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Lecture 3 Recap

t Theorem: Next-bit Unpredictability = Indistinguishability for PRGs.

Key Techniques: Hybrid Argument, 
Predicting-to-Distinguishing Reduction.

t Theorem: PRG Length Extension

t New Notion: Pseudorandom Functions (PRF)

t Application of PRFs: Stateless Secret-key Encryption



TODAY

1. Theorem: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.

2. More Applications of PRFs:

a. Identification Protocols

c. Applications to Learning Theory

b. Authentication

0. Finish up secret-key encryption.

d. (maybe) Natural Proofs



Pseudorandom Functions

!"# 1% : Generate a random '-bit key (. 

)*+, (, . is a poly-time algorithm that outputs /0 . .

Collection of functions ℱℓ = {/0: {0,1}ℓ → {0,1}9}0∈{;,<}=
• indexed by a key (
• ': key length, ℓ: input length, >: output length.

• Independent parameters, all poly(sec-param) = poly(') 

• #functions in ℱℓ ≤ 2% (singly exponential in ')



Pseudorandom Functions
Collection of functions ℱℓ = {%&: {0,1}ℓ → {0,1}-}&∈{/,0}1

• indexed by a key 2
• 3: key length, ℓ: input length, 4: output length.

• Independent parameters, all poly(sec-param) = poly(3) 

• #functions in ℱℓ ≤ 27 (singly exponential in 3)

≈
Collection of ALL functions 9::ℓ = {%: {0,1}ℓ → {0,1}-}

• #functions in 9::ℓ ≤ 2-;ℓ (doubly exponential in ℓ)



PRG vs. PRF
Key k (or seed s)

!" !# !$ … !& … !#ℓ

t Both expand a few random bits into many pseudorandom bits

t With a PRG, accessing the 2ℓ-th bit takes time 2ℓ. With a PRF, 
this can be done in time ℓ.   

t So, a PRF = locally accessible (or random-access) PRG.

PRG )(+) PRF -(+, /)



Pseudorandom Functions should be “indistinguishable” from 
random

! ← ℱℓ

Distinguisher D 

The pseudorandom world 

Pr[! ← ℱℓ: )* 1, = 1]

/ !(/)

The random world 

! ← 233ℓ

Distinguisher D 

/ !(/)

Pr[! ← 233ℓ: )* 1, = 1]

0/1 0/1

−| | ≤ 9(:)
For all ppt D, there is a negligible function 9 s.t.



PRF ⟹ Stateless Secret-key Encryption
"#$ 1& : Generate a random $-bit key k that defines  

($) *,, : Pick a random - and 
let the ciphertext ) be the pair  (-, / = 12 - ⨁,).

6#) *, ) = (-, /) :

12: {0,1}ℓ → {0,1}<

(the domain size, 2ℓ, had better be super-polynomially large in n) 

Output 12 - ⨁/.



Recall: Definition of Secret-Key Encryption
(for one message)

! ← #

Distinguisher D 

Left World: 

Pr[! ← #:((*+, !,./ ) = 1]

,

Right world: 

Distinguisher D 

,

− Pr[! ← #:((*+, !,.5 ) = 1]

0/1 0/1

| |
≤ :(+)

For all ./, .5, and all ppt D, there is a negligible function : s.t.

, ← Enc(k,./)
! ← #

, ← Enc(k,.5)



Definition of Secret-Key Encryption
(for many messages)

! ← #

Distinguisher D 

Left Oracle $%&'(),))

Pr[! ← #:01234(),))(16) = 1]

9

Right Oracle :;<ℎ'(),))

Distinguisher D 

9

− Pr[! ← #:0?@AB4(),))(16) = 1]

0/1 0/1

| |
≤ G(H)

For all ppt D, there is a negligible function G s.t.

9 ← Enc(k,IJ)
! ← #

9 ← Enc(k,IK)

L1,L?
L1,L?



Proof
Hybrid 0:  D gets access to the Left oracle.

Hybrid 1:  Replace !" by a random function. 

# = (&, ( = !" & ⨁*+)

# = (&, ( = -.⨁*+)

Hybrid 2:  Replace !" by a random function. 

Hybrid 3:  Replace !" by a random function (like H1) 

Hybrid 4: D gets access to the Right oracle (like H0)
# = (&, ( = !" & ⨁*/)

# = (&, ( = -.⨁*+)

≈ by PRF security

≈ by birthday paradox

# = (&, ( = -.) ≈ by birthday paradox

≈ by PRF security

(w.h.p. all x’s distinct)



TODAY

1. Theorem: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.

2. More Applications of PRFs:

a. Identification Protocols

c. Applications to Learning Theory

b. Authentication

0. Finish up secret-key encryption.



Theorem: Let G: {0,1}& → {0,1}&() be a PRG. Then, for every 
polynomial m(n), there is a PRG G’: {0,1}& → {0,1}*(&).

Let’s Look Back at Length Extension…



!"(!"(!"($)))!&(!"(!"($)))

!"(!"($))!&(!"($))

!& $ !"($)

Construction: Let G(s) = !& $ ||!"($) where !& $ is 1 bit and 
!" $ is n bits .

Let’s Look Back at Length Extension…

$ Problem: Accessing the ()* output 
bit takes time ≈ (.



Goldreich-Goldwasser-Micali PRF
Theorem: Let G be a PRG. Then, for every polynomials ℓ = ℓ(n), "
= "(n), there exists a PRF family ℱℓ = {&': {0,1}ℓ → {0,1}.}'∈{0,1}2 .

Note: We will focus on " = ℓ. 
The output length could be made smaller (by truncation) or larger (by 
expansion with a PRG).



!"(!"($))!&(!"($))

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) = !& $ ||!"($) where !& $ and !" $ are 
both n bits each.

!"(!&($))!&(!&($))

!& $ !"($)

$

!&(!&(…!&($)) !"(!"(…!"($)))*ℓ()*ℓ,-(…)*-(.))

Depth ℓ

Each path/leaf labeled by / ∈ {0,1}ℓ corresponds to 67 / .



Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) = !" # ||!%(#) where !" # and !% # are 
both n bits each.

The pseudorandom function family ℱℓ is defined by a collection of 
functions *+ where:

*+ ,%,- …,ℓ = 01ℓ(01ℓ23(…013(4))
ℓ-bit input

t *+ defines 2ℓ pseudorandom bits.

t The ,67 bit can be computed using ℓ evaluations of the PRG G 
(as opposed to , ≈ 2ℓ evaluations as before.) 



PRG Repetition Lemma

Lemma: Let G be a PRG. Then, for every polynomial L=L(n), the 
following two distributions are computationally indistinguishable:

(" #$ , " #& , … , "(#()) ≈ (+$, +&, … , +()

Proof:

If there is a ppt distinguisher between the two distributions with 
distinguishing advantage ,, then there is a ppt distinguisher for G with 
advantage ≥ ,//.

By Hybrid Argument.



! ← ℱℓ

Distinguisher D 

The pseudorandom world 

Pr[! ← ℱℓ: )* 1, = 1]

/ !(/)

The random world 

! ← 233ℓ

Distinguisher D 

/ !(/)

Pr[! ← 233ℓ: )* 1, = 1]

0/1 0/1

−| | ≥ 1/9(:)

By contradiction. Assume there is a ppt D and a poly function 9 s.t.

GGM PRF: Proof of Security



The pseudorandom world:
Hybrid 0

! "(!)

Key Idea: 
Hybrid argument by levels 

of the tree 

D 

%

&'(&((%))&((&((%))

&( % &'(%)

)* )+ ), … ). … )+ℓ

&0ℓ(&0ℓ12(… (%)))



The pseudorandom world:
Hybrid 0

! "(!)

Hybrid 1

D D 

! "(!)

%& %' %( . . %* … %'ℓ

-.(-/(0))

0/ 0.

12 and 1& are random 0

-.(-/(0))-/(-/(0))

-/ 0 -.(0)

%& %' %( … %* … %'ℓ

-3ℓ(-3ℓ45(… (0)))



Hybrid 2

D 

! "(!)

%& %' %( . . %* … %'ℓ

-.. -/.

011, … 0&& are random 

Hybrid 1

D 

! "(!)

%& %' %( . . %* … %'ℓ

3/(3.(-))

-. -/

01 and 0& are random 

-./ -//



The random world:
Hybrid ℓ

D 

" #(")

&' &( &) . . &+ … &(ℓ

…
&' &( &(ℓ



Hybrid !

D 

" #(")

&' &( &) . . &+ … &(ℓ

./!

0/!, … 0'! are random 

.'!
Q: Are the hybrids 
efficiently computable?

A: Yes! Lazy Evaluation.



Hybrid !

D 

" #(")

&' &( &) . . &+ … &(ℓ

./!

0/!, … 0'! are random 

.'!
By a hybrid argument:

Let 23 = Pr[# ← 93: ;< 1> = 1]
We know: 2@ − 2ℓ ≥ ε

For some D: 23 − 23EF ≥ ε/ℓ



Hybrid !

"# "$ "% . . "' … "$ℓ

*+! *#!

Hybrid ! + #

"# "$ "% . . "' … "$ℓ

*+! *#!-.(*+!)
-1(*+!) -.(*#!)

-1(*#!)

A distinguisher with advantage ε/ℓ between the hybrids 
implies a distinguisher with advantage ≥ ε/5ℓ for the PRG.

(where 5 is the number of queries that 6 makes)

(use the PRG repetition lemma)



GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials ℓ,#, there exists 
a PRF family ℱℓ = {'(: {0,1}ℓ → {0,1}.}(∈{0,1}2 .

t Expensive: ℓ invocations of a PRG.

t Sequential: bit-by-bit, ℓ sequential invocations of a PRG.

t Loss in security reduction: break PRF with advantage 3 ⟹
break PRG with advantage 3/6ℓ, where 6 is an arbitrary 
polynomial = #queries of the PRF distinguisher. 
Tighter reduction? Avoid the loss?

Some nits:



TODAY

1. Theorem: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.

2. More Applications of PRFs:

a. Identification Protocols

c. Applications to Learning Theory

b. Authentication

0. Finish up secret-key encryption.



Friend-or-Foe Identification

t Adversary: person-in-the-middle.

t Can listen to / modify the communications. Wants to 
impersonate Tim.



A Simple Lemma about Unpredictability

t Consider an adversary who requests and obtains 
!" #$ , … , !" #' for a polynomial ( = ( * .

t Can she predict !" #∗ for some #∗ of her choosing 
where #∗ ∉ {#$,…, #'}? How well can she do it?

Lemma: If she succeeds with probability $/0 + 1/poly(*), 
then she broke PRF security. This is negligible in * if : is 
large enough, i.e. ;(log *).

Let !": {0,1}ℓ → {0,1}B be a pseudorandom function. 



A Simple Lemma about Unpredictability

t Consider an adversary who requests and obtains 
!" #$ , … , !" #' for a polynomial ( = ( * .

t Can she predict !" #∗ for some #∗ of her choosing 
where #∗ ∉ {#$,…, #'}? How well can she do it?

Let !": {0,1}ℓ → {0,1}5 be a pseudorandom function. 

t Unpredictability ≡ Indistinguishability for bits (lecture 3)

t Indistinguishability ⟹ Unpredictability (but not vice versa).



Challenge-Response Protocol

PRF Key #
(ID number $%, PRF Key #)  

Random &

($%, )* & )

“Proof”: Adversary collects (&,, )* &, ) for poly many &,
(potentially of her choosing). She eventually has to produce 
)* &∗ for a fresh random &∗ when she is trying to impersonate.

This is hard as long as the input and output lengths of the PRF 
are long enough, i.e. .(log 2).



TODAY

1. Theorem: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.

2. More Applications of PRFs:

a. Identification Protocols

c. Applications to Learning Theory

b. Authentication



Secure Communication

Alice Bob

m

Key # Key #

$⊕ #

One-time pad (and encryption schemes in general) 
are malleable.

$′⊕ #

Can toggle 
between m 
and m’



Secure Communication

Alice Bob

m

Key # Key #

(%, '((%) ⊕+) 

One-time pad (and encryption schemes in general) 
are malleable.

(%, '( % ⊕+,)

Can toggle 
between m 
and m’



Message Authentication Codes

Alice Bob

m

Key # Key #

MACs give us integrity, but not privacy.

$%&' ( = *'(()



Message Authentication Codes

Alice Bob

m

Keys $, $′ Keys $, $′

MACs give us integrity, but not privacy.

(( = *, +, * ⨁. , tag = +,2(())

Solution: Encrypt, then MAC (more in pset 3)



TODAY

1. Theorem: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.

2. More Applications of PRFs:

a. Identification Protocols

c. Applications to Learning Theory

b. Authentication



Negative Results in Learning Theory

Theorem [Kearns and Valiant 1994]: 
Assuming PRFs exist, there are hypothesis classes that cannot 
be learned by polynomial-time algorithms. 


