MIT 6.875

Foundations of Cryptography Lecture 22

Complexity of the 2PC protocols

Number of OT protocol invocations $=2 * \# A N D$ gates Can be made into O(\#inputs • λ): Yao's garbled circuits

Number of rounds = AND-depth of the circuit
Can be made into O(1) rounds: Yao's garbled circuits

Communication in bits =

$$
O(\# A N D \cdot \lambda+\# o u t p u t s)
$$

Can be made into $\mathrm{O}(\lambda$ \#inputs) using FHE: but FHE is computationally more expensive concretely.

Homomorphic Encryption

Application 1. Secure Outsourcing

A Special Case: Encrypted Database Lookup

- also called "private information retrieval" (we'll see in two lectures)

Application 2. Secure Collaboration

"Parties learn the genotype-phenotype correlations and nothing else"

Homomorphic Encryption: Syntax (can be either secret-key or public-key enc)

4-tuple of PPT algorithms (Gen, Enc, Dec, Eval) s.t.

- $(s k, e k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$.

PPT Key generation algorithm generates a secret key as well as a (public) evaluation key.

- $c \leftarrow E n c(s k, m)$.

Encryption algorithm uses the secret key to encrypt message m.

- $c^{\prime} \leftarrow \operatorname{Eval}(e k, f, c)$.

Homomorphic evaluation algorithm uses the evaluation key to produce an "evaluated ciphertext" c^{\prime}.

- $m \leftarrow \operatorname{Dec}(s k, c)$.

Decryption algorithm uses the secret key to decrypt ciphertext c.

Homomorphic Encryption: Correctness

$$
\operatorname{Dec}(s k, \operatorname{Eval}(e k, f, \operatorname{Enc}(x)))=f(x)
$$

Plaintext world

Ciphertext world

Homomorphic Encryption: Security

Input: x

Function: f

Security against the "curious cloud" = standard IND-security of secret-key encryption

Key Point: Eval is an entirely public algorithm with public inputs.

Here is a homomorphic encryption scheme...

- $(s k,-) \leftarrow \operatorname{Gen}\left(1^{n}\right)$.

Use any old secret key enc scheme.

- $c \leftarrow E n c(s k, m)$. Just the secret key encryption algorithm...
- $\quad c^{\prime} \leftarrow \operatorname{Eval}(e k, f, c)$.

Output $c^{\prime}=c \| f$. So Eval is basically the identity function!!

- $m \leftarrow \operatorname{Dec}\left(s k, c^{\prime}\right)$.

Parse $c^{\prime}=c \| f$ as a ciphertext concatenated with a function description. Decrypt c and compute the function f.

This is correct and it is IND-secure.

Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext and the runtime of the decryption is independent of the complexity of the evaluated function.

A Relaxation: The size (bit-length) of the evaluated ciphertext and the runtime of the decryption depends sublinearly on the complexity of the evaluated function.

How to Compute Arbitrary Functions

For us, programs $=$ functions $=$ Boolean circuits with XOR $(+\bmod 2)$ and AND $(\times \bmod 2)$ gates.

Takeaway: If you can compute XOR and AND on encrypted bits, you can compute everything.

How to Compute Arbitrary Functions

For us, programs $=$ functions $=$ Boolean circuits with XOR $(+\bmod 2)$ and AND $(\times \bmod 2)$ gates.

We already know how to add (XOR), can we multiply?? Next lecture...

Homomorphic Encryption: Syntax (can be either secret-key or public-key enc)

4-tuple of PPT algorithms (Gen, Enc, Dec, Eval) s.t.

- $(s k, e k) \leftarrow G e n\left(1^{n}\right)$.

PPT Key generation algorithm generates a secret key as well as a (public) evaluation key.

- $c \leftarrow E n c(s k, m)$.

Encryption algorithm uses the secret key to encrypt message m.

- $\quad c^{\prime} \leftarrow \operatorname{Eval}(e k, f, c)$.

Homomorphic evaluation algorithm uses the evaluation key to produce an "evaluated ciphertext" c^{\prime}.

- $m \leftarrow \operatorname{Dec}(s k, c)$.

Decryption algorithm uses the secret key to decrypt ciphertext c.

Homomorphic Encryption: Correctness

$$
\operatorname{Dec}(s k, \operatorname{Eval}(e k, f, \operatorname{Enc}(x)))=f(x)
$$

Ciphertext world

Homomorphic Encryption: Security

Input: x

Function: f

Security against the "curious cloud" = standard INDsecurity of secret-key encryption

Key Point: Eval is an entirely public algorithm with public inputs.

Here is a homomorphic encryption scheme...

- $(s k,-) \leftarrow \operatorname{Gen}\left(1^{n}\right)$.

Use any old secret key enc scheme.

- $c \leftarrow E n c(s k, m)$.

Just the secret key encryption algorithm...

- $\quad c^{\prime} \leftarrow \operatorname{Eval}(e k, f, c)$.

Output $c^{\prime}=c \| f$. So Eval is basically the identity function!!

- $m \leftarrow \operatorname{Dec}\left(s k, c^{\prime}\right)$.

Parse $c^{\prime}=c \| f$ as a ciphertext concatenated with a function description. Decrypt c and compute the function f.

This is correct and it is IND-secure.

Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext is independent of the complexity of the evaluated function.

A Relaxation: The size (bit-length) of the evaluated ciphertext and the runtime of the decryption depends sublinearly on the complexity of the evaluated function.

Big Picture: Two Steps to FHE

Leveled Secret-key Homomorphic Encryption: Evaluate circuits of a-priori bounded depth d
 "you give me a depth bound d, I will give you a homomorphic scheme that handles depth-d circuits..."

Bootstrapping Theorem:

From "circular secure" Leveled FHE to Pure FHE (at the cost of an additional assumption)
"I will give you homomorphic scheme that handles circuits of ANY size/depth"

How to Compute Arbitrary Functions

For us, programs $=$ functions $=$ Boolean circuits with XOR $(+\bmod 2)$ and AND $(\times \bmod 2)$ gates.

Takeaway: If you can compute XOR and AND on encrypted bits, you can compute everything.

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR (+ mod 2) and AND ($\times \bmod 2$) gates.

We already know how to add (XOR), can we multiply??

New (Secret-key) Encryption: Take 1

- Private key: a vector $\mathbf{s} \in Z_{q}^{n}$
- Private-key Encryption of a bit $m \in\{\mathbf{0}, \mathbf{1}\}$:

$$
\mathbf{C}=\left[\begin{array}{c}
\boldsymbol{A} \\
\boldsymbol{S} \boldsymbol{A}
\end{array}\right]+m \boldsymbol{I} \quad(\boldsymbol{A} \text { is random }(\mathrm{n}) \mathrm{X}(\mathrm{n}+1) \text { matrix })
$$

- Decryption:

Priv key = Eigenvector
Ciphertext matrix
Message = Eigenvalue

- INSECURE! Easy to solve linear equations.

New (Secret-key) Encryption: Take 1

$$
\mathbf{t} \cdot \mathbf{C}=\mathrm{m} \cdot \mathbf{t}(\bmod \mathrm{q})
$$

$$
t=[s| |-1]
$$

- Homomorphic addition: $\mathbf{C}_{\mathbf{1}}+\mathbf{C}_{\mathbf{2}}$
$-t$ is an eigenvector of $C_{1}+C_{2}$ with eigenvalue $m_{1}+m_{2}$
- Homomorphic multiplication: $\mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$
$-t$ is an eigenvector of $C_{1} C_{2}$ with eigenvalue $m_{1} m_{2}$

$$
\text { Proof: } \mathrm{t} . \mathrm{C}_{1} \mathrm{C}_{2}=\left(\mathrm{m}_{1} \cdot \mathrm{t}\right) \cdot \mathrm{C}_{2}=\mathrm{m}_{1} \cdot \mathrm{~m}_{2} \cdot \mathrm{t}
$$

But, remember, the scheme is insecure?

Key idea: fix insecurity while retaining homomorphism.

New (Secret-key) Encryption: Take 2

- Private key: a vector $\mathbf{s} \in \boldsymbol{Z}_{q}^{n}$
- Private-key Encryption of a bit $m \in\{\mathbf{0}, \mathbf{1}\}$:

$$
\mathbf{C}=\left[\begin{array}{c}
\boldsymbol{A} \\
\boldsymbol{S} \boldsymbol{A}+\boldsymbol{e}
\end{array}\right]+m \boldsymbol{I} \quad(\boldsymbol{A} \text { is random }(\mathrm{n}+1) \mathrm{X} \mathrm{n} \text { matrix })
$$

- Decryption:

(). CPA-secure by LWE.

New (Secret-key) Encryption: Take 2

$$
\mathbf{t} \cdot \mathbf{C}=\mathrm{m} \cdot \mathbf{t}+\mathbf{e}(\bmod q)
$$

$$
t=\left[\begin{array}{c}
\| \\
\|
\end{array}-1\right]
$$

\rightarrow Homomorphic addition: $\mathbf{C}_{\mathbf{1}}+\mathbf{C}_{\mathbf{2}}$

$$
\begin{aligned}
\vec{t} \cdot\left(C_{1}+C_{2}\right) & =\vec{t} C_{1}+\vec{t} C_{2} \\
& =m_{1} \vec{t}+\vec{e}_{1}+m_{2} \vec{t}+\vec{e}_{2} \\
& =\left(m_{1}+m_{2}\right) \vec{t}+\left(\vec{e}_{1}+\vec{e}_{2}\right) \\
& \approx\left(m_{1}+m_{2}\right) \vec{t}
\end{aligned}
$$

New (Secret-key) Encryption: Take 2

$$
\mathbf{t} \cdot \mathbf{C}=\mathrm{m} \cdot \mathbf{t}+\mathbf{e}(\bmod q)
$$

$$
t=[s| |-1]
$$

- Homomorphic multiplication: $\mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$

$$
\begin{aligned}
\vec{t} \cdot\left(C_{1} \cdot C_{2}\right) & =\left(m_{1} \vec{t}+\vec{e}_{1}\right) C_{2} \\
& =m_{1} \vec{t} C_{2}+\vec{e}_{1} C_{2} \\
& =m_{1}\left(m_{2} \vec{t}+\vec{e}_{2}\right)+\vec{e}_{1} C_{2} \\
& =m_{1} m_{2} \vec{t}+\underbrace{m_{1} \vec{e}_{2}+\vec{e}_{1} C_{2}}_{\vec{e}_{\text {mult }}}
\end{aligned}
$$

Noise grows. Need C_{2} to be small! How?!

Aside: Binary Decomposition

Break each entry in C into its binary representation
$C=\left[\begin{array}{ll}3 & 5 \\ 1 & 4\end{array}\right] \quad(\bmod 8) \Rightarrow \operatorname{bits}(C)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0\end{array}\right](\bmod 8) \quad$ Small entries like we wanted!

Consider the "reverse" operation:

Denote: $G^{-1}(C)$ which has "small" entries

New (Secret-key) Encryption: Take 3

- Private key: a vector $\mathbf{s} \in Z_{q}^{n}$
- Private-key Encryption of a bit $m \in\{\mathbf{0}, \mathbf{1}\}$:

$$
\mathbf{C}=\left[\begin{array}{c}
\boldsymbol{A} \\
\boldsymbol{S} \boldsymbol{A}+\boldsymbol{e}
\end{array}\right]+m G \quad(\boldsymbol{A} \text { is random }(\mathrm{n}+1) \mathrm{X} \mathrm{n} \log \mathrm{q} \text { matrix })
$$

- Decryption:

- Still CPA-secure by LWE.

New (Secret-key) Encryption: Take 3

$$
\mathbf{t} \cdot \mathbf{C}=\mathrm{m} \cdot \mathbf{t} \cdot \mathbf{G}+\mathbf{e}(\bmod q)
$$

$$
t=[s| |-1]
$$

- Homomorphic multiplication:

$$
C_{m u l t}=C_{1} \cdot G^{-1}\left(C_{2}\right)
$$

$$
\begin{aligned}
\vec{s} \cdot C_{1} \cdot G^{-1}\left(C_{2}\right) & =\left(\vec{e}_{1}+m_{1} \cdot \vec{s} \cdot G\right) \cdot G^{-1}\left(C_{2}\right) \\
& =\vec{e}_{1} \cdot G^{-1}\left(C_{2}\right)+m_{1} \cdot \vec{s} \cdot G \cdot G^{-1}\left(C_{2}\right) \\
& =\vec{e}_{1} \cdot G^{-1}\left(C_{2}\right)+m_{1} \cdot \vec{s} \cdot C_{2} \\
& =\vec{e}_{1} \cdot G^{-1}\left(C_{2}\right)+m_{1} \cdot\left(\vec{e}_{2}+m_{2} \cdot \vec{s} \cdot G\right) \\
& =\underbrace{\left(\vec{e}_{1} \cdot G^{-1}\left(C_{2}\right)+m_{1} \cdot \vec{e}_{2}\right)}_{\vec{e}_{\text {mult }}}+m_{1} m_{2} \cdot \vec{s} \cdot G
\end{aligned}
$$

$\left\|\vec{e}_{\text {mult }}\right\| \leq n \log q \cdot\left\|\vec{e}_{1}\right\|+m_{1} \cdot\left\|\vec{e}_{2}\right\| \leq(n \log q+1) \cdot \max \left\{\left\|\vec{e}_{1}\right\|,\left\|\vec{e}_{2}\right\|\right\}$

Homomorphic Circuit Evaluation

Noise grows during homomorphic eval

$$
\left\|\vec{e}_{\text {output }}\right\| \leq(N+1)^{d} \cdot B_{0} \approx N^{d} B_{0}
$$

\Rightarrow Decryptable if $q \gg N^{d} B_{0}$.
(for security: $q \ll 2^{n}$)
So this can support $\boldsymbol{d} \approx \boldsymbol{n}^{0.99}$

$$
\left\|\vec{e}_{\text {input }}\right\| \leq B_{0}
$$

Big Picture: Two Steps to FHE

Leveled Secret-key Homomorphic Encryption: Evaluate circuits of a-priori bounded depth d

"you give me a depth bound d, I will give you a homomorphic scheme that handles depth-d circuits..."

Bootstrapping Theorem:

From "circular secure" Leveled FHE to Pure FHE (at the cost of an additional assumption)
"I will give you homomorphic scheme that handles circuits of ANY size/depth"

From Leveled to Fully Homomorphic

Input: x

Function: f

The cloud keeps homomorphically computing, but after a certain depth, the ciphertext is too noisy to be useful. What to do?

Idea: "Bootstrapping"!

Decryption Circuit

Bootstrapping, Concretely

Next Best = Homomorphic Decryption!

Assume server knows ek $=\mathrm{Enc}_{\text {SK }}(\mathrm{SK})$.
(OK assuming the scheme is "circular secure")

$\mathrm{Enc}_{\text {sK }}(\mathrm{SK})$

Bootstrapping, Concretely

Wrap Up: Bootstrapping

Assume Circular Security:
Evaluation key is $\mathrm{Enc}_{\mathrm{SK}}(\mathrm{SK})$

Wrap Up: Bootstrapping

Assume Circular Security:
Evaluation key is $\mathrm{Enc}_{\mathbf{S K}}(\mathbf{S K})$

Each Gate $\mathbf{g} \rightarrow$ Gadget \mathbf{G} :

Wrap Up: Bootstrapping

Assume Circular Security:
Evaluation key is $\mathrm{Enc}_{\mathbf{S K}}(\mathbf{S K})$

Each Gate $\mathbf{g} \rightarrow$ Gadget G:

Subsequent Work: FHE in Practice

[Gentry-Halevi-Smart'12]: "FHE with Polylog Overhead" Homomorphic computations "in place".

SIMD computation + slot permutations (automorphisms)

"HELib": The first homomorphic encryption library.

FHE Bounty \#1:

We have "leveled" FHE from the LWE assumption

$$
s k_{1} \xrightarrow{E n c_{p k_{2}}\left(s k_{1}\right)} s k_{2} \xrightarrow{E n c_{p k_{3}}\left(s k_{2}\right)} s k_{3} \xrightarrow{E n c_{p k_{4}}\left(s k_{3}\right)} \cdots \xrightarrow{E n c_{p k_{L}}\left(s k_{L-1}\right)} s k_{L}
$$

and "unbounded" FHE under a "circular secure" LWE assumption.

FHE Bounty \#1: Why Circular Security?

Partial Answer:

[CLTV'15]: Unbounded FHE from indistinguishability obfuscation (IO).

+ [JLS'22]: Unbounded FHE from LPN + PRG in NCO + Bilinear maps.

(Unbounded) FHE from LWE.

FHE Bounty \#2:

Why Lattices/LWE?

FHE from the Diffie-Hellman assumption.

FHE Bounty \#3: FHE \approx as efficient as plaintext computation.

- Advances in Rate-1 FHE: FHE with ≈ 0 communication overhead [GH'19, BDGM'19]
- Advances in Private Information Retrieval:

PIR with server computation ≈ 1 add +1 mult per database byte* [CHHV'22

If you solve truly practical FHE, you don't need my \$100(0). :)

Unresolved Issue 1: Function Privacy

Input: x

Function: f

Security against the curious cloud = standard INDsecurity of secret-key encryption

Security against a curious user?

Unresolved Issue 1: Function Privacy

Input: x

Function: f

Function Privacy: Enc(f(x)) reveals no more information (about f) than $f(x)$.

Function privacy via noise-flooding (on the board)

Unresolved Issue 2: Malicious Client

Input: x

Function: f

Idea: Use zero knowledge proofs.

Unresolved Issue 3: Malicious Cloud

Input: x

Function: f

Idea: "Succinct Interactive Proofs". [Kilian92]

