
MIT 6.875

Lecture 22

Foundations of Cryptography

Complexity of the 2PC protocols

Number of OT protocol invocations = 2 ∗ #𝐴𝑁𝐷 gates

Number of rounds = AND-depth of the circuit

Communication in bits =
𝑂(#𝐴𝑁𝐷 ∙ 𝜆 + #𝑜𝑢𝑡𝑝𝑢𝑡𝑠)

Can be made into O(1) rounds: Yao’s garbled circuits

Can be made into O(𝝀 #inputs) using FHE: but FHE is
computationally more expensive concretely.

Can be made into O(#inputs ∙ 𝝀): Yao’s garbled circuits

Homomorphic Encryption

Application 1. Secure Outsourcing

Client Server (the Cloud)

Input: x Program: P

Enc(P(x))

Enc(x)

A Special Case: Encrypted Database Lookup

– also called “private information retrieval” (we’ll see

in two lectures)

x

P(x)

Application 2. Secure Collaboration

Hospital

ID Genome ID Phenotype

“Parties learn the genotype-phenotype correlations and nothing else”

Homomorphic Encryption: Syntax

• 𝑠𝑘, 𝑒𝑘 ← 𝐺𝑒𝑛 1𝑛 .
PPT Key generation algorithm generates a secret key as

well as a (public) evaluation key.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘, 𝑚 .
Encryption algorithm uses the secret key to encrypt

message 𝑚.

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐 .
Decryption algorithm uses the secret key to decrypt

ciphertext 𝑐.

4-tuple of PPT algorithms (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐸𝑣𝑎𝑙) s.t.

(can be either secret-key or public-key enc)

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 .
Homomorphic evaluation algorithm uses the evaluation key

to produce an “evaluated ciphertext” 𝑐′.

Homomorphic Encryption: Correctness

𝐷𝑒𝑐(𝑠𝑘, 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝐸𝑛𝑐(𝑥)) = 𝑓(𝑥).

𝑥

𝑐

𝑬𝒏𝒄𝒑𝒌 𝑬𝒏𝒄𝒔𝒌

𝑬𝒗𝒂𝒍𝒇

𝑐′

𝑓(𝑥)

Ciphertext world

Plaintext world

Homomorphic Encryption: Security

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x)

Security against the “curious cloud” = standard

IND-security of secret-key encryption

Key Point: Eval is an entirely public algorithm with

public inputs.

Here is a homomorphic encryption scheme…

• 𝑠𝑘, − ← 𝐺𝑒𝑛 1𝑛 .
Use any old secret key enc scheme.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘, 𝑚 .
Just the secret key encryption algorithm…

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐′ .
Parse 𝑐′ = 𝑐||𝑓 as a ciphertext concatenated with a function

description. Decrypt 𝑐 and compute the function 𝑓.

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 .
Output 𝑐′ = 𝑐 || 𝑓. So Eval is basically the identity function!!

This is correct and it is IND-secure.

Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext and

the runtime of the decryption is independent of the

complexity of the evaluated function.

A Relaxation: The size (bit-length) of the evaluated

ciphertext and the runtime of the decryption depends

sublinearly on the complexity of the evaluated

function.

How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with

XOR (+ 𝑚𝑜𝑑 2) and AND (× 𝑚𝑜𝑑 2) gates.

Takeaway: If you can compute XOR and AND on

encrypted bits, you can compute everything.

𝐸𝑛𝑐(𝑥1) 𝐸𝑛𝑐(𝑥2) 𝐸𝑛𝑐(𝑥3) 𝐸𝑛𝑐(𝑥4)

𝐸𝑛𝑐(𝑥1 + 𝑥2) 𝐸𝑛𝑐(𝑥3𝑥4)

𝐸𝑛𝑐((𝑥1 + 𝑥2)𝑥3𝑥4)

How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with

XOR (+ 𝑚𝑜𝑑 2) and AND (× 𝑚𝑜𝑑 2) gates.

We already know how to add (XOR), can we

multiply?? Next lecture…

𝐸𝑛𝑐(𝑥1) 𝐸𝑛𝑐(𝑥2) 𝐸𝑛𝑐(𝑥3) 𝐸𝑛𝑐(𝑥4)

𝐸𝑛𝑐(𝑥1 + 𝑥2) 𝐸𝑛𝑐(𝑥3𝑥4)

𝐸𝑛𝑐((𝑥1 + 𝑥2)𝑥3𝑥4)

Homomorphic Encryption: Syntax

• 𝑠𝑘, 𝑒𝑘 ← 𝐺𝑒𝑛 1𝑛 .
PPT Key generation algorithm generates a secret key as well as a
(public) evaluation key.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘, 𝑚 .
Encryption algorithm uses the secret key to encrypt message 𝑚.

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐 .
Decryption algorithm uses the secret key to decrypt ciphertext 𝑐.

4-tuple of PPT algorithms (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐸𝑣𝑎𝑙) s.t.

(can be either secret-key or public-key enc)

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 .
Homomorphic evaluation algorithm uses the evaluation key to
produce an “evaluated ciphertext” 𝑐′.

Homomorphic Encryption: Correctness

𝐷𝑒𝑐(𝑠𝑘, 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝐸𝑛𝑐(𝑥)) = 𝑓(𝑥).

𝑥

𝑐

𝑬𝒏𝒄𝒑𝒌 𝑫𝒆𝒄𝒔𝒌

𝑬𝒗𝒂𝒍𝒇

𝑐′

𝑓(𝑥)

Ciphertext world

Plaintext world

Homomorphic Encryption: Security

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x)

Security against the “curious cloud” = standard IND-
security of secret-key encryption

Key Point: Eval is an entirely public algorithm with public
inputs.

Here is a homomorphic encryption scheme…

• 𝑠𝑘, − ← 𝐺𝑒𝑛 1𝑛 .
Use any old secret key enc scheme.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘, 𝑚 .
Just the secret key encryption algorithm…

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐′ .
Parse 𝑐′ = 𝑐||𝑓 as a ciphertext concatenated with a function
description. Decrypt 𝑐 and compute the function 𝑓.

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 .
Output 𝑐′ = 𝑐 || 𝑓. So Eval is basically the identity function!!

This is correct and it is IND-secure.

Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext is
independent of the complexity of the evaluated
function.

A Relaxation: The size (bit-length) of the evaluated
ciphertext and the runtime of the decryption depends
sublinearly on the complexity of the evaluated function.

Big Picture: Two Steps to FHE

Bootstrapping Theorem:

From “circular secure” Leveled FHE to Pure FHE

(at the cost of an additional assumption)

Leveled Secret-key Homomorphic Encryption:

Evaluate circuits of a-priori bounded depth d

“you give me a depth bound d, I will give you a homomorphic scheme that

handles depth-d circuits…”

“I will give you homomorphic scheme that handles circuits of ANY size/depth”

How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with XOR
(+ 𝑚𝑜𝑑 2) and AND (× 𝑚𝑜𝑑 2) gates.

Takeaway: If you can compute XOR and AND on encrypted
bits, you can compute everything.

𝐸𝑛𝑐(𝑥1) 𝐸𝑛𝑐(𝑥2) 𝐸𝑛𝑐(𝑥3) 𝐸𝑛𝑐(𝑥4)

𝐸𝑛𝑐(𝑥1 + 𝑥2) 𝐸𝑛𝑐(𝑥3𝑥4)

𝐸𝑛𝑐((𝑥1 + 𝑥2)𝑥3𝑥4)

How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with XOR
(+ 𝑚𝑜𝑑 2) and AND (× 𝑚𝑜𝑑 2) gates.

We already know how to add (XOR), can we multiply??

𝐸𝑛𝑐(𝑥1) 𝐸𝑛𝑐(𝑥2) 𝐸𝑛𝑐(𝑥3) 𝐸𝑛𝑐(𝑥4)

𝐸𝑛𝑐(𝑥1 + 𝑥2) 𝐸𝑛𝑐(𝑥3𝑥4)

𝐸𝑛𝑐((𝑥1 + 𝑥2)𝑥3𝑥4)

• Private-key Encryption of a bit 𝑚 ∈ {𝟎, 𝟏}:

C =
𝑨

𝒔𝑨
+ 𝑚 𝑰

• Private key: a vector s ∈ 𝒁𝒒
𝒏

Priv key Ciphertext matrix= Eigenvector Message = Eigenvalue

[s || -1] C = m [s || -1] (mod q)

(𝑨 is random (n) X (n+1) matrix)

• Decryption:

🙁 INSECURE! Easy to solve linear equations.

New (Secret-key) Encryption: Take 1

t . C = m . t (mod q)

►Homomorphic addition: C1 + C2

– t is an eigenvector of C1+C2 with eigenvalue m1+m2

►Homomorphic multiplication: C1C2

– t is an eigenvector of C1C2 with eigenvalue m1m2

Proof: t . C1 C2 = (m1 . t) . C2 = m1 . m2 . t

But, remember, the scheme is insecure?

Key idea: fix insecurity while retaining homomorphism.

t = [s || -1]

New (Secret-key) Encryption: Take 1

• Private-key Encryption of a bit 𝑚 ∈ {𝟎, 𝟏}:

• Private key: a vector s ∈ 𝒁𝒒
𝒏

Priv key Ciphertext matrix= Approx

Eigenvector

Message = Approx

Eigenvalue

(𝑨 is random (n+1) X n matrix)

• Decryption:

🙂 CPA-secure by LWE.

C =
𝑨

𝒔𝑨 + 𝒆
+ 𝑚 𝑰

[s || -1] C ≈ m [s || -1] (mod q)

New (Secret-key) Encryption: Take 2

t . C = m . t + e (mod q)

►Homomorphic addition: C1 + C2

t = [s || -1]

New (Secret-key) Encryption: Take 2

= Ԧ𝑡𝐶1 + Ԧ𝑡𝐶2

= 𝑚1 Ԧ𝑡 + Ԧ𝑒1 + 𝑚2 Ԧ𝑡 + Ԧ𝑒2

= (𝑚1+𝑚2)Ԧ𝑡 + (Ԧ𝑒1+ Ԧ𝑒2)

Noise grows a
little

≈ (𝑚1 +𝑚2)Ԧ𝑡

Ԧ𝑡 ⋅ (𝐶1 + 𝐶2)

t . C = m . t + e (mod q)

►Homomorphic multiplication: C1 C2

t = [s || -1]

New (Secret-key) Encryption: Take 2

Ԧ𝑡 ⋅ (𝐶1 ⋅ 𝐶2) = 𝑚1 Ԧ𝑡 + Ԧ𝑒1 𝐶2

= 𝑚1 Ԧ𝑡𝐶2 + Ԧ𝑒1𝐶2

= 𝑚1 𝑚2 Ԧ𝑡 + Ԧ𝑒2 + Ԧ𝑒1𝐶2

Ԧ𝑒𝑚𝑢𝑙𝑡

Noise grows.
Need 𝑪𝟐 to be small!

How?!

Can also
use 𝐶2𝐶1

= 𝑚1𝑚2 Ԧ𝑡 + 𝑚1 Ԧ𝑒2 + Ԧ𝑒1𝐶2

Aside: Binary Decomposition
Break each entry in 𝐶 into its binary representation

𝐶 =
3 5
1 4

 (𝑚𝑜𝑑 8) 𝑏𝑖𝑡𝑠 𝐶 =

0
1
1

1
0
1

0
0
1

1
0
0

 (𝑚𝑜𝑑 8)⇒

Small entries like we wanted!

Consider the “reverse” operation:

4 2 1 0 0 0
0 0 0 4 2 1

⋅ 𝑏𝑖𝑡𝑠 𝐶 = 𝐶

𝐺

⇒ Ԧ𝑡 ⋅ 𝐶 = Ԧ𝑡 ⋅ 𝐺 ⋅ 𝐺−1(𝐶)

Denote: 𝐺−1 𝐶 which has “small” entries

𝑘

𝑘 log 𝑞

• Private-key Encryption of a bit 𝑚 ∈ {𝟎, 𝟏}:

• Private key: a vector s ∈ 𝒁𝒒
𝒏

Priv key Ciphertext matrix= Approx

Eigenvector

Message = Approx

“Eigenvalue”

(𝑨 is random (n+1) X n log q matrix)

• Decryption:

🙂 Still CPA-secure by LWE.

C =
𝑨

𝒔𝑨 + 𝒆
+ 𝑚 𝐺

[s || -1] C ≈ m [s || -1] G (mod q)

New (Secret-key) Encryption: Take 3

t . C = m . t . G + e (mod q)

►Homomorphic multiplication:

t = [s || -1]

New (Secret-key) Encryption: Take 3

𝐶𝑚𝑢𝑙𝑡 = 𝐶1 ⋅ 𝐺−1(𝐶2)

Ԧ𝑠 ⋅ 𝐶1 ⋅ 𝐺−1 𝐶2 = (Ԧ𝑒1 + 𝑚1 ⋅ Ԧ𝑠 ⋅ 𝐺) ⋅ 𝐺−1 𝐶2

= Ԧ𝑒1 ⋅ 𝐺−1 𝐶2 + 𝑚1 ⋅ Ԧ𝑠 ⋅ 𝐺 ⋅ 𝐺−1 𝐶2

= Ԧ𝑒1 ⋅ 𝐺−1 𝐶2 + 𝑚1 ⋅ Ԧ𝑠 ⋅ 𝐶2

= Ԧ𝑒1 ⋅ 𝐺−1 𝐶2 + 𝑚1 ⋅ (Ԧ𝑒2 + 𝑚2 ⋅ Ԧ𝑠 ⋅ 𝐺)

= Ԧ𝑒1 ⋅ 𝐺−1 𝐶2 + 𝑚1 ⋅ Ԧ𝑒2 + 𝑚1𝑚2 ⋅ Ԧ𝑠 ⋅ 𝐺

Ԧ𝑒𝑚𝑢𝑙𝑡 ≤ 𝑛 log 𝑞 ⋅ Ԧ𝑒1 + 𝑚1 ⋅ Ԧ𝑒2 ≤ 𝑛 log 𝑞 + 1 ⋅ max{ Ԧ𝑒1 , Ԧ𝑒2 }

Ԧ𝑒𝑚𝑢𝑙𝑡

Homomorphic Circuit Evaluation

Ԧ𝑒𝑜𝑢𝑡𝑝𝑢𝑡 ≤ 𝑁 + 1 𝑑 ⋅ 𝐵0 ≈ 𝑁𝑑𝐵0

Ԧ𝑒𝑖𝑛𝑝𝑢𝑡 ≤ 𝐵0Ԧ𝑒𝑖𝑛𝑝𝑢𝑡

Ԧ𝑒𝑜𝑢𝑡𝑝𝑢𝑡

Noise grows during homomorphic eval

Depth 𝑑

Ԧ𝑒𝑖+1 ≤ (𝑁 + 1) Ԧ𝑒𝑖

…

⇒ Decryptable if 𝑞 ≫ 𝑁𝑑𝐵0.

(for security: 𝑞 ≪ 2𝑛)

So this can support 𝒅 ≈ 𝒏𝟎.𝟗𝟗

𝐿𝑒𝑡 𝑁 = 𝑛 log 𝑞

Big Picture: Two Steps to FHE

Bootstrapping Theorem:

From “circular secure” Leveled FHE to Pure FHE

(at the cost of an additional assumption)

Leveled Secret-key Homomorphic Encryption:

Evaluate circuits of a-priori bounded depth d

“you give me a depth bound d, I will give you a homomorphic scheme that

handles depth-d circuits…”

“I will give you homomorphic scheme that handles circuits of ANY size/depth”

From Leveled to Fully Homomorphic

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(sk,x)

The cloud keeps homomorphically computing, but

after a certain depth, the ciphertext is too noisy to

be useful. What to do?

Idea: “Bootstrapping”!

Bootstrapping: How

“Best Possible” Noise Reduction = Decryption!

𝐷𝑒𝑐(∙, 𝐶𝑇)

SK

m

Decryption Circuit

“Very Noisy” ciphertext

“Noiseless ciphertext”

But the

evaluator/cloud

does not have SK!

Bootstrapping, Concretely

Next Best = Homomorphic Decryption!

EncSK(m)

EncSK(SK)

Assume server knows ek = EncSK(SK).

(OK assuming the scheme is “circular secure”)

*

𝐷𝑒𝑐(∙, 𝐶𝑇)

Bootstrapping, Concretely

Next Best = Homomorphic Decryption!

EncSK(m)

Assume server knows ek = EncSK(SK).

(OK assuming the scheme is “circular secure”)

*

Noise = Binput

Noise = Bdec

Bdec Independent of Binput

EncSK(SK)

𝐷𝑒𝑐(∙, 𝐶𝑇)

g

Assume Circular Security:

Wrap Up: Bootstrapping
Function f

Evaluation key is EncSK(SK)

g

Each Gate g → Gadget G:

g

Assume Circular Security:

𝐷𝑒𝑐(∙, 𝑐𝑎)

g

sk
a b

g(a,b)

sk

a b

g(a,b)

Wrap Up: Bootstrapping
Function f

Evaluation key is EncSK(SK)

𝐷𝑒𝑐(∙, 𝑐𝑏)

g

Each Gate g → Gadget G:

g

Assume Circular Security:

𝐷𝑒𝑐(∙, 𝑐𝑎)

g

a b

g(a,b)

Enc(sk)

a b

Enc(g(a,b))

Wrap Up: Bootstrapping
Function f

Evaluation key is EncSK(SK)

𝐷𝑒𝑐(∙, 𝑐𝑏)

Enc(sk)

Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

Subsequent Work: FHE in Practice

[Gentry-Halevi-Smart’12]: “FHE with Polylog Overhead”

Homomorphic computations “in place”.

SIMD computation + slot permutations (automorphisms)

𝑥1 𝑥2 𝑥3 𝑥𝑛…

𝑦1 𝑦2 𝑦3 𝑦𝑛…

“HELib”: The first homomorphic encryption library.

PALISADE TFHESEAL HEEAN FHEW

Concrete NFLLib Λ ∘ 𝜆 Lattigo cuFHE

Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

FHE Bounty #1:

We have “leveled” FHE from the LWE assumption

and “unbounded” FHE under a “circular secure” LWE assumption.

𝑠𝑘1 𝑠𝑘2

𝐸𝑛𝑐𝑝𝑘2
(𝑠𝑘1)

𝑠𝑘3

𝐸𝑛𝑐𝑝𝑘3
(𝑠𝑘2)

𝑠𝑘𝐿

𝐸𝑛𝑐𝑝𝑘𝐿
(𝑠𝑘𝐿−1)

…
𝐸𝑛𝑐𝑝𝑘4

(𝑠𝑘3)

𝑠𝑘

𝐸𝑛𝑐𝑝𝑘(𝑠𝑘)

Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

Partial Answer:

+ [JLS’22]: Unbounded FHE from LPN + PRG in NC0 + Bilinear maps.

[CLTV’15]: Unbounded FHE from indistinguishability obfuscation (IO).

(Unbounded) FHE from LWE.

FHE Bounty #1: Why Circular Security?

Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

FHE Bounty #2:

Why Lattices/LWE?

FHE from the Diffie-Hellman
assumption.

Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

FHE Bounty #3:
FHE ≈ as efficient as plaintext computation.

• Advances in Rate-1 FHE: FHE with ≈ 0 communication overhead

• Advances in Private Information Retrieval:
PIR with server computation ≈ 1 add + 1 mult per database byte*

[GH’19, BDGM’19]

[CHHV’22]

If you solve truly practical FHE,
you don’t need my $100(0). ☺

Unresolved Issue 1: Function Privacy

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(sk, f(x))

Enc(sk,x)

Security against the curious cloud = standard IND-

security of secret-key encryption

Security against a curious user?

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x)

Function Privacy: Enc(f(x)) reveals no more

information (about f) than f(x).

Unresolved Issue 1: Function Privacy

Function privacy via noise-flooding (on the board)

Unresolved Issue 2: Malicious Client

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x)

Idea: Use zero knowledge proofs.

Unresolved Issue 3: Malicious Cloud

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x)

Idea: “Succinct Interactive Proofs”. [Kilian92]

	Slide 1
	Slide 2: Complexity of the 2PC protocols
	Slide 3: Homomorphic Encryption
	Slide 4: Application 1. Secure Outsourcing
	Slide 5: Application 2. Secure Collaboration
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Aside: Binary Decomposition
	Slide 27
	Slide 28
	Slide 29: Homomorphic Circuit Evaluation
	Slide 30
	Slide 31
	Slide 32: Bootstrapping: How
	Slide 33: Bootstrapping, Concretely
	Slide 34: Bootstrapping, Concretely
	Slide 35: Wrap Up: Bootstrapping
	Slide 36: Wrap Up: Bootstrapping
	Slide 37: Wrap Up: Bootstrapping
	Slide 39: Subsequent Work: FHE in Practice
	Slide 40: FHE Bounty #1:
	Slide 41: FHE Bounty #1: Why Circular Security?
	Slide 42: FHE Bounty #2:
	Slide 43: FHE Bounty #3: FHE almost equal to as efficient as plaintext computation.
	Slide 44: Unresolved Issue 1: Function Privacy
	Slide 45: Unresolved Issue 1: Function Privacy
	Slide 46: Unresolved Issue 2: Malicious Client
	Slide 47: Unresolved Issue 3: Malicious Cloud

