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Lecture 22

Foundations of Cryptography



Complexity of the 2PC protocols

Number of OT protocol invocations = 2 ∗  #𝐴𝑁𝐷 gates  

Number of rounds =  AND-depth of the circuit

Communication in bits =  
𝑂(#𝐴𝑁𝐷 ∙ 𝜆 + #𝑜𝑢𝑡𝑝𝑢𝑡𝑠)

Can be made into O(1) rounds: Yao’s garbled circuits

Can be made into O(𝝀 #inputs) using FHE: but FHE is 
computationally more expensive concretely.

Can be made into O(#inputs ∙ 𝝀): Yao’s garbled circuits



Homomorphic Encryption



Application 1. Secure Outsourcing

Client Server (the Cloud)

Input: x Program: P

Enc(P(x))

Enc(x) 

A Special Case: Encrypted Database Lookup

– also called “private information retrieval” (we’ll see 

in two lectures)

x 

P(x)



Application 2. Secure Collaboration

Hospital

ID Genome ID Phenotype

“Parties learn the genotype-phenotype correlations and nothing else”



Homomorphic Encryption: Syntax

• 𝑠𝑘, 𝑒𝑘 ← 𝐺𝑒𝑛 1𝑛 . 
PPT Key generation algorithm generates a secret key as 

well as a (public) evaluation key.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘, 𝑚 . 
Encryption algorithm uses the secret key to encrypt 

message 𝑚.

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐 . 
Decryption algorithm uses the secret key to decrypt 

ciphertext 𝑐.

4-tuple of PPT algorithms (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐸𝑣𝑎𝑙) s.t. 

(can be either secret-key or public-key enc)

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 . 
Homomorphic evaluation algorithm uses the evaluation key 

to produce an “evaluated ciphertext” 𝑐′.



Homomorphic Encryption: Correctness

𝐷𝑒𝑐(𝑠𝑘, 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝐸𝑛𝑐(𝑥)) = 𝑓(𝑥). 

𝑥

𝑐

𝑬𝒏𝒄𝒑𝒌 𝑬𝒏𝒄𝒔𝒌

𝑬𝒗𝒂𝒍𝒇

𝑐′

𝑓(𝑥)

Ciphertext world

Plaintext world



Homomorphic Encryption: Security

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Security against the “curious cloud” = standard 

IND-security of secret-key encryption  

Key Point: Eval is an entirely public algorithm with 

public inputs. 



Here is a homomorphic encryption scheme…

• 𝑠𝑘, − ← 𝐺𝑒𝑛 1𝑛 . 
Use any old secret key enc scheme.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘, 𝑚 . 
Just the secret key encryption algorithm…

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐′ . 
Parse 𝑐′ = 𝑐||𝑓 as a ciphertext concatenated with a function 

description. Decrypt 𝑐 and compute the function 𝑓.

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 . 
Output 𝑐′ = 𝑐 || 𝑓.  So Eval is basically the identity function!!

This is correct and it is IND-secure.



Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext and 

the runtime of the decryption is independent of the 

complexity of the evaluated function.

A Relaxation:  The size (bit-length) of the evaluated 

ciphertext and the runtime of the decryption depends 

sublinearly on the complexity of the evaluated 

function.



How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with 

XOR (+ 𝑚𝑜𝑑 2) and AND (×  𝑚𝑜𝑑 2) gates.

Takeaway: If you can compute XOR and AND on 

encrypted bits, you can compute everything.

𝐸𝑛𝑐(𝑥1) 𝐸𝑛𝑐(𝑥2) 𝐸𝑛𝑐(𝑥3) 𝐸𝑛𝑐(𝑥4)

𝐸𝑛𝑐(𝑥1 + 𝑥2) 𝐸𝑛𝑐(𝑥3𝑥4)

𝐸𝑛𝑐((𝑥1 + 𝑥2)𝑥3𝑥4)



How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with 

XOR (+ 𝑚𝑜𝑑 2) and AND (×  𝑚𝑜𝑑 2) gates.

We already know how to add (XOR), can we 

multiply?? Next lecture… 

𝐸𝑛𝑐(𝑥1) 𝐸𝑛𝑐(𝑥2) 𝐸𝑛𝑐(𝑥3) 𝐸𝑛𝑐(𝑥4)

𝐸𝑛𝑐(𝑥1 + 𝑥2) 𝐸𝑛𝑐(𝑥3𝑥4)

𝐸𝑛𝑐((𝑥1 + 𝑥2)𝑥3𝑥4)



Homomorphic Encryption: Syntax

• 𝑠𝑘, 𝑒𝑘 ← 𝐺𝑒𝑛 1𝑛 . 
PPT Key generation algorithm generates a secret key as well as a 
(public) evaluation key.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘, 𝑚 . 
Encryption algorithm uses the secret key to encrypt message 𝑚.

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐 . 
Decryption algorithm uses the secret key to decrypt ciphertext 𝑐.

4-tuple of PPT algorithms (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐸𝑣𝑎𝑙) s.t. 

(can be either secret-key or public-key enc)

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 . 
Homomorphic evaluation algorithm uses the evaluation key to 
produce an “evaluated ciphertext” 𝑐′.



Homomorphic Encryption: Correctness

𝐷𝑒𝑐(𝑠𝑘, 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝐸𝑛𝑐(𝑥)) = 𝑓(𝑥). 

𝑥

𝑐

𝑬𝒏𝒄𝒑𝒌 𝑫𝒆𝒄𝒔𝒌

𝑬𝒗𝒂𝒍𝒇

𝑐′

𝑓(𝑥)

Ciphertext world

Plaintext world



Homomorphic Encryption: Security

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Security against the “curious cloud” = standard IND-
security of secret-key encryption  

Key Point: Eval is an entirely public algorithm with public 
inputs. 



Here is a homomorphic encryption scheme…

• 𝑠𝑘, − ← 𝐺𝑒𝑛 1𝑛 . 
Use any old secret key enc scheme.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘, 𝑚 . 
Just the secret key encryption algorithm…

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐′ . 
Parse 𝑐′ = 𝑐||𝑓 as a ciphertext concatenated with a function 
description. Decrypt 𝑐 and compute the function 𝑓.

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 . 
Output 𝑐′ = 𝑐 || 𝑓.  So Eval is basically the identity function!!

This is correct and it is IND-secure.



Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext is 
independent of the complexity of the evaluated 
function.

A Relaxation:  The size (bit-length) of the evaluated 
ciphertext and the runtime of the decryption depends 
sublinearly on the complexity of the evaluated function.



Big Picture:  Two Steps to FHE

Bootstrapping Theorem:

From “circular secure” Leveled FHE to Pure FHE 

(at the cost of an additional assumption)

Leveled Secret-key Homomorphic Encryption:

Evaluate circuits of a-priori bounded depth d 

“you give me a depth bound d, I will give you a homomorphic scheme that 

handles depth-d circuits…”

“I will give you homomorphic scheme that handles circuits of ANY size/depth”



How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with XOR 
(+ 𝑚𝑜𝑑 2) and AND (×  𝑚𝑜𝑑 2) gates.

Takeaway: If you can compute XOR and AND on encrypted 
bits, you can compute everything.

𝐸𝑛𝑐(𝑥1) 𝐸𝑛𝑐(𝑥2) 𝐸𝑛𝑐(𝑥3) 𝐸𝑛𝑐(𝑥4)

𝐸𝑛𝑐(𝑥1 + 𝑥2) 𝐸𝑛𝑐(𝑥3𝑥4)

𝐸𝑛𝑐((𝑥1 + 𝑥2)𝑥3𝑥4)



How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with XOR 
(+ 𝑚𝑜𝑑 2) and AND (×  𝑚𝑜𝑑 2) gates.

We already know how to add (XOR), can we multiply??

𝐸𝑛𝑐(𝑥1) 𝐸𝑛𝑐(𝑥2) 𝐸𝑛𝑐(𝑥3) 𝐸𝑛𝑐(𝑥4)

𝐸𝑛𝑐(𝑥1 + 𝑥2) 𝐸𝑛𝑐(𝑥3𝑥4)

𝐸𝑛𝑐((𝑥1 + 𝑥2)𝑥3𝑥4)



• Private-key Encryption of a bit 𝑚 ∈ {𝟎, 𝟏}:

C =
𝑨

𝒔𝑨
+ 𝑚 𝑰

• Private key:  a vector s ∈ 𝒁𝒒
𝒏  

Priv key Ciphertext matrix= Eigenvector Message = Eigenvalue

[s || -1]         C      =         m [s || -1]  (mod q) 

(𝑨 is random (n) X (n+1) matrix)

• Decryption:

🙁  INSECURE! Easy to solve linear equations.

New (Secret-key) Encryption: Take 1



t . C = m . t (mod q) 

►Homomorphic addition: C1 + C2

– t is an eigenvector of C1+C2 with eigenvalue m1+m2

►Homomorphic multiplication: C1C2

– t is an eigenvector of C1C2 with eigenvalue m1m2

Proof: t . C1 C2 = (m1 . t) . C2 = m1 . m2 . t 

But, remember, the scheme is insecure?

Key idea: fix insecurity while retaining homomorphism.

t = [s || -1]

New (Secret-key) Encryption: Take 1



• Private-key Encryption of a bit 𝑚 ∈ {𝟎, 𝟏}:

• Private key:  a vector s ∈ 𝒁𝒒
𝒏  

Priv key Ciphertext matrix= Approx 

Eigenvector

Message = Approx 

Eigenvalue

(𝑨 is random (n+1) X n matrix)

• Decryption:

🙂 CPA-secure by LWE.

C =
𝑨

𝒔𝑨 + 𝒆
+ 𝑚 𝑰

[s || -1]           C         ≈         m [s || -1]  (mod q) 

New (Secret-key) Encryption: Take 2



t . C = m . t + e (mod q) 

►Homomorphic addition: C1 + C2

t = [s || -1]

New (Secret-key) Encryption: Take 2

= Ԧ𝑡𝐶1 + Ԧ𝑡𝐶2

= 𝑚1 Ԧ𝑡 + Ԧ𝑒1 + 𝑚2 Ԧ𝑡 + Ԧ𝑒2 

= (𝑚1+𝑚2)Ԧ𝑡 + ( Ԧ𝑒1+ Ԧ𝑒2) 

Noise grows a 
little

≈ (𝑚1 +𝑚2)Ԧ𝑡

Ԧ𝑡 ⋅ (𝐶1 + 𝐶2)



t . C = m . t + e (mod q) 

►Homomorphic multiplication: C1 C2

t = [s || -1]

New (Secret-key) Encryption: Take 2

Ԧ𝑡 ⋅ (𝐶1 ⋅ 𝐶2) = 𝑚1 Ԧ𝑡 + Ԧ𝑒1 𝐶2

= 𝑚1 Ԧ𝑡𝐶2 + Ԧ𝑒1𝐶2

= 𝑚1 𝑚2 Ԧ𝑡 + Ԧ𝑒2 + Ԧ𝑒1𝐶2

Ԧ𝑒𝑚𝑢𝑙𝑡

Noise grows. 
Need 𝑪𝟐 to be small! 

How?!

Can also 
use 𝐶2𝐶1

= 𝑚1𝑚2 Ԧ𝑡 + 𝑚1 Ԧ𝑒2 + Ԧ𝑒1𝐶2



Aside: Binary Decomposition
Break each entry in 𝐶 into its binary representation

𝐶 =
3 5
1 4

 (𝑚𝑜𝑑 8) 𝑏𝑖𝑡𝑠 𝐶 =

0
1
1

1
0
1

0
0
1

1
0
0

 (𝑚𝑜𝑑 8)⇒

Small entries like we wanted!

Consider the “reverse” operation:

4 2 1 0 0 0
0 0 0 4 2 1

⋅ 𝑏𝑖𝑡𝑠 𝐶 = 𝐶

𝐺

⇒ Ԧ𝑡 ⋅ 𝐶 = Ԧ𝑡 ⋅ 𝐺 ⋅ 𝐺−1(𝐶)

Denote: 𝐺−1 𝐶  which has “small” entries

𝑘

𝑘 log 𝑞 



• Private-key Encryption of a bit 𝑚 ∈ {𝟎, 𝟏}:

• Private key:  a vector s ∈ 𝒁𝒒
𝒏  

Priv key Ciphertext matrix= Approx 

Eigenvector

Message = Approx 

“Eigenvalue”

(𝑨 is random (n+1) X n log q  matrix)

• Decryption:

🙂 Still CPA-secure by LWE.

C =
𝑨

𝒔𝑨 + 𝒆
+ 𝑚 𝐺

[s || -1]           C         ≈         m [s || -1] G  (mod q) 

New (Secret-key) Encryption: Take 3



t . C = m . t . G + e (mod q) 

►Homomorphic multiplication:

t = [s || -1]

New (Secret-key) Encryption: Take 3

𝐶𝑚𝑢𝑙𝑡 = 𝐶1 ⋅ 𝐺−1(𝐶2)

Ԧ𝑠 ⋅ 𝐶1 ⋅ 𝐺−1 𝐶2 = ( Ԧ𝑒1 + 𝑚1 ⋅ Ԧ𝑠 ⋅ 𝐺) ⋅ 𝐺−1 𝐶2

= Ԧ𝑒1 ⋅ 𝐺−1 𝐶2 + 𝑚1 ⋅ Ԧ𝑠 ⋅ 𝐺 ⋅ 𝐺−1 𝐶2

= Ԧ𝑒1 ⋅ 𝐺−1 𝐶2 + 𝑚1 ⋅ Ԧ𝑠 ⋅ 𝐶2

= Ԧ𝑒1 ⋅ 𝐺−1 𝐶2 + 𝑚1 ⋅ ( Ԧ𝑒2 + 𝑚2 ⋅ Ԧ𝑠 ⋅ 𝐺)

= Ԧ𝑒1 ⋅ 𝐺−1 𝐶2 + 𝑚1 ⋅ Ԧ𝑒2 + 𝑚1𝑚2 ⋅ Ԧ𝑠 ⋅ 𝐺

Ԧ𝑒𝑚𝑢𝑙𝑡 ≤ 𝑛 log 𝑞 ⋅ Ԧ𝑒1 + 𝑚1 ⋅ Ԧ𝑒2 ≤ 𝑛 log 𝑞 + 1 ⋅ max{ Ԧ𝑒1 , Ԧ𝑒2 }

Ԧ𝑒𝑚𝑢𝑙𝑡



Homomorphic Circuit Evaluation

Ԧ𝑒𝑜𝑢𝑡𝑝𝑢𝑡 ≤ 𝑁 + 1 𝑑 ⋅ 𝐵0 ≈ 𝑁𝑑𝐵0

Ԧ𝑒𝑖𝑛𝑝𝑢𝑡 ≤ 𝐵0Ԧ𝑒𝑖𝑛𝑝𝑢𝑡

Ԧ𝑒𝑜𝑢𝑡𝑝𝑢𝑡

Noise grows during homomorphic eval

Depth 𝑑

Ԧ𝑒𝑖+1 ≤ (𝑁 + 1) Ԧ𝑒𝑖

…

⇒ Decryptable if 𝑞 ≫ 𝑁𝑑𝐵0.

(for security:  𝑞 ≪ 2𝑛)

So this can support 𝒅 ≈ 𝒏𝟎.𝟗𝟗

𝐿𝑒𝑡 𝑁 = 𝑛 log 𝑞



Big Picture:  Two Steps to FHE

Bootstrapping Theorem:

From “circular secure” Leveled FHE to Pure FHE 

(at the cost of an additional assumption)

Leveled Secret-key Homomorphic Encryption:

Evaluate circuits of a-priori bounded depth d 

“you give me a depth bound d, I will give you a homomorphic scheme that 

handles depth-d circuits…”

“I will give you homomorphic scheme that handles circuits of ANY size/depth”



From Leveled to Fully Homomorphic

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(sk,x) 

The cloud keeps homomorphically computing, but 

after a certain depth, the ciphertext is too noisy to 

be useful. What to do?

Idea: “Bootstrapping”!



Bootstrapping: How

“Best Possible” Noise Reduction = Decryption!

𝐷𝑒𝑐(∙, 𝐶𝑇)

SK

m

Decryption Circuit

“Very Noisy” ciphertext

“Noiseless ciphertext”

But the 

evaluator/cloud

does not have SK! 



Bootstrapping, Concretely

Next Best = Homomorphic Decryption!

EncSK(m)

EncSK(SK)

Assume server knows  ek = EncSK(SK).

(OK assuming the scheme is “circular secure”)

*

𝐷𝑒𝑐(∙, 𝐶𝑇)



Bootstrapping, Concretely

Next Best = Homomorphic Decryption!

EncSK(m)

Assume server knows  ek = EncSK(SK).

(OK assuming the scheme is “circular secure”)

*

Noise = Binput

Noise = Bdec

Bdec Independent of Binput

EncSK(SK)

𝐷𝑒𝑐(∙, 𝐶𝑇)



g

Assume Circular Security:

Wrap Up: Bootstrapping
Function f

Evaluation key is EncSK(SK)



g

Each Gate g → Gadget G:

g

Assume Circular Security:

𝐷𝑒𝑐(∙, 𝑐𝑎)

g

sk
a b

g(a,b)

sk

a b

g(a,b)

Wrap Up: Bootstrapping
Function f

Evaluation key is EncSK(SK)

𝐷𝑒𝑐(∙, 𝑐𝑏)



g

Each Gate g → Gadget G:

g

Assume Circular Security:

𝐷𝑒𝑐(∙, 𝑐𝑎)

g

a b

g(a,b)

Enc(sk)

a b

Enc(g(a,b))

Wrap Up: Bootstrapping
Function f

Evaluation key is EncSK(SK)

𝐷𝑒𝑐(∙, 𝑐𝑏)

Enc(sk)



Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

Subsequent Work: FHE in Practice

[Gentry-Halevi-Smart’12]:  “FHE with Polylog Overhead”

Homomorphic computations “in place”.

SIMD computation + slot permutations (automorphisms)

𝑥1 𝑥2 𝑥3 𝑥𝑛…

𝑦1 𝑦2 𝑦3 𝑦𝑛…

“HELib”: The first homomorphic encryption library.

PALISADE TFHESEAL HEEAN FHEW

Concrete NFLLib Λ ∘ 𝜆 Lattigo cuFHE



Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

FHE Bounty #1:

We have “leveled” FHE from the LWE assumption 

and “unbounded” FHE under a “circular secure” LWE assumption.

𝑠𝑘1 𝑠𝑘2

𝐸𝑛𝑐𝑝𝑘2
(𝑠𝑘1)

𝑠𝑘3

𝐸𝑛𝑐𝑝𝑘3
(𝑠𝑘2)

𝑠𝑘𝐿

𝐸𝑛𝑐𝑝𝑘𝐿
(𝑠𝑘𝐿−1)

…
𝐸𝑛𝑐𝑝𝑘4

(𝑠𝑘3)

𝑠𝑘

𝐸𝑛𝑐𝑝𝑘(𝑠𝑘)



Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

Partial Answer:

+ [JLS’22]: Unbounded FHE from LPN + PRG in NC0 + Bilinear maps.

[CLTV’15]: Unbounded FHE from indistinguishability obfuscation (IO).

(Unbounded) FHE from LWE.

FHE Bounty #1: Why Circular Security?



Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

FHE Bounty #2:

Why Lattices/LWE?

FHE from the Diffie-Hellman 
assumption.



Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

FHE Bounty #3:
FHE ≈ as efficient as plaintext computation.

• Advances in Rate-1 FHE:  FHE with ≈ 0 communication overhead

• Advances in Private Information Retrieval:
PIR with server computation ≈ 1 add + 1 mult per database byte*

[GH’19, BDGM’19]

[CHHV’22]

If you solve truly practical FHE, 
you don’t need my $100(0). ☺



Unresolved Issue 1: Function Privacy

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(sk, f(x))

Enc(sk,x) 

Security against the curious cloud = standard IND-

security of secret-key encryption  

Security against a curious user?



𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Function Privacy: Enc(f(x)) reveals no more 

information (about f) than f(x).

Unresolved Issue 1: Function Privacy

Function privacy via noise-flooding (on the board)



Unresolved Issue 2: Malicious Client

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Idea: Use zero knowledge proofs.



Unresolved Issue 3: Malicious Cloud

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Idea: “Succinct Interactive Proofs”. [Kilian92]
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