MIT 6.875/18.425

Foundations of Cryptography
Lecture 4

Course website: https://mit6875.github.io/



Lecture 3 Recap

¢ Theorem: Next-bit Unpredictability = Indistinguishability for PRGs.

Key Techniques: Hybrid Argument,
Predicting-to-Distinguishing Reduction.

¢ Theorem: PRG Length Extension

4 New Notion: Pseudorandom Functions (PRF)

¢ Application of PRFs: Stateless Secret-key Encryption



TODAY

0. Finish up secret-key encryption.

1. Theorem: If there are PRGs, then there are PRFs.
The Goldreich-Goldwasser-Micali (GGM) construction.

2. More Applications of PRFs:
a. ldentification Protocols
b. Authentication
c. Applications to Learning Theory

d. (maybe) Natural Proofs



Pseudorandom Functions

Collection of functions F, = {fy:{0,1}* - {0,1} ™ }keq0,13m

* indexed by a key k
* n: key length, €: input length, m: output length.

* Independent parameters, all poly(sec-param) = poly(n)

» #functions in F, < 2" (singly exponential in n)

Gen(1™): Generate a random n-bit key k.

Eval(k, x) is a poly-time algorithm that outputs f; (x).




Pseudorandom Functions

Collection of functions F, = {fy:{0,1}* - {0,1} ™ }keq0,13m

* indexed by a key k
* n: key length, €: input length, m: output length.

* Independent parameters, all poly(sec-param) = poly(n)

» #functions in F, < 2" (singly exponential in n)
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Collection of ALL functions ALL, = {f: {0,1}{) - {0,1}"}

e #functionsin ALL, < gm2* (doubly exponential in )




PRG vs. PRF

PRG G(k) Key k (or seed s) PRF F(k, x)

b]_ b2 b3 b5 bzf

¢ Both expand a few random bits into many pseudorandom bits

¢ With a PRG, accessing the 2¢-th bit takes time 2*. With a PRF,
this can be done in time ¥.

4 So, a PRF = locally accessible (or random-access) PRG.



Pseudorandom Functions should be “indistinguishable” from

random
The pseudorandom world The random world
X ' f(x) X ' f(x)
Distinguisher D Distinguisher D

§on y o1

For all ppt D, there 1s a negligible function u s.t.
| Pr[f « Fp:Df(1") = 1] — Pr[f « ALLp: D/ (1) = 1] < p(n)



PRF = Stateless Secret-key Encryption

Gen(1™): Generate a random n-bit key k that defines
fi: {0,13¢ = {0,13™

(the domain size, 2%, had better be super-polynomially large in n)

Enc(k,m): Pick arandom x and
let the ciphertext ¢ be the pair (x,y = fi,(x)®m).

Dec(k,c = (x,y)): Output f; (x)Dy.



Recall: Definition of Secret-Key Encryption

(for one message)

Left World: Right world:
c c
Distinguisher D Distinguisher D

§on y o1
For all my, m4, and all ppt D, there 1s a negligible function u s.t.

|Pr[k « K:D(Enc(k,mg)) = 1] — Pr[k « K:D(Enc(k,my)) = 1]|
< u(n)



Definition of Secret-Key Encryption

(for many messages)

Left Oracle Left(-,-) Right Oracle Right(-,")
mp, mg ¢ mp, mg ¢
Distinguisher D Distinguisher D

§on y o1
For all ppt D, there is a negligible function u s.t.
|Pr{k « %: DLeftCI (1) = 1] — Prik « ¥: DRiGMCI (1) = 1] |
< u(n)



Proof

Hybrid O: D gets access to the Left oracle.

¢c=(x,y = frlx)dm,) ,
~ by PRF security

Hybrid 1: Replace f} by a random function.

c=(xy=nrdm) ~ by birthday paradox
(w.h.p. all x’s distinct)

Hybrid 2: Replace f}; by a random function.

c=(x,y="1 =~ by birthday paradox
Hybrid 3: Replace f; by a random function (like H1)

c = (x,y =1r,bdm;) ~ by PRF security
Hybrid 4: D gets access to the Right oracle (like HO)

¢c=xy = fr(x)®mg)



TODAY

1. Theorem: If there are PRGs, then there are PRFs.
The Goldreich-Goldwasser-Micali (GGM) construction.

2. More Applications of PRFs:
a. ldentification Protocols
b. Authentication

c. Applications to Learning Theory



Let’s Look Back at Length Extension...

Theorem: Let G: {0,1}"* — {0,1}**! be a PRG. Then, for every
polynomial m(n), there is a PRG G’: {0,1}" — {0,1}™("),




Let’s Look Back at Length Extension...

Construction: Let G(s) = Go(s)||G1(s) where Gy(s) is 1 bit and
G1(s) is n bits .

O Problem: Accessing the it" output
\ bit takes time = 1.

N\




Goldreich-Goldwasser-Micali PRF

Theorem: Let G be a PRG. Then, for every polynomials £ = £(n), m
= m(n), there exists a PRF family F, = {f,: {0,1}* — {0,1}™ }seq0,13m-

Note: We will focusonm = ¥.
The output length could be made smaller (by truncation) or larger (by
expansion with a PRG).




Goldreich-Goldwasser-Micali PRF

Construction: Let G(s) = Go(s)||G1(s) where Gy(s) and G;(s) are
both n bits each.

S
GoXs) G1(s) é
S
/ \ / \ a7
Go(Go(s))  Gi(By(s))  Go(Gi(s))  G1(G1(S))
Go(Go(-- Go(S)) Gy,(Gx,_ (... Gy (5)) G1(G1(- G1(5))

Each path/leaf labeled by x € {0,1} corresponds to f;(x).



Goldreich-Goldwasser-Micali PRF

Construction: Let G(s) = Go(s)||G1(s) where Gy(s) and G;(s) are
both n bits each.

The pseudorandom function family F, is defined by a collection of
functions f; where:

fe(x1xg xp) = Gxg (G.X'g_l("' le (s))

\

I

£-bit input

¢ . defines 2¢ pseudorandom bits.

¢ The xt" bit can be computed using £ evaluations of the PRG G
(as opposed to x ~ 2¢ evaluations as before.)



PRG Repetition Lemma

Lemma: Let G be a PRG. Then, for every polynomial L=L(n), the
following two distributions are computationally indistinguishable:

(G(Sl); G(SZ); ey G(SL)) ~ (ul; Uy, ""uL)

Proof: By Hybrid Argument.

If there is a ppt distinguisher between the two distributions with

distinguishing advantage ¢, then there is a ppt distinguisher for G with
advantage = ¢/L.




GGM PRF: Proof of Security

By contradiction. Assume there 1s a ppt D and a poly function p s.t.

| Pr[f « Fp: DI (1™) = 1] — Pr[f « ALL,: Df(1") = 1]| = 1/p(n)



The pseudorandom world:

Hybrid O
S
Go(s) G1(5)
Key Idea:
Go(Go(5)) Gl(GO(s)) Hybrid argument by levels
of the tree
000
Gyy_y (- (5)))
bl bz b3 bx b2£’

A 4 re

D




The pseudorandom world:

Hybrid 0 Hybrid 1
So and sq are random
G1(s) S0 51
O
Go(Go(s)) Gl(GO(S)) G1(Go(s))
O 000 O ooo O
G, (Gxp_y (- (5)))
by b, b3 .. b, b
b1 bz b3 bx b2£’ ! ? ’ - 2!

A 4 re

D

xt | f@




Hybrid 1

So and s; are random

So S1

O
G1(Go(s))

O 000 O

Hybrid 2

by by by .. b, ~ by

xt | f

S00, --- S11 are random

S00~ S 510 511
My O

O 000 O

by by by .. b, -~ by

xt ‘f(x)




The random world:

Hybrid ¢
b1 bZ bzf
O O 000 O O
b, b, bs b, ~ by




Hybrid i

Sgyis --- Sqi are random

S ni Sqi
'~ ooo0o000Q !

O 000 O

by by by .. b, ~ by

x| f@

Q: Are the hybrids
efficiently computable?

A: Yes! Lazy Evaluation.



Hybrid i

Sgyis --- Sqi are random

S ni S4i
'~ ooo0o000Q !

O 000 O

by by by .. b, ~ by

x| f@

Let p; = Pr[f « H;: DT (1™) = 1]

We know: py —p, = €

By a hybrid argument:

Forsome i: p; — pj;+1 = €/



(use the PRG repetition lemma)

A distinguisher with advantage /¢ between the hybrids
implies a distinguisher with advantage > ¢/qf for the PRG.

(where q is the number of queries that D makes)

Hybrid i Hybrid i + 1
S i
0 CXE O
Go(Spi) Cééb Soi OO0 000 OQ 1
G1(Sgi) Go(541)
O 000 O 000 O

by by by .. b, ~ by by by by .. b, ~ by




GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials £, m, there exists
a PRF family F, = {f.: {0,1}* — {O»l}m}se{o,1}"-

Some nits:

® Expensive: £ invocations of a PRG.

¢ Seqguential: bit-by-bit, £ sequential invocations of a PRG.

€ Loss in security reduction: break PRF with advantage € =
break PRG with advantage €/q¥, where q is an arbitrary
polynomial = #queries of the PRF distinguisher.

Tighter reduction? Avoid the loss?




TODAY

2. More Applications of PRFs:
a. ldentification Protocols
b. Authentication

c. Applications to Learning Theory



Friend-or-Foe Identification

¢ Adversary: person-in-the-middle.

4 Can listen to / modify the communications. Wants to
impersonate Tim.



A Simple Lemma about Unpredictability

Let f;: {0,1}¢ — {0,1}™ be a pseudorandom function.

¢ Consider an adversary who requests and obtains
fs(x1), ...,fg(xq) for a polynomial g = gq(n).

€ Can she predict f;(x*) for some x* of her choosing
where x* & {x4,..., Xq}? How well can she do it?

Lemma: If she succeeds with probability zim + 1/poly(n),

then she broke PRF security. This is negligible inn if m is
large enough, i.e. w(logn).




A Simple Lemma about Unpredictability

Let f;: {0,1}¢ — {0,1}™ be a pseudorandom function.

¢ Consider an adversary who requests and obtains
fs(x1), ...,fg(xq) for a polynomial g = gq(n).

€ Can she predict f;(x*) for some x* of her choosing
where x* & {x4,..., Xq}? How well can she do it?

¢ Unpredictability = Indistinguishability for bits (lecture 3)

¢ Indistinguishability = Unpredictability (but not vice versa).



Challenge-Response Protocol

PRF Key s

(ID number ID, PRF Key s)

“Proof”: Adversary collects (7;, f5(1;)) for poly many r;
(potentially of her choosing). She eventually has to produce
f:(r*) for a fresh random r* when she is trying to impersonate.

This is hard as long as the input and output lengths of the PRF
are long enough, i.e. w(logn).



TODAY

b. Authentication

c. Applications to Learning Theory



Secure Communication

ﬂ mok m @k
g e

; Bob
Alice Can toggle
Key k between m Key k
and m’

One-time pad (and encryption schemes in general)
are malleable.



Secure Communication

0
Q , fr(r) GBm)w(r,fk(r) b m') Q
\ Bob

Alice Can toggle
Key k between m Key k
and m’

One-time pad (and encryption schemes in general)
are malleable.



Message Authentication Codes

5
MAC,(m) = fi,(m) Q
: : >
Alice Bob
Key k Key k

MACs give us integrity, but not privacy.



Message Authentication Codes

)
: (c = (x, fr(x)dm), tag = fi,(c)) Q,

Alice Bob
Keys k, k' Keys k, k'

MACs give us integrity, but not privacy.

Solution: Encrypt, then MAC (more in pset 3)



TODAY

c. Applications to Learning Theory



Negative Results in Learning Theory

Theorem [Kearns and Valiant 1994].

Assuming PRFs exist, there are hypothesis classes that cannot
be learned by polynomial-time algorithms.




