶𝐶(𝑥𝑥) is the encoding.

Given a 𝐶𝐶(𝑥𝑥) that is incorrect at 1
2
− 𝜀𝜀 fraction of the locations, a

list-decoder outputs a list {𝑥𝑥1, … , 𝑥𝑥𝑚𝑚} of possibilities for 𝑥𝑥.

The hardcore predicate is
𝑩𝑩𝒊𝒊 𝒙𝒙 = 𝑪𝑪(𝒙𝒙)𝒊𝒊.

(due to Impagliazzo and Sudan)

Hardcore Predicates from any
List-Decodable Code

𝑥𝑥 → 𝐶𝐶(𝑥𝑥) is the encoding.

Given a 𝐶𝐶(𝑥𝑥) that is incorrect at 1
2
− 𝜀𝜀 fraction of the locations, a

list-decoder outputs a list {𝑥𝑥1, … , 𝑥𝑥𝑚𝑚} of possibilities for 𝑥𝑥.

The hardcore predicate is
𝑩𝑩𝒊𝒊 𝒙𝒙 = 𝑪𝑪(𝒙𝒙)𝒊𝒊.

A hardcore-bit predictor gives us access to a corrupted
codeword. Running the list-decoder on it gives us the list of
possible inverses. The fact that the OWF is easy to compute
means that we can filter out the bogus (non-)inverses.

(due to Impagliazzo and Sudan)

Recap

1. Defined one-way functions (OWF).

2. Defined Hardcore bits (HCB).

3. Goldreich-Levin Theorem: every OWF has a H

4. Show that one-way permutations (OWP) ⇒ PR

(showed proof for an important special ca

(in fact, one-way functions ⇒ PRG,
but that’s a much harder theorem)

Universal Hardcore Predicate Conjecture 1

For every one-way function 𝐹𝐹,
there exists a circuit 𝐵𝐵𝐹𝐹 s.t.

for every PPT Circuit/Turing Machine A,
there is a negligible function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛 ∶ 𝐴𝐴 𝐹𝐹 𝑥𝑥 = 𝐵𝐵𝐹𝐹(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

In fact: I conjecture that for every one-way function 𝐹𝐹, there
exists an 𝑟𝑟𝐹𝐹 for which the predicate 𝐵𝐵𝑟𝑟𝐹𝐹 𝑥𝑥 = 𝑟𝑟𝐹𝐹 , 𝑥𝑥 that is
hardcore.

Universal Hardcore Predicate Conjecture 1

For every one-way function 𝐹𝐹,
there exists a circuit 𝐵𝐵𝐹𝐹 s.t.

for every PPT Circuit/Turing Machine A,
there is a negligible function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛 ∶ 𝐴𝐴 𝐹𝐹 𝑥𝑥 = 𝐵𝐵𝐹𝐹(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

In fact: I conjecture that for every one-way function 𝐹𝐹, there
exists an 𝑟𝑟𝐹𝐹 for which the predicate 𝐵𝐵𝑟𝑟𝐹𝐹 𝑥𝑥 = 𝑟𝑟𝐹𝐹 , 𝑥𝑥 that is
hardcore.

Universal Hardcore Predicate Conjecture 2

For every one-way function 𝐹𝐹,
there is an efficiently generatable circuit 𝐵𝐵𝐹𝐹 s.t.

for every PPT Circuit/Turing Machine A,
there is a negligible function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛 ∶ 𝐴𝐴 𝐹𝐹 𝑥𝑥 = 𝐵𝐵𝐹𝐹(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Universal Hardcore Predicate Conjecture 2

For every one-way function 𝐹𝐹,
there is an efficiently generatable circuit 𝐵𝐵𝐹𝐹 s.t.

for every PPT Circuit/Turing Machine A,
there is a negligible function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛 ∶ 𝐴𝐴 𝐹𝐹 𝑥𝑥 = 𝐵𝐵𝐹𝐹(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148
	Slide Number 149
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Slide Number 159
	Slide Number 160
	Slide Number 161
	Slide Number 162
	Slide Number 163
	Slide Number 164
	Slide Number 165
	Slide Number 166
	Slide Number 167
	Slide Number 168
	Slide Number 169
	Slide Number 170

