MIT 6.875/6.5620/18.425

Foundations of Cryptography Lecture 3

Course website: https://mit6875.github.io/

Lecture 2 Recap

Computational Indistinguishability:
 a new definition of security for secret-key encryption.

(new notions: p.p.t. adversaries, negligible functions,...)

- Consequence: Shannon's impossibility no longer applies!
- New Notion: Pseudorandom Generator (PRG)
- ◆ PRG ⇒ Can encrypt a single message longer than the key.
- We saw a construction of PRG (based on subset sum).
 Many more later in the course.

TODAY

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.

Theorem (next lec): If there is a PRG, then there is a PRF.

New Proof Technique: Hybrid Arguments.

But first, let's do some prep work...

Three Definitions of Pseudorandomness

Def 1 [Indistinguishability]

"No polynomial-time algorithm can distinguish between the output of a PRG on a random seed vs. a truly random string"

= "as good as" a truly random string for all practic soses.

Def 2 [Next-bit Unpredictability]

ct the (i+1)th bit of the "No polynomial-time algorithm car output of a PRG given the first Detter than chance"

Def 3 [Incompressi: N

"No polynomial-time algorithm can compress the output of the PRG into a shorter string"

PRG Def 1 (Recap): Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function $G: \{0,1\}^n \to \{0,1\}^m$ is indistinguishable (or, secure against any statistical test) if: for every PPT algorithm D (called a distinguisher) if there is a negligible function μ such that:

$$|\Pr[D(G(U_n)) = 1] - \Pr[D(U_m) = 1]| = \mu(n)$$

Notation: U_n (resp. U_m) denotes the random distribution on n-bit (resp. m-bit) strings.

PRG Def 2: Next-bit Unpredictability

Definition [Next-bit Unpredictability]:

A deterministic polynomial-time computable function G: $\{0,1\}^n \rightarrow \{0,1\}^m$ is next-bit unpredictable if:

for every PPT algorithm P (called a next-bit predictor) and every $i \in \{1, ..., m\}$, if there is a negligible function μ such that:

$$\Pr[y \leftarrow G(U_n): P(y_1y_2 ... y_{i-1}) = y_i] = \frac{1}{2} + \mu(n)$$

Notation: $y_1, y_2, ..., y_m$ are the bits of the m-bit string y.

Def 1 and Def 2 are Equivalent

Theorem:

A PRG G is indistinguishable if and only if it is nextbit unpredictable.

Def 1 and Def 2 are Equivalent

Theorem:

A PRG G passes all (poly-time) statistical tests if and only if it passes (poly-time) next-bit tests.

NBU and Indistinguishability

- Next-bit Unpredictability (NBU): Seemingly much weaker requirement. Only says that next bit predictors, a particular type of distinguishers, cannot succeed.
- Yet, surprisingly, Next-bit Unpredictability (NBU) = Indistinguishability.
- NBU often much easier to use.

1. Indistinguishability → NBU

Proof: by contradiction.

Suppose for contradiction that there is a p.p.t. predictor P, a polynomial function p and an $i \in \{1, ..., m\}$ s.t.

$$\Pr[y \leftarrow G(U_n): P(y_1 y_2 \dots y_{i-1}) = y_i] \ge \frac{1}{2} + 1/p(n)$$

Then, I claim that *P* essentially gives us a distinguisher D!

Consider D which gets an m-bit string y and does the following:

- 1. Run P on the (i-1)-bit prefix $y_1y_2 \dots y_{i-1}$.
- 2. If P returns the i-th bit y_i , then output 1 ("PRG") else output 0 ("Random").

If P is p.p.t. so is D.

1. Indistinguishability ⇒ NBU

Consider D which gets an m-bit string y and does the following:

- 1. Run P on the (i-1)-bit prefix $y_1y_2 \dots y_{i-1}$.
- 2. If P returns the i-th bit y_i , then output 1 (= "PRG") else output 0 (= "Random").

We want to show: there is a polynomial p' s.t.

$$|\Pr[y \leftarrow G(U_n): D(y) = 1] - \Pr[y \leftarrow U_m: D(y) = 1]| \ge 1/p'(n)$$

1. Indistinguishability → NBU

Consider D which gets an m-bit string y and does the following:

- 1. Run P on the (i-1)-bit prefix $y_1y_2 \dots y_{i-1}$.
- 2. If P returns the i-th bit y_i , then output 1 (= "PRG") else output 0 (= "Random").

$$\Pr[y \leftarrow G(U_n) \colon D(y) = 1]$$

$$= \Pr[y \leftarrow G(U_n) \colon P(y_1 y_2 \dots y_{i-1}) = y_i]$$
(by construction of D)
$$\geq \frac{1}{2} + 1/p(n)$$
 (by assumption on P)

1. Indistinguishability ⇒ NBU

Consider D which gets an m-bit string y and does the following:

- 1. Run P on the (i-1)-bit prefix $y_1y_2 \dots y_{i-1}$.
- 2. If P returns the i-th bit y_i , then output 1 (= "PRG") else output 0 (= "Random").

$$\begin{split} \Pr[y \leftarrow G(U_n) \colon D(y) &= 1 \,] &\geq \frac{1}{2} + 1/p(n) \\ \Pr[y \leftarrow U_m \colon D(y) &= 1 \,] \\ &= \Pr[y \leftarrow U_m \colon P(y_1 y_2 \dots y_{i-1}) = y_i] \quad \text{(by construction of D)} \\ &= \frac{1}{2} \quad \qquad \qquad \text{(since y is random)} \end{split}$$

1. Indistinguishability ⇒ NBU

Consider D which gets an m-bit string y and does the following:

- 1. Run P on the (i-1)-bit prefix $y_1y_2 \dots y_{i-1}$.
- 2. If P returns the i-th bit y_i , then output 1 (= "PRG") else output 0 (= "Random").

$$\Pr[y \leftarrow G(U_n): D(y) = 1] \ge \frac{1}{2} + 1/p(n)$$

 $\Pr[y \leftarrow U_m: D(y) = 1] = \frac{1}{2}$

So,
$$|\Pr[y \leftarrow G(U_n): D(y) = 1]$$

- $\Pr[y \leftarrow U_m: D(y) = 1] | \ge 1/p(n)$

2. NBU ⇒ Indistinguishability

Proof: by contradiction (again!)

Suppose for contradiction that there is a distinguisher D, and a polynomial function p s.t.

$$|\Pr[y \leftarrow G(U_n): D(y) = 1]$$

- $\Pr[y \leftarrow U_m: D(y) = 1] | \ge 1/p'(n)$

I want to construct a next bit predictor P out of D.

But how?!

2. NBU ⇒ Indistinguishability

Proof: by contradiction (again!)

Suppose for contradiction that there is a distinguisher D, and a polynomial function p s.t.

$$\Pr[y \leftarrow G(U_n): D(y) = 1]$$

$$-\Pr[y \leftarrow U_m: D(y) = 1] \ge 1/p'(n) := \varepsilon$$

I want to construct a next bit predictor P out of D.

TWO STEPS:

- STEP 1: HYBRID ARGUMENT
- **STEP 2:** From Distinguishing to Predicting

Before we go there, a puzzle...

<u>Lemma</u>: Let p_0 , p_1 , p_2 , ..., p_m be real numbers s.t.

$$p_m - p_0 \geq \varepsilon$$
.

Then, there is an index i such that $p_i - p_{i-1} \ge \varepsilon/m$.

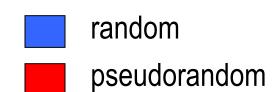
Proof:

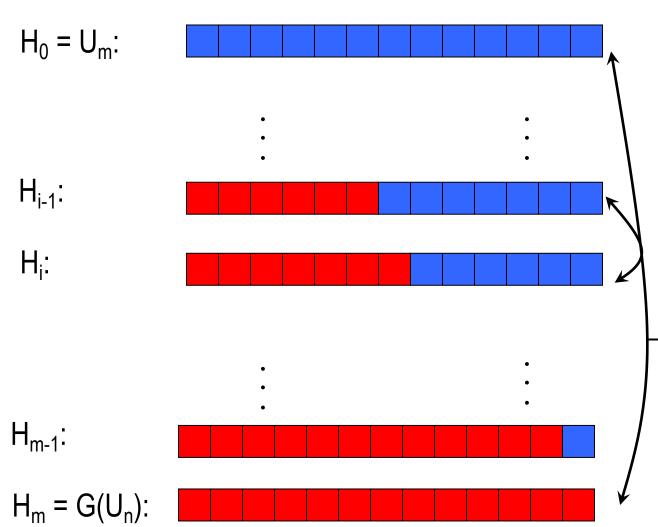
$$p_m - p_0 = (p_m - p_{m-1}) + (p_{m-1} - p_{m-2}) + \dots + (p_1 - p_0)$$

 $\geq \varepsilon$

At least one of the m terms has to be at least ε/m (averaging).

Define Hybrid Distributions:

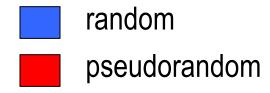


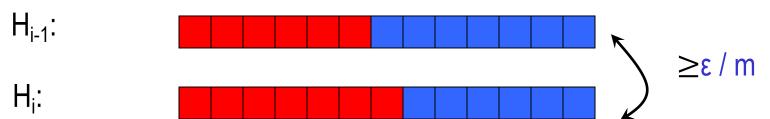


 $\exists i \text{ such that D}$ distinguishes $\text{between H}_{i-1} \text{ and}$ $\text{H}_{i} \text{ with advantage}$ $\text{$\underline{\mathcal{D}}_{\mathcal{E}}$} \text{distinguishes}$ $\text{between H}_{m} \text{ and H}_{0}$ $\text{$P_{\mathbf{W}}$} \text{$\underline{\mathcal{D}}_{i}$} \text{$\underline{\mathcal{C}}_{i}$} \text{$\underline{$

- $Pr[D(H_0) = 1] \ge \varepsilon$

Hybrid Distributions:

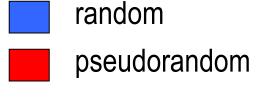


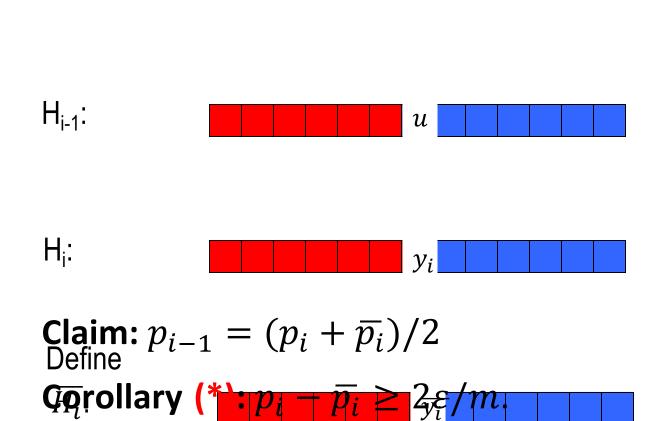


- Let's define $p_i=\Pr[D(H_i)=1].$ $p_0=\Pr[D(U_m)=1] \text{ and } p_m=\Pr[D(G(U_n))=1]$
- By the **hybrid argument**, we have: $p_i p_{i-1} \ge \varepsilon/m$.
- **Key Intuition**: D outputs 1 more often given a pseudorandom i-th bit than a random i-th bit.
- So, D gives us a "signal" as to whether a given bit is the correct i-th bit or not.

Let's dig a bit more.

We know: $p_i - p_{i-1} \ge \varepsilon/m$.





 S_{p_i} , $Iake vary: D_{p}$ says "1" more often when fed with the "right bit" than the "wrong bit".

u: random bit y_i : i-th pseudorandom bit $\overline{y_i} = 1 - y_i$

Our Predictor P

<u>The Idea</u>: The predictor is given the first i-1 pseudorandom bits (call it $y_1y_2 ... y_{i-1}$) and needs to guess the i-th bit.

The Predictor P works as follows:

Pick a random bit *b*;

Feed D with input $y_1y_2 \dots y_{i-1}|$ b $|u_{i+1} \dots u_m|$ (u's are random)

If D says "1", output b as the prediction for y_i and if D says "0", output \overline{b} as the prediction for y_i

Analysis of the Predictor P

$$\Pr[x \leftarrow \{0,1\}^n; y = G(x): P(y_1y_2 \dots y_{i-1}) = y_i]$$

$$= \Pr[D(y_1y_2 \dots y_{i-1}b \dots) = 1 \mid b = y_i] \Pr[b = y_i] + \Pr[D(y_1y_2 \dots y_{i-1}b \dots) = 0 \mid b \neq y_i] \Pr[b \neq y_i]$$

$$= \frac{1}{2} (\Pr[D(y_1y_2 \dots y_{i-1}b \dots) = 1 \mid b = y_i] + \Pr[D(y_1y_2 \dots y_{i-1}b \dots) = 0 \mid b \neq y_i])$$

$$= \frac{1}{2} (\Pr[D(y_1y_2 \dots y_{i-1}y_i \dots) = 0] + \Pr[D(y_1y_2 \dots y_{i-1}\overline{y_i} \dots) = 0])$$

$$= \frac{1}{2} (\Pr[D(y_1y_2 \dots y_{i-1}\overline{y_i} \dots) = 1] + 1 - \Pr[D(y_1y_2 \dots y_{i-1}\overline{y_i} \dots) = 1])$$

$$= \frac{1}{2} (1 + (*)) \geq \frac{1}{2} + \frac{2}{m \cdot p'(n)}$$

Recap: NBU and Indistinguishability

- Next-bit Unpredictability (NBU): Seemingly much weaker requirement, only says that next bit predictors, a particular type of distinguishers, cannot succeed.
- Yet, surprisingly, Next-bit Unpredictability (NBU) = Indistinguishability.
- NBU often much easier to use.

Exercise: Previous-bit Unpredictability (PBU) = Indistinguishability.

TODAY

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.

Theorem (next lec): If there is a PRG, then there is a PRF.

Let G: $\{0,1\}^n \to \{0,1\}^{n+1}$ be a pseudorandom generator.

Goal: use G to generate many pseudorandom bits.

Let G: $\{0,1\}^n \to \{0,1\}^{n+1}$ be a pseudorandom generator.

Goal: use G to generate **poly many** pseudorandom bits.

Let G: $\{0,1\}^n \to \{0,1\}^{n+1}$ be a pseudorandom generator.

Goal: use G to generate **poly many** pseudorandom bits.

Construction of $G'(s_0)$

$$seed = s_0 \qquad y_1 = G(s_0)$$

Let G: $\{0,1\}^n \to \{0,1\}^{n+1}$ be a pseudorandom generator.

Goal: use G to generate **poly many** pseudorandom bits.

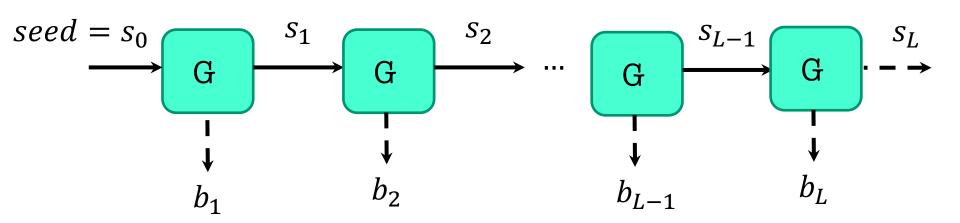
Construction of $G'(s_0)$

$$seed = s_0 \qquad y_1 = b_1 \mid\mid s_1$$

Let G: $\{0,1\}^n \to \{0,1\}^{n+1}$ be a pseudorandom generator.

Goal: use G to generate poly many pseudorandom bits.

Construction of G'(s_0) Output b_1 b_2 b_3 b_4 b_5 ... s_L .

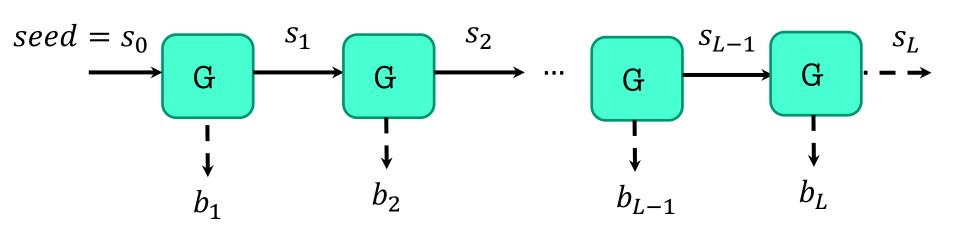


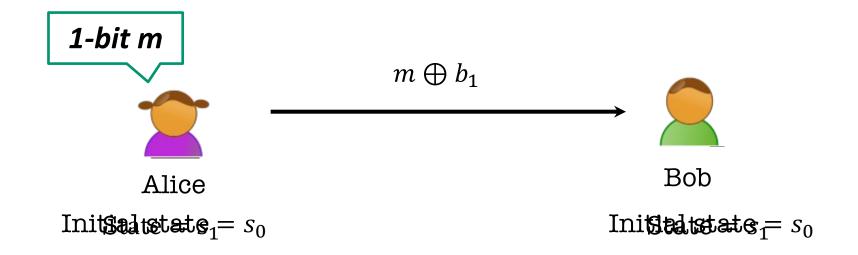
Also called a stream cipher by the practitioners.

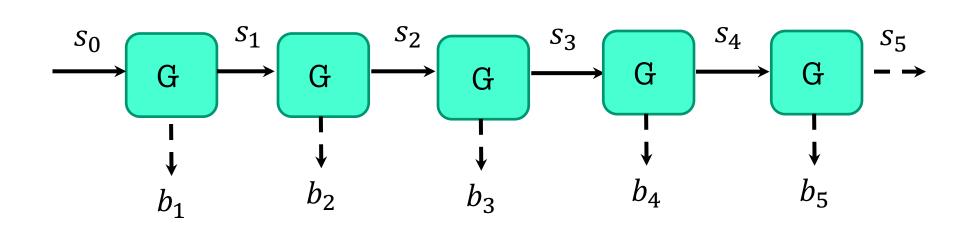
Proof of Security (exercise):

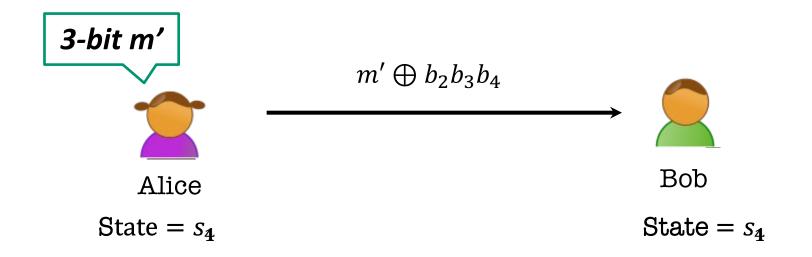
Use next-bit (or previous-bit?) unpredictability!

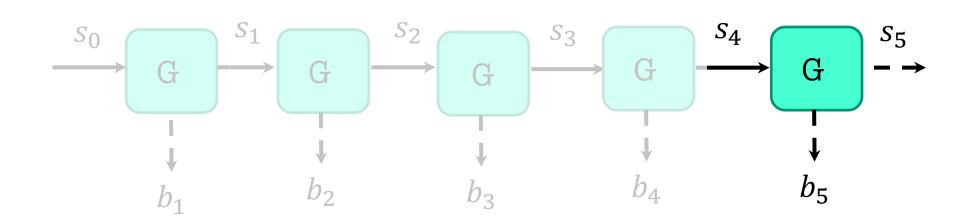
Construction of G'(s_0) Output b_1 b_2 b_3 b_4 b_5 ... s_L .

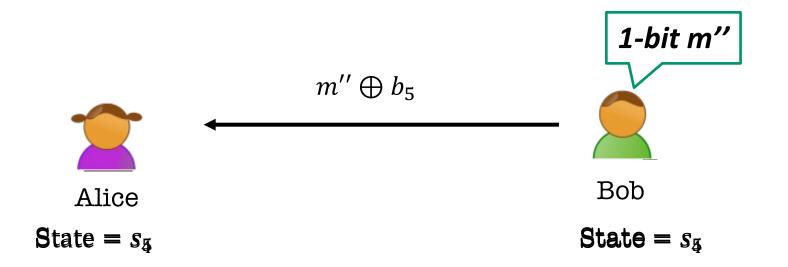


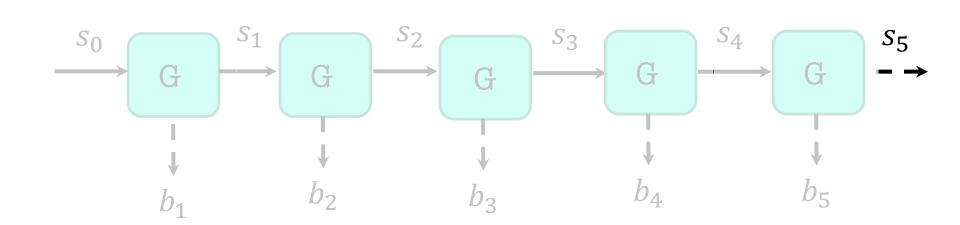










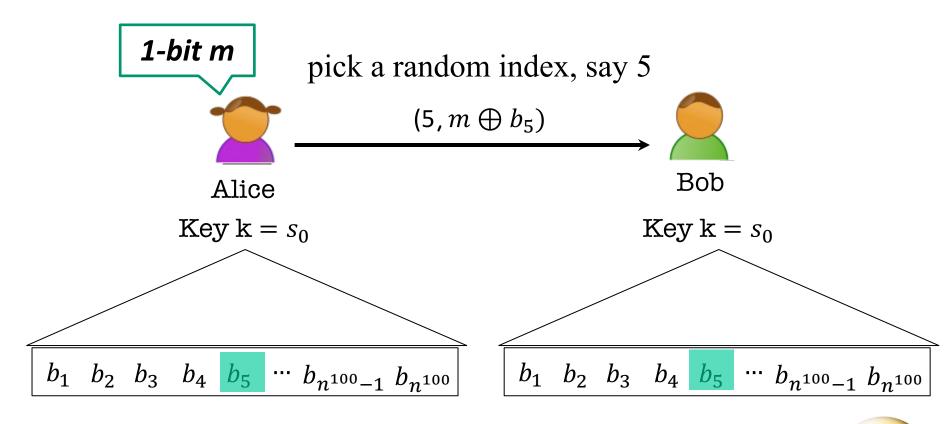


- PLUS: Alice and Bob can keep encrypting as many bits as they wish.
- MINUS: Alice and Bob have to keep their states in perfect synchrony. They cannot transmit simultaneously.

IF NOT:

Correctness goes down the drain, so does security.

How to be Stateless? Here is an idea...

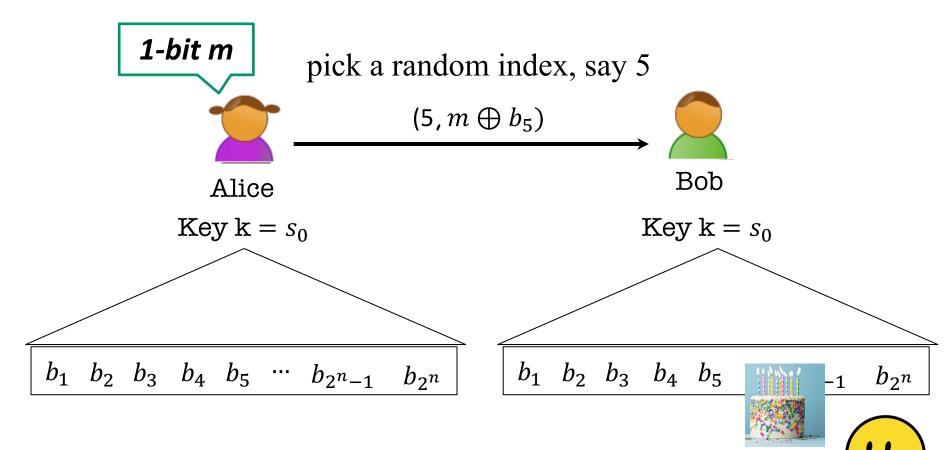


DOES THIS WORK?

Collisions! Pr[Alice's first two indices collide] $\geq 1/n^{100}$

⇒ Alice is using the same one-time pad bit twice!

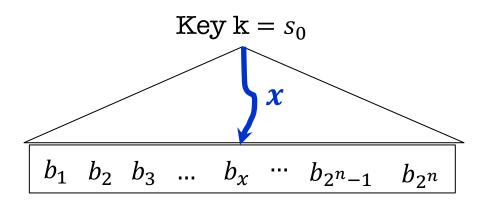
Here is another idea...



 $Pr[\exists collision in t = poly(n) indices] \le t^2/2^n = negl(n)$

BUT: Alice and Bob are not poly-time!

Bullatederaredgood waatideas...



Goal: Never compute this exponentially long string explicitly!

Instead, we want a function $f_k(x) = b_x$, the x^{th} bit in the implicitly defined (pseudorandom) string.

Computable in time poly(|x|) = poly(n).

 $f_k(x_1), f_k(x_2), \dots$ computationally indistinguishable from random bits, for random (or any distinct) x_1, x_2, \dots

|x| = n = length of the string x.

TODAY

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.

Theorem (next lec): If there is a PRG, then there is a PRF.

X

Pseudorandom Functions

Collection of functions $\mathcal{F}_{\ell} = \{f_k : \{0,1\}^{\ell} \to \{0,1\}^m\}_{k \in \{0,1\}^n}$

- indexed by a (private) key/seed k
- n: key length, ℓ : input length, m: output length.
- Independent parameters, all poly(sec-param) = poly(n)
- #functions in $\mathcal{F}_{\ell} \leq 2^n$ (singly exponential in n)

Gen (1^n) : Generate a random *n*-bit key *k*.

Eval(k, x) is a poly-time algorithm that outputs $f_k(x)$.

Pseudorandom Functions

Collection of functions $\mathcal{F}_{\ell} = \{f_k : \{0,1\}^{\ell} \to \{0,1\}^m\}_{k \in \{0,1\}^n}$

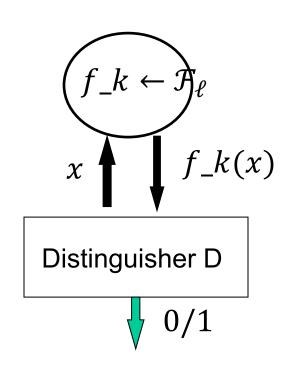
- indexed by a (private) key k
- n: key length, ℓ : input length, m: output length.
- Independent parameters, all poly(sec-param) = poly(n)
- #functions in $\mathcal{F}_{\ell} \leq 2^n$ (singly exponential in n)

Collection of ALL functions $ALL_{\ell} = \{f : \{0,1\}^{\ell} \rightarrow \{0,1\}^{m}\}$

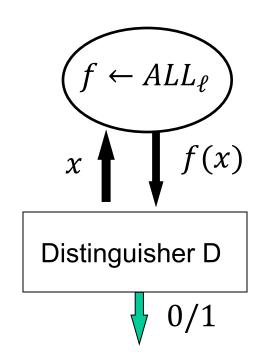
• #functions in $ALL_{\ell} \leq 2^{m2^{\ell}}$ (doubly exponential in ℓ)

Pseudorandom Functions should be "indistinguishable" from random

The pseudorandom world



The random world



For all ppt D, there is a negligible function μ s.t.

$$\left| \Pr[f \leftarrow \mathcal{F}_{\ell}: D^f(1^n) = 1] - \Pr[f \leftarrow ALL_{\ell}: D^f(1^n) = 1] \right| \le \mu(n)$$

PRF ⇒ Stateless Secret-key Encryption

 $Gen(1^n)$: Generate a random n-bit key k that defines

$$f_k: \{0,1\}^\ell \to \{0,1\}^m$$

(the domain size, 2^{ℓ} , had better be super-polynomially large in n)

Enc(k, m): Pick a random x and let the ciphertext c be the pair $(x, y = f_k(x) \oplus m)$.

Dec(k, c = (x, y)): Output $f_k(x) \oplus y$.

Correctness:

Dec(k,c) outputs $f_k(x) \oplus y = f_k(x) \oplus f_k(x) \oplus m = m$.

NEXT LECTURE

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.

Theorem (next lec): If there is a PRG, then there is a PRF.

nts.