MIT 6.875/6.5620/18.425

Foundations of Cryptography Lecture 3

Course website: https://mit6875.github.io/

Lecture 2 Recap

- Computational Indistinguishability: a new definition of security for secret-key encryption.
(new notions: p.p.t. adversaries, negligible functions,...)
- Consequence: Shannon's impossibility no longer applies!
- New Notion: Pseudorandom Generator (PRG)
$\bullet P R G \Rightarrow$ Can encrypt a single message longer than the key.
- We saw a construction of PRG (based on subset sum). Many more later in the course.

TODAY

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.
Theorem (next lec): If there is a PRG, then there is a PRF.

New Proof Technique: Hybrid Arguments.

But first, let's do some prep work...

Three Definitions of Pseudorandomness

Def 1 [Indistinguishability]

"No polynomial-time algorithm can distinguish between the output of a PRG on a random seed vs. a truly random string" = "as good as" a truly random string for all practir s. oses.

Def 2 [Next-bit Unpredictability]

"No polynomial-time algorithm ca .ct the (i+1) ${ }^{\text {th }}$ bit of the output of a PRG given the first $\boldsymbol{S}^{\text {uetter than chance" }}$

PRG Def 1 (Recap): Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function $\mathrm{G}:\{0,1\}^{\mathrm{n}} \rightarrow$ $\{0,1\}^{\mathrm{m}}$ is indistinguishable (or, secure against any statistical test) if: for every PPT algorithm D (called a distinguisher) if there is a negligible function μ such that:

$$
\left|\operatorname{Pr}\left[\boldsymbol{D}\left(\boldsymbol{G}\left(\boldsymbol{U}_{\boldsymbol{n}}\right)\right)=\mathbf{1}\right]-\operatorname{Pr}\left[\boldsymbol{D}\left(\boldsymbol{U}_{\boldsymbol{m}}\right)=\mathbf{1}\right]\right|=\boldsymbol{\mu}(\boldsymbol{n})
$$

Notation: $U_{n}\left(\right.$ resp. $\left.U_{m}\right)$ denotes the random distribution on n-bit (resp. m-bit) strings.

PRG Def 2: Next-bit Unpredictability

Definition [Next-bit Unpredictability]:

A deterministic polynomial-time computable function $\mathrm{G}:\{0,1\}^{\mathrm{n}} \rightarrow$ $\{0,1\}^{\mathrm{m}}$ is next-bit unpredictable if:
for every PPT algorithm P (called a next-bit predictor) and every $i \in$ $\{1, \ldots, m\}$, if there is a negligible function μ such that:

$$
\operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): P\left(y_{1} y_{2} \ldots y_{i-1}\right)=y_{i}\right]=\frac{1}{2}+\mu(n)
$$

Notation: $\boldsymbol{y}_{\mathbf{1}}, \boldsymbol{y}_{2}, \ldots \boldsymbol{y}_{\boldsymbol{m}}$ are the bits of the m-bit string \boldsymbol{y}.

Def 1 and Def 2 are Equivalent

Theorem:

A PRG G is indistinguishable if and only if it is nextbit unpredictable.

Def 1 and Def 2 are Equivalent

Theorem:

A PRG G passes all (poly-time) statistical tests if and only if it passes (poly-time) next-bit tests.

NBU and Indistinguishability

- Next-bit Unpredictability (NBU): Seemingly much weaker requirement. Only says that next bit predictors, a particular type of distinguishers, cannot succeed.
- Yet, surprisingly, Next-bit Unpredictability (NBU) = Indistinguishability.
- NBU often much easier to use.

1. Indistinguishability \Rightarrow NBU

Proof: by contradiction.

Suppose for contradiction that there is a p.p.t. predictor P, a polynomial function p and an $i \in\{1, \ldots, m\}$ s.t.

$$
\operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): P\left(y_{1} y_{2} \ldots y_{i-1}\right)=y_{i}\right] \geq \frac{1}{2}+1 / p(n)
$$

Then, I claim that P essentially gives us a distinguisher D!
Consider D which gets an m-bit string y and does the following:

1. Run P on the $(i-1)$-bit prefix $y_{1} y_{2} \ldots y_{i-1}$.
2. If P returns the i-th bit y_{i}, then output 1 ("PRG") else output 0 ("Random").

If P is p.p.t. so is D.

1. Indistinguishability \Rightarrow NBU

Consider D which gets an m-bit string y and does the following:

1. Run P on the $(i-1)$-bit prefix $y_{1} y_{2} \ldots y_{i-1}$.
2. If P returns the i-th bit y_{i}, then output 1 (= "PRG") else output 0 (= "Random").

We want to show: there is a polynomial p^{\prime} s.t.

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): D(y)=1\right] \\
& -\operatorname{Pr}\left[y \leftarrow U_{m}: D(y)=1\right] \mid \geq 1 / p^{\prime}(n)
\end{aligned}
$$

1. Indistinguishability \Rightarrow NBU

Consider D which gets an m-bit string y and does the following:

1. Run P on the $(i-1)$-bit prefix $y_{1} y_{2} \ldots y_{i-1}$.
2. If P returns the i-th bit y_{i}, then output 1 (= "PRG") else output 0 (= "Random").

$$
\begin{aligned}
& \operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): D(y)=1\right] \\
& \quad=\operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): P\left(y_{1} y_{2} \ldots y_{i-1}\right)=y_{i}\right]
\end{aligned}
$$

(by construction of D)

$$
\geq \frac{1}{2}+1 / p(n) \quad \text { (by assumption on } P \text {) }
$$

1. Indistinguishability \Rightarrow NBU

Consider D which gets an m-bit string y and does the following:

1. Run P on the $(i-1)$-bit prefix $y_{1} y_{2} \ldots y_{i-1}$.
2. If P returns the i-th bit y_{i}, then output 1 (= "PRG") else output 0 (= "Random").

$$
\begin{aligned}
& \operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): D(y)=1\right] \geq \frac{1}{2}+1 / p(n) \\
& \operatorname{Pr}\left[y \leftarrow U_{m}: D(y)=1\right] \\
& \quad=\operatorname{Pr}\left[y \leftarrow U_{m}: P\left(y_{1} y_{2} \ldots y_{i-1}\right)=y_{i}\right] \quad \text { (by construction of } \mathrm{D} \text {) } \\
& \quad=\frac{1}{2} \quad \text { (since } \mathrm{y} \text { is random) }
\end{aligned}
$$

1. Indistinguishability \Rightarrow NBU

Consider D which gets an m-bit string y and does the following:

1. Run P on the $(i-1)$-bit prefix $y_{1} y_{2} \ldots y_{i-1}$.
2. If P returns the i-th bit y_{i}, then output 1 (= "PRG") else output 0 (= "Random").

$$
\begin{array}{ll}
\operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): D(y)=1\right] & \geq \frac{1}{2}+1 / p(n) \\
\operatorname{Pr}\left[y \leftarrow U_{m}: D(y)=1\right] & =\frac{1}{2}
\end{array}
$$

$$
\text { So, } \begin{aligned}
\mid \operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right):\right. & D(y)=1] \\
& -\operatorname{Pr}\left[y \leftarrow U_{m}: D(y)=1\right] \mid \geq 1 / p(n)
\end{aligned}
$$

2. NBU \Rightarrow Indistinguishability

Proof: by contradiction (again!)

Suppose for contradiction that there is a distinguisher D, and a polynomial function p s.t.

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): D(y)=1\right] \\
& \quad-\operatorname{Pr}\left[y \leftarrow U_{m}: D(y)=1\right] \mid \geq 1 / p^{\prime}(n)
\end{aligned}
$$

I want to construct a next bit predictor P out of D.
But how?!

2. NBU \Rightarrow Indistinguishability

Proof: by contradiction (again!)

Suppose for contradiction that there is a distinguisher D, and a polynomial function p s.t.

$$
\begin{aligned}
& \operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): D(y)=1\right] \\
& \quad-\operatorname{Pr}\left[y \leftarrow U_{m}: D(y)=1\right] \geq 1 / p^{\prime}(n):=\varepsilon
\end{aligned}
$$

I want to construct a next bit predictor P out of D.

TWO STEPS:

- STEP 1: HYBRID ARGUMENT
- STEP 2: From Distinguishing to Predicting

Before we go there, a puzzle...

Lemma: Let $p_{0}, p_{1}, p_{2}, \ldots, p_{m}$ be real numbers s.t.

$$
p_{m}-p_{0} \geq \varepsilon
$$

Then, there is an index i such that $\boldsymbol{p}_{\boldsymbol{i}}-\boldsymbol{p}_{\boldsymbol{i}-\mathbf{1}} \geq \boldsymbol{\varepsilon} / \mathbf{m}$.

Proof:

$$
\begin{aligned}
p_{m}-p_{0} & =\left(p_{m}-p_{m-1}\right)+\left(p_{m-1}-p_{m-2}\right)+\cdots+\left(p_{1}-p_{0}\right) \\
& \geq \varepsilon
\end{aligned}
$$

At least one of the m terms has to be at least ε / m (averaging).

Define Hybrid Distributions:

\square random pseudorandom

Hybrid Distributions:

$\mathrm{H}_{\mathrm{i}-1}$:
H_{i} :

- Let's define $p_{i}=\operatorname{Pr}\left[D\left(H_{i}\right)=1\right]$.

$$
p_{0}=\operatorname{Pr}\left[D\left(U_{m}\right)=1\right] \text { and } p_{m}=\operatorname{Pr}\left[D\left(G\left(U_{n}\right)\right)=1\right]
$$

- By the hybrid argument, we have: $p_{i}-p_{i-1} \geq \varepsilon / m$.
- Key Intuition: D outputs 1 more often given a pseudorandom i-th bit than a random i-th bit.
- So, D gives us a "signal" as to whether a given bit is the correct i-th bit or not.

Let's dig a bit more.

random

We know: $p_{i}-p_{i-1} \geq \varepsilon / m$.
$\mathrm{H}_{\mathrm{i}-1}$:
H_{i} :

Claim: $p_{i-1}=\left(p_{i}+\bar{p}_{i}\right) / 2$
CQrollary (${ }^{*}: p_{i}-\overline{p_{i}} \geqq \vec{y}_{i} / m$.
u : random bit
 with the "right bit" than the "wrong bit".

$$
\overline{y_{i}}=1-y_{i}
$$

Our Predictor P

The Idea: The predictor is given the first $i-1$ pseudorandom bits (call it $y_{1} y_{2} \ldots y_{i-1}$) and needs to guess the i-th bit.

The Predictor \mathbf{P} works as follows:
Pick a random bit b;
Feed D with input $y_{1} y_{2} \ldots y_{i-1}|\mathrm{~b}| u_{i+1} \ldots u_{m}$ (u^{\prime} s are random)
If D says " 1 ", output b as the prediction for y_{i} and if D says " 0 ", output \bar{b} as the prediction for y_{i}

Analysis of the Predictor \mathbf{P}

$$
\begin{aligned}
& \operatorname{Pr}\left[x \leftarrow\{0,1\}^{n} ; y=G(x): P\left(y_{1} y_{2} \ldots y_{i-1}\right)=y_{i}\right] \\
&=\operatorname{Pr}\left[D\left(y_{1} y_{2} \ldots y_{i-1} \ldots \ldots\right)=1 \mid b=y_{i}\right] \operatorname{Pr}\left[b=y_{i}\right]+ \\
& \operatorname{Pr}\left[D\left(y_{1} y_{2} \ldots y_{i-1} b \ldots\right)=0 \mid b \neq y_{i}\right] \operatorname{Pr}\left[b \neq y_{i}\right] \\
&=\frac{1}{2}\left(\operatorname{Pr}\left[D\left(y_{1} y_{2} \ldots y_{i-1} b \ldots\right)=1 \mid b=y_{i}\right]+\right. \\
&\left.\operatorname{Pr}\left[D\left(y_{1} y_{2} \ldots y_{i-1} b \ldots\right)=0 \mid b \neq y_{i}\right]\right) \\
&=\frac{1}{2}\left(\operatorname{Pr}\left[D\left(y_{1} y_{2} \ldots y_{i-1} y_{i} \ldots\right)=1\right]+\right. \\
&\left.\operatorname{Pr}\left[D\left(y_{1} y_{2} \ldots y_{i-1} \overline{y_{i}} \ldots\right)=0\right]\right) \\
&= \frac{1}{2}\left(\operatorname{Pr}\left[D\left(y_{1} y_{2} \ldots y_{i-1} y_{i} \ldots\right)=1\right]+1-\right. \\
&\left.\operatorname{Pr}\left[D\left(y_{1} y_{2} \ldots y_{i-1} \overline{y_{i}} \ldots\right)=1\right]\right) \\
&= \frac{1}{2}(1+(*)) \geq \frac{1}{2}+2 /\left(m \cdot \boldsymbol{p}^{\prime}(n)\right)
\end{aligned}
$$

Recap: NBU and Indistinguishability

- Next-bit Unpredictability (NBU): Seemingly much weaker requirement, only says that next bit predictors, a particular type of distinguishers, cannot succeed.
- Yet, surprisingly, Next-bit Unpredictability (NBU) = Indistinguishability.
- NBU often much easier to use.
- Exercise: Previous-bit Unpredictability (PBU) = Indistinguishability.

TODAY

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.
Theorem (next lec): If there is a PRG, then there is a PRF.

Length extension: One bit to Many bits

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a pseudorandom generator.
Goal: use G to generate many pseudorandom bits.

Length extension: One bit to Many bits

Let $\mathrm{G}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a pseudorandom generator.
Goal: use G to generate poly many pseudorandom bits.

Length extension: One bit to Many bits

Let $\mathrm{G}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a pseudorandom generator.
Goal: use G to generate poly many pseudorandom bits.

Construction of G' $\left(s_{0}\right)$

Length extension: One bit to Many bits

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a pseudorandom generator.
Goal: use G to generate poly many pseudorandom bits.

Construction of G' $\left(s_{0}\right)$

Length extension: One bit to Many bits

Let $\mathrm{G}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a pseudorandom generator.
Goal: use G to generate poly many pseudorandom bits.

Construction of G' $\left(s_{0}\right) \quad$ Output $b_{1} b_{2} b_{3} b_{4} b_{5} \ldots s_{L}$.

Also called a stream cipher by the practitioners.

Length extension: One bit to Many bits

Proof of Security (exercise):
Use next-bit (or previous-bit?) unpredictability!

Construction of G' $\left(s_{0}\right) \quad$ Output $b_{1} b_{2} b_{3} b_{4} b_{5} \ldots s_{L}$.

Stateful Encryption of Many Messages

Stateful Encryption of Many Messages

Stateful Encryption of Many Messages

Stateful Encryption of Many Messages

- PLUS: Alice and Bob can keep encrypting as many bits as they wish.
- MINUS: Alice and Bob have to keep their states in perfect synchrony. They cannot transmit simultaneously.

IF NOT:
Correctness goes down the drain, so does security.

How to be Stateless? Here is an idea...

\Rightarrow Alice is using the same one-time pad bit twice!

Here is another idea...

Bulstideraredguo d bacticless...

Goal: Never compute this exponentially long string explicitly!
Instead, we want a function $f_{k}(\boldsymbol{x})=\boldsymbol{b}_{\boldsymbol{x}}$, the $x^{\text {th }}$ bit in the implicitly defined (pseudorandom) string.

Computable in time poly $(|x|)=\operatorname{poly}(n)$.
$f_{k}\left(x_{1}\right), f_{k}\left(x_{2}\right), \ldots$ computationally indistinguishable from random bits, for random (or any distinct) x_{1}, x_{2}, \ldots

TODAY

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.
Theorem (next lec): If there is a PRG, then there is a PRF.

Pseudorandom Functions

Collection of functions $\mathcal{F}_{\ell}=\left\{f_{k}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}\right\}_{k \in\{0,1\}^{n}}$

- indexed by a (private) key/seed k
- n : key length, ℓ : input length, m : output length.
- Independent parameters, all poly(sec-param) = poly (n)
- \#functions in $\mathcal{F}_{\ell} \leq 2^{n}$ (singly exponential in n)
$\operatorname{Gen}\left(1^{n}\right)$: Generate a random n-bit key k.
$\operatorname{Eval}(k, x)$ is a poly-time algorithm that outputs $f_{k}(x)$.

Pseudorandom Functions

Collection of functions $\mathcal{F}_{\ell}=\left\{f_{k}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}\right\}_{k \in\{0,1\}^{n}}$

- indexed by a (private) key k
- n : key length, ℓ : input length, m : output length.
- Independent parameters, all poly(sec-param) = poly (n)
- \#functions in $\mathcal{F}_{\ell} \leq 2^{n}$ (singly exponential in n)

Collection of ALL functions $A L L_{\ell}=\left\{f:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}\right\}$

- \#functions in $A L L_{\ell} \leq 2^{m 2^{\ell}}$ (doubly exponential in ℓ)

Pseudorandom Functions should be "indistinguishable" from random

The pseudorandom world

The random world

For all ppt D , there is a negligible function μ s.t.
$\left|\operatorname{Pr}\left[f \leftarrow \mathcal{F}_{\ell}: D^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[f \leftarrow A L L_{\ell}: D^{f}\left(1^{n}\right)=1\right]\right| \leq \mu(n)$

PRF \Longrightarrow Stateless Secret-key Encryption

$\operatorname{Gen}\left(1^{n}\right)$: Generate a random n-bit key k that defines

$$
f_{k}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}
$$

(the domain size, 2^{ℓ}, had better be super-polynomially large in n)
$\operatorname{Enc}(k, m)$: Pick a random x and let the ciphertext c be the pair $\left(x, y=f_{k}(x) \oplus m\right)$.
$\operatorname{Dec}(k, c=(x, y)):$ Output $f_{k}(x) \oplus y$.

Correctness:

$\operatorname{Dec}(k, c)$ outputs $f_{k}(x) \oplus y=f_{k}(x) \oplus f_{k}(x) \oplus \mathrm{m}=\mathrm{m}$.

NEXT LECTURE

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.
2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.
Theorem (next lec): If there is a PRG, then there is a PRF.

New Proof Technique: Hybrid Arguments.

