MIT 6.875/18.425

Foundations of Cryptography Lecture 4

Course website: https://mit6875.github.io/

Lecture 3 Recap

Theorem: Next-bit Unpredictability = Indistinguishability for PRGs.
Key Techniques: Hybrid Argument, Predicting-to-Distinguishing Reduction.

- Theorem: PRG Length Extension
- New Notion: Pseudorandom Functions (PRF)
- Application of PRFs: Stateless Secret-key Encryption

TODAY

0 . Finish up secret-key encryption.

1. Theorem: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.
2. More Applications of PRFs:
a. Identification Protocols
b. Authentication
c. Applications to Learning Theory
d. (maybe) Natural Proofs

Pseudorandom Functions

Collection of functions $\mathcal{F}_{\ell}=\left\{f_{k}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}\right\}_{k \in\{0,1\}^{n}}$

- indexed by a key k
- n : key length, ℓ : input length, m : output length.
- Independent parameters, all poly(sec-param) = poly (n)
- \#functions in $\mathcal{F}_{\ell} \leq 2^{n}$ (singly exponential in n)
$\operatorname{Gen}\left(1^{n}\right)$: Generate a random n-bit key k.
$\operatorname{Eval}(k, x)$ is a poly-time algorithm that outputs $f_{k}(x)$.

Pseudorandom Functions

Collection of functions $\mathcal{F}_{\ell}=\left\{f_{k}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}\right\}_{k \in\{0,1\}^{n}}$

- indexed by a key k
- n : key length, ℓ : input length, m : output length.
- Independent parameters, all poly(sec-param) $=\operatorname{poly}(n)$
- \#functions in $\mathcal{F}_{\ell} \leq 2^{n}$ (singly exponential in n)

Collection of ALL functions $A L L_{\ell}=\left\{f:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}\right\}$

- \#functions in $A L L_{\ell} \leq 2^{m 2^{\ell}}$ (doubly exponential in ℓ)

PRG vs. PRF

PRG $\boldsymbol{G}(\boldsymbol{k})$

PRF F (k, x)

- Both expand a few random bits into many pseudorandom bits
- With a PRG, accessing the 2^{ℓ}-th bit takes time 2^{ℓ}. With a PRF, this can be done in time ℓ.
- So, a PRF = locally accessible (or random-access) PRG.

Pseudorandom Functions should be "indistinguishable" from random

The pseudorandom world

The random world

For all ppt D , there is a negligible function μ s.t.
$\left|\operatorname{Pr}\left[f \leftarrow \mathcal{F}_{\ell}: D^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[f \leftarrow A L L_{\ell}: D^{f}\left(1^{n}\right)=1\right]\right| \leq \mu(n)$

PRF \Longrightarrow Stateless Secret-key Encryption

$\operatorname{Gen}\left(1^{n}\right)$: Generate a random n-bit key k that defines

$$
f_{k}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}
$$

(the domain size, 2^{ℓ}, had better be super-polynomially large in n)
$\operatorname{Enc}(k, m)$: Pick a random x and let the ciphertext c be the pair $\left(x, y=f_{k}(x) \oplus m\right)$.
$\operatorname{Dec}(k, c=(x, y)):$ Output $f_{k}(x) \oplus y$.

Recall: Definition of Secret-Key Encryption

(for one message)

Right world:

For all m_{0}, m_{1}, and all ppt D , there is a negligible function μ s.t.

$$
\begin{gathered}
\left|\operatorname{Pr}\left[k \leftarrow \mathcal{K}: D\left(E n c\left(k, m_{0}\right)\right)=1\right]-\operatorname{Pr}\left[k \leftarrow \mathcal{K}: D\left(E n c\left(k, m_{1}\right)\right)=1\right]\right| \\
\leq \mu(n)
\end{gathered}
$$

Definition of Secret-Key Encryption

 (for many messages)Left Oracle Left (\cdot, \cdot)

Right Oracle Right $(, \cdot \cdot)$

For all ppt D , there is a negligible function μ s.t.

$$
\begin{gathered}
\left|\operatorname{Pr}\left[k \leftarrow \mathcal{K}: D^{\operatorname{Left}(\cdot \cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[k \leftarrow \mathcal{K}: D^{\operatorname{Right}(\cdot \cdot)}\left(1^{n}\right)=1\right]\right| \\
\leq \mu(n)
\end{gathered}
$$

Proof

Hybrid 0: D gets access to the Left oracle.

$$
c=\left(x, y=f_{k}(x) \oplus m_{L}\right)
$$

$$
\approx \text { by PRF security }
$$

Hybrid 1: Replace f_{k} by a random function.

$$
c=\left(x, y=r_{x} \oplus m_{L}\right)
$$

\approx by birthday paradox (w.h.p. all x's distinct)

Hybrid 2: Replace f_{k} by a random function.

$$
c=\left(x, y=r_{x}\right)
$$

\approx by birthday paradox
Hybrid 3: Replace f_{k} by a random function (like H 1)

$$
c=\left(x, y=r_{x} \oplus m_{L}\right) \quad \approx \text { by PRF security }
$$

Hybrid 4: D gets access to the Right oracle (like HO)

$$
c=\left(x, y=f_{k}(x) \oplus m_{R}\right)
$$

TODAY

0 . Finish up secret-key encryption.

1. Theorem: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.
2. More Applications of PRFs:
a. Identification Protocols
b. Authentication
c. Applications to Learning Theory

Let's Look Back at Length Extension...

Theorem: Let $\mathrm{G}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a PRG. Then, for every polynomial $\mathrm{m}(\mathrm{n})$, there is a PRG $\mathrm{G}^{\prime}:\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}$.

Let's Look Back at Length Extension...

Construction: Let $\mathrm{G}(\mathrm{s})=G_{0}(s) \| G_{1}(s)$ where $G_{0}(s)$ is 1 bit and $G_{1}(s)$ is n bits .

Goldreich-Goldwasser-Micali PRF

Theorem: Let G be a PRG. Then, for every polynomials $\ell=\ell(\mathrm{n}), m$
$=m(n)$, there exists a PRF family $\mathcal{F}_{\ell}=\left\{f_{s}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}\right\}_{s \in\{0,1\}^{n}}$.

Note: We will focus on $m=\ell$.
The output length could be made smaller (by truncation) or larger (by expansion with a PRG).

Goldreich-Goldwasser-Micali PRF

Construction: Let $\mathrm{G}(\mathrm{s})=G_{0}(s) \| G_{1}(s)$ where $G_{0}(s)$ and $G_{1}(s)$ are both n bits each.

$$
G_{0}\left(G _ { 0 } (\ldots G _ { 0 } (s)) \quad \boldsymbol { G } _ { \boldsymbol { x } _ { \ell } } \left(\boldsymbol{G}_{\boldsymbol{x}_{\ell-1}}\left(\ldots \boldsymbol{G}_{\boldsymbol{x}_{\mathbf{1}}}(\boldsymbol{s})\right)\right.\right.
$$

$$
G_{1}\left(G_{1}\left(\ldots G_{1}(s)\right)\right.
$$

Each path/leaf labeled by $x \in\{0,1\}^{\ell}$ corresponds to $f_{s}(x)$.

Goldreich-Goldwasser-Micali PRF

Construction: Let $\mathrm{G}(\mathrm{s})=G_{0}(s) \| G_{1}(s)$ where $G_{0}(s)$ and $G_{1}(s)$ are both n bits each.

The pseudorandom function family \mathcal{F}_{ℓ} is defined by a collection of functions f_{s} where:

$$
f_{S}(\underbrace{\left(x_{1} x_{2} \ldots x_{\ell}\right)}_{\ell \text {-bit input }}=\boldsymbol{G}_{\boldsymbol{x}_{\ell}}\left(\boldsymbol{G}_{\boldsymbol{x}_{\ell-1}}\left(\ldots \boldsymbol{G}_{\boldsymbol{x}_{1}}(\boldsymbol{s})\right)\right.
$$

- f_{s} defines 2^{ℓ} pseudorandom bits.
- The $x^{\text {th }}$ bit can be computed using ℓ evaluations of the PRG G (as opposed to $x \approx 2^{\ell}$ evaluations as before.)

PRG Repetition Lemma

Lemma: Let G be a PRG. Then, for every polynomial $L=L(n)$, the following two distributions are computationally indistinguishable:

$$
\left(G\left(s_{1}\right), G\left(s_{2}\right), \ldots, G\left(s_{L}\right)\right) \approx\left(u_{1}, u_{2}, \ldots, u_{L}\right)
$$

Proof: By Hybrid Argument.

If there is a ppt distinguisher between the two distributions with distinguishing advantage ε, then there is a ppt distinguisher for G with advantage $\geq \varepsilon / L$.

GGM PRF: Proof of Security

By contradiction. Assume there is a ppt D and a poly function p s.t.
$\left|\operatorname{Pr}\left[f \leftarrow \mathcal{F}_{\ell}: D^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[f \leftarrow A L L_{\ell}: D^{f}\left(1^{n}\right)=1\right]\right| \geq 1 / p(n)$

The pseudorandom world

The random world

The pseudorandom world: Hybrid 0

Key Idea:

Hybrid argument by levels of the tree

The pseudorandom world: Hybrid 0

s_{0} and s_{1} are random

$$
\begin{array}{llllllllll}
b_{1} & b_{2} & b_{3} & . . & b_{x} & \cdots & b_{2^{e}} \\
\hline
\end{array}
$$

$x \uparrow \downarrow f(x)$
D

Hybrid 1
Hybrid 2

$s_{00}, \ldots s_{11}$ are random

$x \uparrow \downarrow f(x)$
D

The random world:
Hybrid ℓ

Hybrid i

Q: Are the hybrids efficiently computable?

A: Yes! Lazy Evaluation.

Hybrid i

Let $p_{i}=\operatorname{Pr}\left[f \leftarrow H_{i}: D^{f}\left(1^{n}\right)=1\right]$
We know: $p_{0}-p_{\ell} \geq \varepsilon$

By a hybrid argument:
For some i : $p_{i}-p_{i+1} \geq \varepsilon / \ell$

(use the PRG repetition lemma)

A distinguisher with advantage ε / ℓ between the hybrids implies a distinguisher with advantage $\geq \varepsilon / q \ell$ for the PRG.
(where q is the number of queries that D makes)

Hybrid i

Hybrid $i+1$

GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials ℓ, m, there exists a PRF family $\mathcal{F}_{\ell}=\left\{f_{s}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}\right\}_{s \in\{0,1\}^{n}}$.

Some nits:

- Expensive: ℓ invocations of a PRG.

Sequential: bit-by-bit, ℓ sequential invocations of a PRG.

- Loss in security reduction: break PRF with advantage $\varepsilon \Longrightarrow$ break PRG with advantage $\varepsilon / q \ell$, where q is an arbitrary polynomial = \#queries of the PRF distinguisher.
Tighter reduction? Avoid the loss?

TODAY

0 . Finish up secret-key encryption.

1. Theorem: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.
2. More Applications of PRFs:
a. Identification Protocols
b. Authentication
c. Applications to Learning Theory

Friend-or-Foe Identification

- Adversary: person-in-the-middle.
- Can listen to / modify the communications. Wants to impersonate Tim.

A Simple Lemma about Unpredictability

Let $f_{s}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$ be a pseudorandom function.

- Consider an adversary who requests and obtains $f_{s}\left(x_{1}\right), \ldots, f_{s}\left(x_{q}\right)$ for a polynomial $q=q(n)$.
- Can she predict $f_{s}\left(x^{*}\right)$ for some x^{*} of her choosing where $x^{*} \notin\left\{x_{1}, \ldots, x_{q}\right\}$? How well can she do it?

Lemma: If she succeeds with probability $\frac{1}{2^{m}}+1 / \operatorname{poly}(n)$, then she broke PRF security. This is negligible in n if m is large enough, i.e. $\omega(\log n)$.

A Simple Lemma about Unpredictability

Let $f_{s}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$ be a pseudorandom function.

- Consider an adversary who requests and obtains $f_{s}\left(x_{1}\right), \ldots, f_{s}\left(x_{q}\right)$ for a polynomial $q=q(n)$.
- Can she predict $f_{s}\left(x^{*}\right)$ for some x^{*} of her choosing where $x^{*} \notin\left\{x_{1}, \ldots, x_{q}\right\}$? How well can she do it?
- Unpredictability \equiv Indistinguishability for bits (lecture 3)
- Indistinguishability \Rightarrow Unpredictability (but not vice versa).

Challenge-Response Protocol

(ID number ID, PRF Key s)
"Proof": Adversary collects $\left(r_{i}, f_{s}\left(r_{i}\right)\right)$ for poly many r_{i} (potentially of her choosing). She eventually has to produce $f_{S}\left(r^{*}\right)$ for a fresh random r^{*} when she is trying to impersonate.

This is hard as long as the input and output lengths of the PRF are long enough, i.e. $\omega(\log n)$.

TODAY

1. Theorem: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.
2. More Applications of PRFs:
a. Identification Protocols
b. Authentication
c. Applications to Learning Theory

Secure Communication

One-time pad (and encryption schemes in general) are malleable.

Secure Communication

One-time pad (and encryption schemes in general) are malleable.

Message Authentication Codes

MACs give us integrity, but not privacy.

Message Authentication Codes

MACs give us integrity, but not privacy.
Solution: Encrypt, then MAC (more in pset 3)

TODAY

1. Theorem: If there are PRGs, then there are PRFs.

The Goldreich-Goldwasser-Micali (GGM) construction.
2. More Applications of PRFs:
a. Identification Protocols
b. Authentication
c. Applications to Learning Theory

Negative Results in Learning Theory

Theorem [Kearns and Valiant 1994]:

Assuming PRFs exist, there are hypothesis classes that cannot be learned by polynomial-time algorithms.

