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Foundations of Cryptography
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This Week

1. Define one-way functions (OWF). 

2. Define Hardcore bits (HCB). 

4. Goldreich-Levin Theorem: every OWF has a H

3. Show that one-way functions* + HCB ⇒ PRG  



One-way Functions (Informally)
F
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range
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One-way Functions (Take 1)

A function (family) 𝐹𝐹𝑛𝑛 𝑛𝑛∈ℕ where 𝐹𝐹𝑛𝑛: {0,1}𝑛𝑛→ {0,1}𝑚𝑚(𝑛𝑛) is 
one-way if for every p.p.t. adversary 𝐴𝐴, there is a negligible 
function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐹𝐹𝑛𝑛 𝑥𝑥 :𝐴𝐴 1𝑛𝑛,𝑦𝑦 = 𝑥𝑥 ≤ 𝜇𝜇(𝑛𝑛)
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In fact, impossible to find the inverse even if 𝐴𝐴 has unbounded 
time.
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This is one-way according to the above definition. 
In fact, impossible to find the inverse even if 𝐴𝐴 has unbounded 
time.

Conclusion: not a useful/meaningful definition. 



One-way Functions (Take 1)

A function (family) 𝐹𝐹𝑛𝑛 𝑛𝑛∈ℕ where 𝐹𝐹𝑛𝑛: {0,1}𝑛𝑛→ {0,1}𝑚𝑚(𝑛𝑛) is 
one-way if for every p.p.t. adversary 𝐴𝐴, there is a negligible 
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The Right Definition: Impossible to find an inverse in p.p.t.
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A function (family) 𝐹𝐹𝑛𝑛 𝑛𝑛∈ℕ where 𝐹𝐹𝑛𝑛: {0,1}𝑛𝑛→ {0,1}𝑚𝑚(𝑛𝑛) is 
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Pr 𝑥𝑥 ← 0,1 𝑛𝑛;𝑦𝑦 = 𝐹𝐹𝑛𝑛 𝑥𝑥 ;𝐴𝐴 1𝑛𝑛,𝑦𝑦 = 𝒙𝒙′:𝒚𝒚 = 𝑭𝑭𝒏𝒏 𝒙𝒙′ ≤ 𝜇𝜇(𝑛𝑛)

One-way Permutations:
One-to-one one-way functions with 𝑚𝑚 𝑛𝑛 = 𝑛𝑛.

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic polynomial time
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2. Define Hardcore bits (HCB). 

4. Goldreich-Levin Theorem: every OWF has a H

3. Show that one-way permutations (OWP) ⇒ PR   



Hardcore Bits

If 𝐹𝐹 is a one-way function, we know it’s hard to compute a 
pre-image of 𝐹𝐹 𝑥𝑥 for a randomly chosen 𝑥𝑥. 

How about computing partial information about an inverse?
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If 𝐹𝐹 is a one-way function, we know it’s hard to compute a 
pre-image of 𝐹𝐹 𝑥𝑥 for a randomly chosen 𝑥𝑥. 

How about computing partial information about an inverse?

Exercise: There are one-way functions for which it is easy to 
compute the first half of the bits of an inverse.
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that is hard to compute?



Hardcore Bits
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pre-image of 𝐹𝐹 𝑥𝑥 for a randomly chosen 𝑥𝑥. 

Nevertheless, there has to be a hardcore set of hard to invert 
inputs. Concretely: Does there necessarily exist some bit of 𝑥𝑥
that is hard to compute?

• Any bit can be guessed correctly w.p. 1/2 

• So, “hard to compute” → “hard to guess with 
probability non-negligibly better than 1/2” 
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HARDCORE BIT (Take 1)



Hardcore Bits

If 𝐹𝐹 is a one-way function, we know it’s hard to compute a 
pre-image of 𝐹𝐹 𝑥𝑥 for a randomly chosen 𝑥𝑥. 

HARDCORE BIT (Take 1)

For any function (family) 𝐹𝐹: {0,1}𝑛𝑛→ {0,1}𝑚𝑚, a bit 𝑖𝑖 = 𝑖𝑖(𝑛𝑛) is 
hardcore if for every p.p.t. adversary 𝐴𝐴, there is a negligible 
function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐹𝐹 𝑥𝑥 :𝐴𝐴 𝑦𝑦 = 𝑥𝑥𝑖𝑖 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)
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Does every one-way function 
have a hardcore bit?

PS2: There are functions that are one-way, yet every bit is 
somewhat easy to predict (say, with probability 1

2
+ 1/𝑛𝑛).

So, we will generalize the notion of a hardcore “bit”. 



Hardcore Bits

HARDCORE PREDICATE (Definition)

For any function (family) 𝐹𝐹: {0,1}𝑛𝑛→ {0,1}𝑚𝑚, a function 
𝐵𝐵: {0,1}𝑛𝑛→ {0,1} is a hardcore predicate if for every p.p.t. 
adversary 𝐴𝐴, there is a negligible function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛;𝑦𝑦 = 𝐹𝐹 𝑥𝑥 :𝐴𝐴 𝑦𝑦 = 𝐵𝐵(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

For us, henceforth, a hardcore bit will mean a hardcore 
predicate.



Hardcore Predicate (in pictures)
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Discussion on the Definition
HARDCORE PREDICATE (Definition)

For any function (family) 𝐹𝐹: {0,1}𝑛𝑛→ {0,1}𝑚𝑚, a bit 𝐵𝐵: {0,1}𝑛𝑛→
{0,1} is a hardcore predicate (HCP) if for every p.p.t. 
adversary 𝐴𝐴, there is a negligible function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛;𝑦𝑦 = 𝐹𝐹 𝑥𝑥 :𝐴𝐴 𝑦𝑦 = 𝐵𝐵(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

1. Definition of HCP makes sense for any function family, not 
just one-way functions. 
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HARDCORE PREDICATE (Definition)

For any function (family) 𝐹𝐹: {0,1}𝑛𝑛→ {0,1}𝑚𝑚, a bit 𝐵𝐵: {0,1}𝑛𝑛→
{0,1} is a hardcore predicate (HCP) if for every p.p.t. 
adversary 𝐴𝐴, there is a negligible function 𝜇𝜇 s.t.

Pr 𝑥𝑥 ← 0,1 𝑛𝑛;𝑦𝑦 = 𝐹𝐹 𝑥𝑥 :𝐴𝐴 𝑦𝑦 = 𝐵𝐵(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

1. Definition of HCP makes sense for any function family, not 
just one-way functions. 
2. Some functions can have information-theoretically hard to 
guess predicates (e.g., compressing functions)

3. We’ll be interested in settings where 𝑥𝑥 is uniquely determined 
given F(𝑥𝑥), yet B(𝑥𝑥) is hard to predict given F(𝑥𝑥)



Today

1. Define one-way functions (OWF). 

2. Define Hardcore bits (HCB). 

4. Goldreich-Levin Theorem: every OWF has a H

3. Show that one-way permutations (OWP) ⇒ PR   



OWP ⇒ PRG

Let 𝐹𝐹 be a one-way permutation, and 𝐵𝐵 an associated 
hardcore predicate for 𝐹𝐹.

CONSTRUCTION

Then, define 𝐺𝐺 𝑥𝑥 = F 𝑥𝑥 | B(𝑥𝑥) .

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

(Note that 𝐺𝐺 stretches by one bit. We already know how to 
turn this into a 𝐺𝐺′ that stretches to any poly number of bits.)



OWP ⇒ PRG

Let 𝐹𝐹 be a one-way permutation, and 𝐵𝐵 an associated 
hardcore predicate for 𝐹𝐹.

CONSTRUCTION

Then, define 𝐺𝐺 𝑥𝑥 = F 𝑥𝑥 | B(𝑥𝑥) .

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

Proof (next slide): Use next-bit unpredictability.



OWP ⇒ PRG

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺𝐺 is not a PRG. 
Therefore, there is a next-bit predictor 𝐷𝐷, and index 𝑖𝑖, and a 
polynomial function 𝑝𝑝 such that

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐺𝐺 𝑥𝑥 :𝐷𝐷 𝑦𝑦1…𝑖𝑖−1 = 𝑦𝑦𝑖𝑖 ≥
1
2

+ 1/𝑝𝑝(𝑛𝑛)



OWP ⇒ PRG

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺𝐺 is not a PRG. 
Therefore, there is a next-bit predictor 𝐷𝐷, and index 𝑖𝑖, and a 
polynomial function 𝑝𝑝 such that
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Observation: The index 𝑖𝑖 has to be 𝑛𝑛 + 1. Do you see why? 



OWP ⇒ PRG

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺𝐺 is not a PRG. 
Therefore, there is a next-bit predictor 𝐷𝐷, and index 𝑖𝑖, and a 
polynomial function 𝑝𝑝 such that

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐺𝐺 𝑥𝑥 :𝐷𝐷 𝑦𝑦1…𝑖𝑖−1 = 𝑦𝑦𝑖𝑖 ≥
1
2

+ 1/𝑝𝑝(𝑛𝑛)

Observation: The index 𝑖𝑖 has to be 𝑛𝑛 + 1. Do you see why? 

Hint: 𝐺𝐺 𝑥𝑥 = F 𝑥𝑥 | B(𝑥𝑥) and F is a one-way permutation.



OWP ⇒ PRG

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺𝐺 is not a PRG. 
Therefore, there is a next-bit predictor 𝐷𝐷 and a polynomial 
function 𝑝𝑝 such that

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑦𝑦 = 𝐺𝐺 𝑥𝑥 :𝐷𝐷 𝑦𝑦1…𝑛𝑛 = 𝑦𝑦𝑛𝑛+1 ≥
1
2

+ 1/𝑝𝑝(𝑛𝑛)



OWP ⇒ PRG

Theorem: 𝐺𝐺 is a PRG assuming 𝐹𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺𝐺 is not a PRG. 
Therefore, there is a next-bit predictor 𝐷𝐷 and a polynomial 
function 𝑝𝑝 such that

Pr 𝑥𝑥 ← 0,1 𝑛𝑛:𝐷𝐷(𝐹𝐹(𝑥𝑥)) = 𝐵𝐵(𝑥𝑥) ≥
1
2

+ 1/𝑝𝑝(𝑛𝑛)

So, 𝐷𝐷 is a hardcore bit predictor! QED.



Today

1. Define one-way functions (OWF). 

2. Define Hardcore bits (HCB). 

4. Goldreich-Levin Theorem: every OWF has a H

3. Show that one-way permutations (OWP) ⇒ PR   



A Hardcore Predicate for all OWF

Let’s shoot for a universal hardcore predicate.

i.e., a single predicate 𝐵𝐵 where it is hard to guess 𝐵𝐵(𝑥𝑥) given F(𝑥𝑥)
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Turns out the answer is “no”. 
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Turns out the answer is “no”. 

You will tell me why in PS2.



A Hardcore Predicate for all OWF

Let’s shoot for a universal hardcore predicate.

i.e., a single predicate 𝐵𝐵 where it is hard to guess 𝐵𝐵(𝑥𝑥) given F(𝑥𝑥)

Is this possible?

Turns out the answer is “no”. 

So, what is one to do?

You will tell me why in PS2.



Goldreich-Levin (GL) Theorem

Let {𝐵𝐵𝑟𝑟: {0,1}𝑛𝑛→ {0,1}} where

be a collection of predicates (one for each 𝑟𝑟). Then, a random
𝐵𝐵𝑟𝑟 is hardcore for every one-way function 𝐹𝐹. That is, for every 
one-way function F, every PPT A, there is a negligible function 
𝜇𝜇 s.t.

𝐵𝐵𝑟𝑟 𝑥𝑥 = 𝑟𝑟, 𝑥𝑥 = ∑𝑖𝑖=1𝑛𝑛 𝑟𝑟𝑖𝑖𝑥𝑥𝑖𝑖 mod 2

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝐴𝐴 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝐵𝐵𝑟𝑟(𝑥𝑥) ≤
1
2

+ 𝜇𝜇(𝑛𝑛)



GL Theorem: Alternative Interpretation

For every one-way function/permutation 𝐹𝐹, there is a related 
one-way function/permutation

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝐴𝐴 𝐹𝐹𝐹 𝑥𝑥, 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝐹𝐹′ 𝑥𝑥, 𝑟𝑟 = (𝐹𝐹 𝑥𝑥 , 𝑟𝑟)

which has a deterministic hardcore predicate. In particular, 
the predicate 𝐵𝐵 𝑥𝑥, 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 mod 2 is hardcore for 𝐹𝐹′.



GL Theorem: Alternative Interpretation

For every one-way function/permutation 𝐹𝐹, there is a related 
one-way function/permutation

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝐴𝐴 𝐹𝐹𝐹 𝑥𝑥, 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝐹𝐹′ 𝑥𝑥, 𝑟𝑟 = (𝐹𝐹 𝑥𝑥 , 𝑟𝑟)

which has a deterministic hardcore predicate. In particular, 
the predicate 𝐵𝐵 𝑥𝑥, 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 mod 2 is hardcore for 𝐹𝐹′.



GL Theorem: Alternative Interpretation

For every one-way function/permutation 𝐹𝐹, there is a related 
one-way function/permutation

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝐴𝐴 𝐹𝐹𝐹 𝑥𝑥, 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝐹𝐹′ 𝑥𝑥, 𝑟𝑟 = (𝐹𝐹 𝑥𝑥 , 𝑟𝑟)

which has a deterministic hardcore predicate. In particular, 
the predicate 𝐵𝐵 𝑥𝑥, 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 mod 2 is hardcore for 𝐹𝐹′.

Key Point:  
This statement is sufficient to construct PRGs from any OWP. 



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
1
2

+ 1/𝑝𝑝(𝑛𝑛)

We will need to show an inverter 𝐴𝐴 for 𝐹𝐹

Pr 𝑥𝑥 ← 0,1 𝑛𝑛 ∶ 𝐴𝐴 𝐹𝐹 𝑥𝑥 = 𝑥𝑥′:𝐹𝐹 𝑥𝑥′ = 𝐹𝐹(𝑥𝑥) ≥ 1/𝑝𝑝𝑝(𝑛𝑛)



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

We will need to show an inverter 𝐴𝐴 for 𝐹𝐹

Pr 𝑥𝑥 ← 0,1 𝑛𝑛 ∶ 𝐴𝐴 𝐹𝐹 𝑥𝑥 = 𝑥𝑥′:𝐹𝐹 𝑥𝑥′ = 𝐹𝐹(𝑥𝑥) ≥ 1/𝑝𝑝𝑝(𝑛𝑛)

Let’s make our lives easier: assume a perfect predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 = 1



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

The inverter 𝐴𝐴 works as follows: 

On input y = 𝐹𝐹 𝑥𝑥 , 𝐴𝐴 runs the predictor 𝑃𝑃 𝑛𝑛 times, on 
inputs 𝑦𝑦, 𝑒𝑒1 , 𝑦𝑦, 𝑒𝑒2 , … , and (𝑦𝑦, 𝑒𝑒𝑛𝑛) where 𝑒𝑒1 =
100. . 0, 𝑒𝑒2 = 010 … 0,… are the unit vectors.

Let’s make our lives easier: assume a perfect predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 = 1



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

The inverter 𝐴𝐴 works as follows: 

On input y = 𝐹𝐹 𝑥𝑥 , 𝐴𝐴 runs the predictor 𝑃𝑃 𝑛𝑛 times, on 
inputs 𝑦𝑦, 𝑒𝑒1 , 𝑦𝑦, 𝑒𝑒2 , … , and (𝑦𝑦, 𝑒𝑒𝑛𝑛) where 𝑒𝑒1 =
100. . 0, 𝑒𝑒2 = 010 … 0,… are the unit vectors.

Let’s make our lives easier: assume a perfect predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 = 1

Since 𝐴𝐴 is perfect, it returns 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖, the 𝑖𝑖𝑡𝑡𝑡 bit of 𝑥𝑥 on the 
𝑖𝑖𝑡𝑡𝑡 invocation. 



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃
OK, now let’s assume less: assume a pretty good predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/𝑝𝑝(𝑛𝑛)



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

First, we need an averaging argument.

OK, now let’s assume less: assume a pretty good predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/𝑝𝑝(𝑛𝑛)



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

First, we need an averaging argument.

OK, now let’s assume less: assume a pretty good predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/𝑝𝑝(𝑛𝑛)

Claim: For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

First, we need an averaging argument.

OK, now let’s assume less: assume a pretty good predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/𝑝𝑝(𝑛𝑛)

Claim: For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)

Proof: Exercise in counting.



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃𝑃

First, we need an averaging argument.

OK, now let’s assume less: assume a pretty good predictor 𝑃𝑃

Pr 𝑥𝑥 ← 0,1 𝑛𝑛; 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/𝑝𝑝(𝑛𝑛)

Claim: For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)

Call these the good 𝑥𝑥.

Proof: Exercise in counting.



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Key Idea: Linearity



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (Pr P predicts 𝑟𝑟, 𝑥𝑥 wrong +

Pr P predicts 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong )
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (Pr P predicts 𝑟𝑟, 𝑥𝑥 wrong +

Pr P predicts 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong )
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (Pr P predicts 𝑟𝑟, 𝑥𝑥 wrong +

Pr P predicts 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong )
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (Pr P predicts 𝑟𝑟, 𝑥𝑥 wrong +

Pr P predicts 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong )
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (Pr P predicts 𝑟𝑟, 𝑥𝑥 wrong +

Pr P predicts 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong )
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)

(by union bound)



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Key Idea: Linearity

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (Pr P predicts 𝑟𝑟, 𝑥𝑥 wrong +

Pr P predicts 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong )
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)

(by union bound)



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two answers to get a guess for 𝑥𝑥𝑖𝑖.

Inverter A:



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two answers to get a guess for 𝑥𝑥𝑖𝑖.

Repeat log𝑛𝑛 ∗ 𝑝𝑝(𝑛𝑛) times: 

Compute the majority of all such guesses and set the bit as 𝑥𝑥𝑖𝑖

Inverter A:



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two answers to get a guess for 𝑥𝑥𝑖𝑖.

Repeat log𝑛𝑛 ∗ 𝑝𝑝(𝑛𝑛) times: 

Compute the majority of all such guesses and set the bit as 𝑥𝑥𝑖𝑖

Repeat for each 𝑖𝑖 ∈ 1,2, … ,𝑛𝑛 : 

Output the concatenation of all 𝑥𝑥𝑖𝑖 as 𝑥𝑥.

Inverter A:



Proof of GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two answers to get a guess for 𝑥𝑥𝑖𝑖.

Repeat log𝑛𝑛 ∗ 𝑝𝑝(𝑛𝑛) times: 

Compute the majority of all such guesses and set the bit as 𝑥𝑥𝑖𝑖

Repeat for each 𝑖𝑖 ∈ 1,2, … ,𝑛𝑛 : 

Output the concatenation of all 𝑥𝑥𝑖𝑖 as 𝑥𝑥.

Inverter A:

Analysis: Chernoff + Union Bound



Now the real Proof…

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 



Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
3
4

+ 1/2𝑝𝑝(𝑛𝑛)
For at least a 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Pick a random 𝑟𝑟 and ask 𝑃𝑃 to tells us 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ Pr[P predicts 𝑟𝑟, 𝑥𝑥 and 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 correctly]
= 1 − Pr P predicts 𝑟𝑟, 𝑥𝑥 or 𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 wrong
≥ 1 − (𝑷𝑷𝑷𝑷 P predicts 𝒓𝒓,𝒙𝒙 wrong +

𝑷𝑷𝑷𝑷 P predicts 𝒓𝒓 + 𝒆𝒆𝒊𝒊,𝒙𝒙 wrong )
≥ 1 − 2 � 1

4
− 1

2𝑝𝑝 𝑛𝑛
= 1

2
+ 1/𝑝𝑝(𝑛𝑛)

(by union bound)

Who’s the culprit here?



Now on to the Real Proof

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Key Idea: Pairwise independence



A Proof of the GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

For a minute, assume we have a bit of help/advice. 

(attributed to Charlie Rackoff)



A Proof of the GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

For a minute, assume we have a bit of help/advice. 

Pick a random 𝑟𝑟, ask the Oracle to tells us 𝑟𝑟, 𝑥𝑥
and ask 𝑃𝑃 to tell us  𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . Subtract the two 
answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

(attributed to Charlie Rackoff)



A Proof of the GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

For a minute, assume we have a bit of help/advice. 

Pick a random 𝑟𝑟, ask the Oracle to tells us 𝑟𝑟, 𝑥𝑥
and ask 𝑃𝑃 to tell us  𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . Subtract the two 
answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ 𝑷𝑷𝑷𝑷 P predicts 𝒓𝒓 + 𝒆𝒆𝒊𝒊,𝒙𝒙 correctly ≥ 1

2
+ 1/2𝑝𝑝(𝑛𝑛)

(attributed to Charlie Rackoff)



A Proof of the GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

For a minute, assume we have a bit of help/advice. 

Pick a random 𝑟𝑟, ask the Oracle to tells us 𝑟𝑟, 𝑥𝑥
and ask 𝑃𝑃 to tell us  𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . Subtract the two 
answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ 𝑷𝑷𝑷𝑷 P predicts 𝒓𝒓 + 𝒆𝒆𝒊𝒊,𝒙𝒙 correctly ≥ 1

2
+ 1/2𝑝𝑝(𝑛𝑛)

(attributed to Charlie Rackoff)



A Proof of the GL Theorem

Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Pick a random 𝑟𝑟, ask the Oracle to tells us 𝑟𝑟, 𝑥𝑥
and ask 𝑃𝑃 to tell us  𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . Subtract the two 
answers to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

Proof: Pr[we compute 𝑥𝑥𝑖𝑖 correctly]
≥ 𝑷𝑷𝑷𝑷 P predicts 𝒓𝒓 + 𝒆𝒆𝒊𝒊,𝒙𝒙 correctly ≥ 1

2
+ 1/2𝑝𝑝(𝑛𝑛)

(attributed to Charlie Rackoff)



Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

A Proof of the GL Theorem
(attributed to Charlie Rackoff)



Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Pick a random 𝑟𝑟, guess 𝑟𝑟, 𝑥𝑥 and ask 𝑃𝑃 to tell us  𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

A Proof of the GL Theorem
(attributed to Charlie Rackoff)



Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Pick a random 𝑟𝑟, guess 𝑟𝑟, 𝑥𝑥 and ask 𝑃𝑃 to tell us  𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

If our guesses are all correct, then the analysis works out just 
as before. 

A Proof of the GL Theorem
(attributed to Charlie Rackoff)



Pr 𝑟𝑟 ← 0,1 𝑛𝑛:𝑃𝑃 𝐹𝐹 𝑥𝑥 , 𝑟𝑟 = 𝑟𝑟, 𝑥𝑥 ≥
𝟏𝟏
𝟐𝟐

+ 1/2𝑝𝑝(𝑛𝑛)
Assume (after averaging) that for ≥ 1/2𝑝𝑝(𝑛𝑛) fraction of the 𝑥𝑥, 

Pick a random 𝑟𝑟, guess 𝑟𝑟, 𝑥𝑥 and ask 𝑃𝑃 to tell us  𝑟𝑟 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . 
Subtract the two to get 𝑒𝑒𝑖𝑖 , 𝑥𝑥 = 𝑥𝑥𝑖𝑖.

If our guesses are all correct, then the analysis works out just 
as before. 

But what’s the chance…?  
The number of 𝑟𝑟’s is 𝑚𝑚 = O(𝑛𝑛 log𝑛𝑛 (𝑝𝑝(𝑛𝑛))2).

A Proof of the GL Theorem
(attributed to Charlie Rackoff)



Parsimony in Guessing



Parsimony in Guessing
Pick random “seed vectors” 𝑠𝑠1, … , 𝑠𝑠log(𝑚𝑚+1), and guess 𝑐𝑐𝑗𝑗 = 𝑠𝑠𝑗𝑗 , 𝑥𝑥
for all j.



Parsimony in Guessing
Pick random “seed vectors” 𝑠𝑠1, … , 𝑠𝑠log(𝑚𝑚+1), and guess 𝑐𝑐𝑗𝑗 = 𝑠𝑠𝑗𝑗 , 𝑥𝑥
for all j.

The probability that all guesses are correct is 1
2log(𝑚𝑚+1) = 1/(𝑚𝑚 + 1)

which is not bad.



Parsimony in Guessing
Pick random “seed vectors” 𝑠𝑠1, … , 𝑠𝑠log(𝑚𝑚+1), and guess 𝑐𝑐𝑗𝑗 = 𝑠𝑠𝑗𝑗 , 𝑥𝑥
for all j.

The probability that all guesses are correct is 1
2log(𝑚𝑚+1) = 1/(𝑚𝑚 + 1)

which is not bad.

From the seed vectors, generate many more 𝒓𝒓𝒊𝒊. 

Let 𝑇𝑇1, … ,𝑇𝑇𝑚𝑚 denote all possible non-empty subsets of 
{1,2, … , log (𝑚𝑚 + 1)}. We will let 

𝑟𝑟𝑖𝑖 =⊕𝑗𝑗∈𝑇𝑇𝑖𝑖 𝑠𝑠𝑗𝑗 and          𝑏𝑏𝑖𝑖 =⊕𝑗𝑗∈𝑇𝑇𝑖𝑖 𝑐𝑐𝑗𝑗



Parsimony in Guessing
Pick random “seed vectors” 𝑠𝑠1, … , 𝑠𝑠log(𝑚𝑚+1), and guess 𝑐𝑐𝑗𝑗 = 𝑠𝑠𝑗𝑗 , 𝑥𝑥
for all j.

The probability that all guesses are correct is 1
2log(𝑚𝑚+1) = 1/(𝑚𝑚 + 1)

which is not bad.

From the seed vectors, generate many more 𝒓𝒓𝒊𝒊. 

Let 𝑇𝑇1, … ,𝑇𝑇𝑚𝑚 denote all possible non-empty subsets of 
{1,2, … , log (𝑚𝑚 + 1)}. We will let 

𝑟𝑟𝑖𝑖 =⊕𝑗𝑗∈𝑇𝑇𝑖𝑖 𝑠𝑠𝑗𝑗 and          𝑏𝑏𝑖𝑖 =⊕𝑗𝑗∈𝑇𝑇𝑖𝑖 𝑐𝑐𝑗𝑗

Key Observation:  If the guesses 𝑐𝑐1, … , 𝑐𝑐log(𝑚𝑚+1) are all correct, 
then so are the 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚.



The OWF Inverter

Generate random 𝑠𝑠1, … , 𝑠𝑠log(𝑚𝑚+1) and bits 𝑐𝑐1, … , 𝑐𝑐log(𝑚𝑚+1).

From them, derive 𝑟𝑟1, … , 𝑟𝑟log(𝑚𝑚+1) and bits 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚 as in the 
previous slide.



Ask 𝑃𝑃 to tells us 𝑟𝑟𝑖𝑖 + 𝑒𝑒𝑖𝑖 , 𝑥𝑥 . XOR P’s reply with 𝑏𝑏𝑖𝑖 to get 
a guess for 𝑥𝑥𝑖𝑖.

Repeat 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏(𝒑𝒑(𝒏𝒏))𝟐𝟐 times: 

Compute the majority of all such guesses and set the bit as 𝑥𝑥𝑖𝑖

Repeat for each 𝑖𝑖 ∈ 1,2, … ,𝑛𝑛 : 

Output the concatenation of all 𝑥𝑥𝑖𝑖 as 𝑥𝑥.

The OWF Inverter

Generate random 𝑠𝑠1, … , 𝑠𝑠log(𝑚𝑚+1) and bits 𝑐𝑐1, … , 𝑐𝑐log(𝑚𝑚+1).

From them, derive 𝑟𝑟1, … , 𝑟𝑟log(𝑚𝑚+1) and bits 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚 as in the 
previous slide.
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The main issue:  The 𝑟𝑟𝑖𝑖 are not independent (can’t do Chernoff)

Key Observation:  The 𝑟𝑟𝑖𝑖 are pairwise independent.

Therefore, can apply Chebyshev! 

(Pf. on the board, also in the next two slides)

We have that  
𝑝𝑝 ≔ Pr[Inverter succeeds | all guesses correct, good x] ≥ 0.99.
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∴ The inverter outputs the correct inverse w.p. p ≥ 0.99.
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Putting it all together
Pr[Inverter succeeds]
≥ Pr[Inverter succeeds | all guesses correct, good x] �

Pr[all guesses correct] � Pr[good x]
= 𝑝𝑝 � 1

𝑚𝑚+1
� 1
2𝑝𝑝(𝑛𝑛)

= 𝑝𝑝 � 1
2𝑛𝑛2𝑝𝑝 𝑛𝑛 3

So, it suffices to show that 𝑝𝑝 is large. 

By our calculation (last two slides), 𝑝𝑝 ≥ 0.99, so we are done. 

Can also make the success probability ≈ 1/𝑝𝑝(𝑛𝑛) by enumerating 
over all the “guesses”.  Each guess results in a supposed inverse, 
but we can check which of them is the actual inverse!
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exponentially long encoding of 𝑥𝑥 = the Hadamard code.

𝑃𝑃(𝐹𝐹 𝑥𝑥 , 𝑟𝑟) can be thought of as providing access to a noisy
codeword.

The real proof = list-decoding algorithm for Hadamard code with 
error rate 1

2
− 1/𝑝𝑝(𝑛𝑛).

What we proved = unique decoding algorithm for Hadamard code 
with error rate 1

4
− 1/𝑝𝑝(𝑛𝑛).
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𝑥𝑥 → 𝐶𝐶(𝑥𝑥) is the encoding.

Given a 𝐶𝐶(𝑥𝑥) that is incorrect at 1
2
− 𝜀𝜀 fraction of the locations, a 

list-decoder outputs a list {𝑥𝑥1, … , 𝑥𝑥𝑚𝑚} of possibilities for 𝑥𝑥.

The hardcore predicate is 
𝑩𝑩𝒊𝒊 𝒙𝒙 = 𝑪𝑪(𝒙𝒙)𝒊𝒊.

A hardcore-bit predictor gives us access to a corrupted 
codeword. Running the list-decoder on it gives us the list of 
possible inverses.  The fact that the OWF is easy to compute 
means that we can filter out the bogus (non-)inverses.

(due to Impagliazzo and Sudan)



Recap

1. Defined one-way functions (OWF). 

2. Defined Hardcore bits (HCB). 

3. Goldreich-Levin Theorem: every OWF has a H

4. Show that one-way permutations (OWP) ⇒ PR   

(showed proof for an important special ca

(in fact, one-way functions ⇒ PRG, 
but that’s a much harder theorem)



Universal Hardcore Predicate Conjecture 1

For every one-way function 𝐹𝐹, 
there exists a circuit 𝐵𝐵𝐹𝐹 s.t.

for every PPT Circuit/Turing Machine A, 
there is a negligible function 𝜇𝜇 s.t.
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1
2

+ 𝜇𝜇(𝑛𝑛)

In fact: I conjecture that for every one-way function 𝐹𝐹, there 
exists an 𝑟𝑟𝐹𝐹 for which the predicate 𝐵𝐵𝑟𝑟𝐹𝐹 𝑥𝑥 = 𝑟𝑟𝐹𝐹 , 𝑥𝑥 that is 
hardcore.
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