MIT 6.875

Foundations of Cryptography Lecture 22

Complexity of the 2PC protocols

Number of OT protocol invocations = 2 * #AND gates Can be made into O(#inputs $\cdot \lambda$): Yao's garbled circuits

Number of rounds = AND-depth of the circuit Can be made into O(1) rounds: Yao's garbled circuits

Communication in bits = $O(\#AND \cdot \lambda + \#outputs)$

Can be made into $O(\lambda \text{ #inputs})$ using FHE: but FHE is computationally more expensive concretely.

Homomorphic Encryption

Application 1. Secure Outsourcing

A Special Case: Encrypted Database Lookup

 also called "private information retrieval" (we'll see in two lectures)

Application 2. Secure Collaboration

"Parties learn the genotype-phenotype correlations and nothing else"

Homomorphic Encryption: Syntax (can be either secret-key or public-key enc)

4-tuple of PPT algorithms (Gen, Enc, Dec, Eval) s.t.

• $(sk, ek) \leftarrow Gen(1^n)$.

PPT Key generation algorithm generates a secret key as well as a (public) evaluation key.

• $c \leftarrow Enc(sk, m)$.

Encryption algorithm uses the secret key to encrypt message m.

• $c' \leftarrow Eval(ek, f, c)$.

Homomorphic evaluation algorithm uses the evaluation key to produce an "evaluated ciphertext" c'.

• $m \leftarrow Dec(sk, c)$.

Decryption algorithm uses the secret key to decrypt ciphertext c.

Homomorphic Encryption: Correctness

Dec(sk, Eval(ek, f, Enc(x))) = f(x).

Homomorphic Encryption: Security

Security against the "curious cloud" = standard **IND-security** of secret-key encryption

Key Point: Eval is an entirely public algorithm with public inputs.

Here is a homomorphic encryption scheme...

• $(sk, -) \leftarrow Gen(1^n)$. Use any old secret key enc scheme.

• $c \leftarrow Enc(sk, m)$.

Just the secret key encryption algorithm...

• $c' \leftarrow Eval(ek, f, c)$. Output c' = c || f. So Eval is basically the identity function!!

• $m \leftarrow Dec(sk, c')$.

Parse c' = c||f| as a ciphertext concatenated with a function description. Decrypt *c* and compute the function *f*.

This is correct and it is IND-secure.

Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext and the runtime of the decryption is *independent of* the complexity of the evaluated function.

A Relaxation: The size (bit-length) of the evaluated ciphertext and the runtime of the decryption *depends* sublinearly on the complexity of the evaluated function.

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR (+ mod 2) and AND (× mod 2) gates.

Takeaway: If you can compute XOR and AND on encrypted bits, you can compute everything.

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR (+ mod 2) and AND (× mod 2) gates.

We already know how to add (XOR), can we multiply?? Next lecture...

Homomorphic Encryption: Syntax (can be either secret-key or public-key enc)

4-tuple of PPT algorithms (Gen, Enc, Dec, Eval) s.t.

• $(sk, ek) \leftarrow Gen(1^n).$

PPT Key generation algorithm generates a secret key as well as a (public) evaluation key.

• $c \leftarrow Enc(sk, m)$.

Encryption algorithm uses the secret key to encrypt message m.

• $c' \leftarrow Eval(ek, f, c)$.

Homomorphic evaluation algorithm uses the evaluation key to produce an "evaluated ciphertext" c'.

• $m \leftarrow Dec(sk, c)$.

Decryption algorithm uses the secret key to decrypt ciphertext c.

Homomorphic Encryption: Correctness

Dec(sk, Eval(ek, f, Enc(x))) = f(x).

Homomorphic Encryption: Security

Security against the "curious cloud" = standard **INDsecurity** of secret-key encryption

Key Point: Eval is an entirely public algorithm with public inputs.

Here is a homomorphic encryption scheme...

• $(sk, -) \leftarrow Gen(1^n)$.

Use any old secret key enc scheme.

• $c \leftarrow Enc(sk, m)$.

Just the secret key encryption algorithm...

• $c' \leftarrow Eval(ek, f, c)$. Output c' = c || f. So Eval is basically the identity function!!

• $m \leftarrow Dec(sk, c')$.

Parse c' = c||f| as a ciphertext concatenated with a function description. Decrypt c and compute the function f.

This is correct and it is IND-secure.

Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext is *independent of* the complexity of the evaluated function.

A Relaxation: The size (bit-length) of the evaluated ciphertext and the runtime of the decryption *depends sublinearly on* the complexity of the evaluated function.

Big Picture: Two Steps to FHE

Leveled Secret-key Homomorphic Encryption: Evaluate circuits of a-priori bounded depth d

"you give me a depth bound d, I will give you a homomorphic scheme that handles depth-d circuits..."

Bootstrapping Theorem:

From "circular secure" Leveled FHE to Pure FHE (at the cost of an additional assumption)

"I will give you homomorphic scheme that handles circuits of ANY size/depth"

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR (+ mod 2) and AND $(\times mod 2)$ gates.

Takeaway: If you can compute XOR and AND on encrypted bits, you can compute everything.

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR (+ mod 2) and AND $(\times mod 2)$ gates.

We already know how to add (XOR), can we multiply??

- Private key: a vector $\mathbf{s} \in \mathbb{Z}_q^n$
- Private-key Encryption of a bit $m \in \{0, 1\}$:

$$\mathbf{C} = \begin{bmatrix} \mathbf{A} \\ \mathbf{sA} \end{bmatrix} + m \mathbf{I} \qquad (\mathbf{A} \text{ is random (n) X (n+1) matrix})$$

• Decryption:

INSECURE! Easy to solve linear equations.

$$\mathbf{t} \cdot \mathbf{C} = \mathbf{m} \cdot \mathbf{t} \pmod{q}$$

t = [s || -1]

- ► Homomorphic addition: $C_1 + C_2$
 - t is an eigenvector of C_1+C_2 with eigenvalue m_1+m_2
- ► Homomorphic multiplication: C₁C₂
 - t is an eigenvector of C_1C_2 with eigenvalue m_1m_2

Proof: t . $C_1 C_2 = (m_1 \cdot t) \cdot C_2 = m_1 \cdot m_2 \cdot t$

But, remember, the scheme is insecure?

Key idea: fix insecurity while retaining homomorphism.

- Private key: a vector $\mathbf{s} \in \mathbb{Z}_q^n$
- Private-key Encryption of a bit $m \in \{0, 1\}$:

 $\mathbf{C} = \begin{bmatrix} \mathbf{A} \\ \mathbf{sA} + \mathbf{e} \end{bmatrix} + m \mathbf{I} \qquad (\mathbf{A} \text{ is random (n+1) X n matrix})$

• Decryption:

$$t \cdot C = m \cdot t + e \pmod{q}$$

t = [s || -1]

► Homomorphic addition: $C_1 + C_2$

$$\vec{t} \cdot (C_1 + C_2) = \vec{t}C_1 + \vec{t}C_2$$

= $m_1\vec{t} + \vec{e}_1 + m_2\vec{t} + \vec{e}_2$
= $(m_1 + m_2)\vec{t} + (\vec{e}_1 + \vec{e}_2)$
 $\approx (m_1 + m_2)\vec{t}$
Noise grows a little

Aside: Binary Decomposition

Break each entry in C into its binary representation

$$C = \begin{bmatrix} 3 & 5\\ 1 & 4 \end{bmatrix} \pmod{8} \Longrightarrow bits(C) = \begin{bmatrix} 0 & 1\\ 1 & 0\\ 1 & 1\\ 0 & 1\\ 0 & 0\\ 1 & 0 \end{bmatrix} \pmod{8}$$

Small entries like we wanted!

Consider the "reverse" operation:

$$k \log q$$

 $k \log q$
 $k \log q \log q$
 $k \log q$
 $k \log q$
 $k \log q$

- Private key: a vector $\mathbf{s} \in \mathbb{Z}_q^n$
- Private-key Encryption of a bit $m \in \{0, 1\}$:

$$\mathbf{C} = \begin{bmatrix} \mathbf{A} \\ \mathbf{sA} + \mathbf{e} \end{bmatrix} + m \mathbf{G} \quad (\mathbf{A} \text{ is random (n+1) X n log q matrix})$$

• Decryption:

Still CPA-secure by LWE.

 $\|\vec{e}_{mult}\| \le n \log q \cdot \|\vec{e}_1\| + m_1 \cdot \|\vec{e}_2\| \le (n \log q + 1) \cdot \max\{\|\vec{e}_1\|, \|\vec{e}_2\|\}$

Let $N = n \log q$

Homomorphic Circuit Evaluation

Noise grows during homomorphic eval

Big Picture: Two Steps to FHE

Leveled Secret-key Homomorphic Encryption: Evaluate circuits of a-priori bounded depth d

"you give me a depth bound d, I will give you a homomorphic scheme that handles depth-d circuits..."

Bootstrapping Theorem:

From "circular secure" Leveled FHE to Pure FHE (at the cost of an additional assumption)

"I will give you homomorphic scheme that handles circuits of ANY size/depth"

From Leveled to Fully Homomorphic

The cloud keeps homomorphically computing, but after a certain depth, the ciphertext is too noisy to be useful. What to do?

Idea: "Bootstrapping"!

Decryption Circuit

Next Best = Homomorphic Decryption!

Assume server knows $ek = Enc_{SK}(SK)$.

(OK assuming the scheme is "circular secure")

Wrap Up: Bootstrapping

Assume Circular Security: Evaluation key is Enc_{sk}(SK)

Subsequent Work: FHE in Practice

[Gentry-Halevi-Smart'12]: "FHE with Polylog Overhead"

Homomorphic computations "in place".

SIMD computation + slot permutations (automorphisms)

"HELib": The first homomorphic encryption library.

FHE Bounty #1:

We have "leveled" FHE from the LWE assumption

and "unbounded" FHE under a "circular secure" LWE assumption.

$$\bigcap_{sk} Enc_{pk}(sk)$$

FHE Bounty #1: Why Circular Security?

Partial Answer:

[CLTV'15]: Unbounded FHE from indistinguishability obfuscation (IO).

+ [JLS'22]: Unbounded FHE from LPN + PRG in NCO + Bilinear maps.

(Unbounded) FHE from LWE.

FHE Bounty #2: Why Lattices/LWE?

FHE from the Diffie-Hellman assumption.

Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

Gödel Prize Lecture 2022

FHE Bounty #3: FHE \approx as efficient as plaintext computation.

- Advances in Rate-1 FHE: FHE with ≈ 0 communication overhead [GH'19, BDGM'19]
- Advances in Private Information Retrieval: PIR with server computation ≈ 1 add + 1 mult per database byte* [CHHV'22]

If you solve truly practical FHE, you don't need my \$100(0). ③

Unresolved Issue 1: Function Privacy

Security against the curious cloud = standard **INDsecurity** of secret-key encryption

Security against a curious user?

Unresolved Issue 1: Function Privacy

<u>Function Privacy</u>: Enc(f(x)) reveals no more information (about f) than f(x).

Function privacy via noise-flooding (on the board)

Unresolved Issue 2: Malicious Client

Idea: Use zero knowledge proofs.

Unresolved Issue 3: Malicious Cloud

Idea: "Succinct Interactive Proofs". [Kilian92]