MIT 6.875/18.425

Foundations of Cryptography Lecture 4

Course website: https://mit6875.github.io/

Lecture 3 Recap

Theorem: Next-bit Unpredictability = Indistinguishability for PRGs.

Key Techniques: Hybrid Argument, Predicting-to-Distinguishing Reduction.

Theorem: PRG Length Extension

New Notion: Pseudorandom Functions (PRF)

Application of PRFs: Stateless Secret-key Encryption

TODAY

0. Finish up secret-key encryption.

1. **Theorem**: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.

- 2. More Applications of PRFs:
 - a. Identification Protocols
 - b. Authentication
 - c. Applications to Learning Theory
 - d. (maybe) Natural Proofs

Pseudorandom Functions

Collection of functions $\mathcal{F}_{\ell} = \{f_k : \{0,1\}^{\ell} \to \{0,1\}^m\}_{k \in \{0,1\}^n}$

- indexed by a key k
- n: key length, ℓ : input length, m: output length.
- Independent parameters, all poly(sec-param) = poly(n)
- #functions in $\mathcal{F}_{\ell} \leq 2^n$ (singly exponential in *n*)

Gen(1^{*n*}): Generate a random *n*-bit key *k*. **Eval**(k, x) is a poly-time algorithm that outputs $f_k(x)$.

Pseudorandom Functions

Collection of functions $\mathcal{F}_{\ell} = \{f_k : \{0,1\}^{\ell} \to \{0,1\}^m\}_{k \in \{0,1\}^n}$

- indexed by a key k
- n: key length, ℓ : input length, m: output length.
- Independent parameters, all poly(sec-param) = poly(n)
- #functions in $\mathcal{F}_{\ell} \leq 2^n$ (singly exponential in *n*)

\approx

Collection of ALL functions $ALL_{\ell} = \{f: \{0,1\}^{\ell} \rightarrow \{0,1\}^{m}\}$

• #functions in $ALL_{\ell} \leq 2^{m2^{\ell}}$ (doubly exponential in ℓ)

PRG vs. PRF

Both expand a few random bits into many pseudorandom bits

♦ With a PRG, accessing the 2^ℓ-th bit takes time 2^ℓ. With a PRF, this can be done in time ℓ.

Pseudorandom Functions should be "indistinguishable" from random

For all ppt D, there is a negligible function μ s.t. $\left|\Pr[f \leftarrow \mathcal{F}_{\ell}: D^{f}(1^{n}) = 1] - \Pr[f \leftarrow ALL_{\ell}: D^{f}(1^{n}) = 1]\right| \leq \mu(n)$

PRF \implies Stateless Secret-key Encryption

 $Gen(1^n)$: Generate a random *n*-bit key k that defines

$$f_k: \{0,1\}^\ell \to \{0,1\}^m$$

(the domain size, 2^{ℓ} , had better be super-polynomially large in n)

Enc(*k*, *m*): Pick a random *x* and let the ciphertext *c* be the pair $(x, y = f_k(x) \oplus m)$.

Dec(k, c = (x, y)): Output $f_k(x) \oplus y$.

Recall: Definition of Secret-Key Encryption

(for one message)

For all m_0 , m_1 , and all ppt D, there is a negligible function μ s.t. $\left| \Pr[k \leftarrow \mathcal{K}: D(Enc(k, m_0)) = 1] - \Pr[k \leftarrow \mathcal{K}: D(Enc(k, m_1)) = 1] \right|$ $\leq \mu(n)$

Definition of Secret-Key Encryption

(for many messages)

Left Oracle $Left(\cdot, \cdot)$

Right Oracle $Right(\cdot, \cdot)$

For all ppt D, there is a negligible function μ s.t.

 $\Pr[k \leftarrow \mathcal{K}: D^{Left(\cdot, \cdot)}(1^n) = 1] - \Pr[k \leftarrow \mathcal{K}: D^{Right(\cdot, \cdot)}(1^n) = 1] \\ \leq \mu(n)$

Proof

Hybrid 0: D gets access to the Left oracle.

$$c = (x, y = f_k(x) \oplus m_L)$$

 \approx by PRF security

Hybrid 1: Replace f_k by a random function.

$$c = (x, y = r_x \oplus m_L)$$

≈ by birthday paradox (w.h.p. all x's distinct)

Hybrid 2: Replace f_k by a random function. $c = (x, y = r_x)$

 \approx by birthday paradox

Hybrid 3: Replace f_k by a random function (like H1)

$$c = (x, y = r_x \oplus m_L) \approx by PRF security$$

Hybrid 4: D gets access to the Right oracle (like H0)

$$c = (x, y = f_k(x) \oplus m_R)$$

TODAY

0. Finish up secret-key encryption.

1. **Theorem**: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.

- 2. More Applications of PRFs:
 - a. Identification Protocols
 - b. Authentication
 - c. Applications to Learning Theory

Let's Look Back at Length Extension...

Theorem: Let G: $\{0,1\}^n \rightarrow \{0,1\}^{n+1}$ be a PRG. Then, for every polynomial m(n), there is a PRG G': $\{0,1\}^n \rightarrow \{0,1\}^{m(n)}$.

Let's Look Back at Length Extension...

Construction: Let G(s) = $G_0(s)||G_1(s)$ where $G_0(s)$ is 1 bit and $G_1(s)$ is n bits .

Goldreich-Goldwasser-Micali PRF

Theorem: Let G be a PRG. Then, for every polynomials $\ell = \ell(n)$, m = m(n), there exists a PRF family $\mathcal{F}_{\ell} = \{f_s : \{0,1\}^{\ell} \to \{0,1\}^m\}_{s \in \{0,1\}^n}$.

Note: We will focus on $m = \ell$.

The output length could be made smaller (by truncation) or larger (by expansion with a PRG).

Goldreich-Goldwasser-Micali PRF

Construction: Let $G(s) = G_0(s)||G_1(s)$ where $G_0(s)$ and $G_1(s)$ are both n bits each.

Each path/leaf labeled by $x \in \{0,1\}^{\ell}$ corresponds to $f_s(x)$.

Goldreich-Goldwasser-Micali PRF

Construction: Let $G(s) = G_0(s)||G_1(s)$ where $G_0(s)$ and $G_1(s)$ are both n bits each.

The pseudorandom function family \mathcal{F}_{ℓ} is defined by a collection of functions f_s where:

$$f_{S}(x_{1}x_{2} \dots x_{\ell}) = G_{x_{\ell}}(G_{x_{\ell-1}}(\dots G_{x_{1}}(s))$$

$$\ell\text{-bit input}$$

• f_s defines 2^{ℓ} pseudorandom bits.

• The x^{th} bit can be computed using ℓ evaluations of the PRG G (as opposed to $x \approx 2^{\ell}$ evaluations as before.)

PRG Repetition Lemma

Lemma: Let G be a PRG. Then, for every polynomial L=L(n), the following two distributions are computationally indistinguishable:

 $(\boldsymbol{G}(\boldsymbol{s_1}), \boldsymbol{G}(\boldsymbol{s_2}), \dots, \boldsymbol{G}(\boldsymbol{s_L})) \approx (\boldsymbol{u_1}, \boldsymbol{u_2}, \dots, \boldsymbol{u_L})$

Proof: By Hybrid Argument.

If there is a ppt distinguisher between the two distributions with distinguishing advantage ε , then there is a ppt distinguisher for G with advantage $\geq \varepsilon/L$.

GGM PRF: Proof of Security

By contradiction. Assume there is a ppt D and a poly function p s.t.

 $\left| \Pr[f \leftarrow \mathcal{F}_{\ell}: D^{f}(1^{n}) = 1] - \Pr[f \leftarrow ALL_{\ell}: D^{f}(1^{n}) = 1] \right| \ge 1/p(n)$

The pseudorandom world

The random world

The pseudorandom world: Hybrid 0

Key Idea: Hybrid argument by levels of the tree

X

The random world: Hybrid ℓ

$$x \qquad f(x)$$

Q: Are the hybrids efficiently computable?

A: Yes! Lazy Evaluation.

$$x f(x)$$

Hybrid *i*

Let $p_i = \Pr[f \leftarrow H_i: D^f(1^n) = 1]$

We know: $p_0 - p_\ell \ge \varepsilon$

By a hybrid argument:

For some $i: p_i - p_{i+1} \ge \epsilon/\ell$

$$x \qquad f(x)$$

(use the PRG repetition lemma)

A distinguisher with advantage ε/ℓ between the hybrids implies a distinguisher with advantage $\ge \varepsilon/q\ell$ for the PRG.

(where q is the number of queries that D makes)

GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials ℓ, m , there exists a PRF family $\mathcal{F}_{\ell} = \{f_s: \{0,1\}^{\ell} \to \{0,1\}^m\}_{s \in \{0,1\}^n}$.

Some nits:

- *Expensive*: ℓ invocations of a PRG.
- Sequential: bit-by-bit, ℓ sequential invocations of a PRG.
- Loss in security reduction: break PRF with advantage $\varepsilon \implies$ break PRG with advantage $\varepsilon/q\ell$, where q is an arbitrary polynomial = #queries of the PRF distinguisher. Tighter reduction? Avoid the loss?

TODAY

0. Finish up secret-key encryption.

1. **Theorem**: If there are PRGs, then there are PRFs. The Goldreich-Goldwasser-Micali (GGM) construction.

- 2. More Applications of PRFs:
 - a. Identification Protocols
 - b. Authentication
 - c. Applications to Learning Theory

Friend-or-Foe Identification

Adversary: person-in-the-middle.

 Can listen to / modify the communications. Wants to impersonate Tim.

A Simple Lemma about Unpredictability

Let $f_s: \{0,1\}^{\ell} \to \{0,1\}^m$ be a pseudorandom function.

Consider an adversary who requests and obtains $f_s(x_1), \dots, f_s(x_q)$ for a polynomial q = q(n).

♦ Can she predict $f_s(x^*)$ for some x^* of her choosing where $x^* \notin \{x_1, ..., x_q\}$? How well can she do it?

Lemma: If she succeeds with probability $\frac{1}{2^m} + 1/\text{poly}(n)$, then she broke PRF security. This is negligible in n if m is large enough, i.e. $\omega(\log n)$.

A Simple Lemma about Unpredictability

Let $f_s: \{0,1\}^{\ell} \to \{0,1\}^m$ be a pseudorandom function.

- Consider an adversary who requests and obtains $f_s(x_1), \dots, f_s(x_q)$ for a polynomial q = q(n).
- ♦ Can she predict $f_s(x^*)$ for some x^* of her choosing where $x^* \notin \{x_1, ..., x_q\}$? How well can she do it?
- Unpredictability \equiv Indistinguishability *for bits* (lecture 3)
- Indistinguishability \implies Unpredictability (*but not vice versa*).

Challenge-Response Protocol

(ID number *ID*, PRF Key *s*)

"Proof": Adversary collects $(r_i, f_s(r_i))$ for poly many r_i (potentially of her choosing). She eventually has to produce $f_s(r^*)$ for a fresh random r^* when she is trying to impersonate.

This is hard as long as the input and output lengths of the PRF are long enough, i.e. $\omega(\log n)$.

TODAY

1. **Theorem**: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.

2. More Applications of PRFs:

a. Identification Protocols

b. Authentication

c. Applications to Learning Theory

Secure Communication

One-time pad (and encryption schemes in general) are *malleable*.

Secure Communication

One-time pad (and encryption schemes in general) are *malleable*.

Message Authentication Codes

MACs give us integrity, but not privacy.

Message Authentication Codes

MACs give us integrity, but not privacy.

Solution: Encrypt, then MAC (more in pset 3)

TODAY

1. **Theorem**: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.

2. More Applications of PRFs:

a. Identification Protocols

b. Authentication

c. Applications to Learning Theory

Negative Results in Learning Theory

Theorem [Kearns and Valiant 1994]:

Assuming PRFs exist, there are hypothesis classes that cannot be learned by polynomial-time algorithms.