
MIT 6.5620/6.875/18.425
Foundations of Cryptography

November 22, 2023

Lecture 21: Remote RAM
Computation

Elephant in the room:
I’m not Vinod

Today’s Setting: Computing on large data

Today’s Setting: Computing on large data

• Your goal: Run an algorithm on lots of data.

Today’s Setting: Computing on large data

• Your goal: Run an algorithm on lots of data.

• Problem: You don’t have enough storage (even to store
the data!)

Today’s Setting: Computing on large data

• Your goal: Run an algorithm on lots of data.

• Problem: You don’t have enough storage (even to store
the data!)

• Examples: file storage, medical study with many
patients, analytics on user data

Today’s Setting: Computing on large data

• Your goal: Run an algorithm on lots of data.

• Problem: You don’t have enough storage (even to store
the data!)

• Examples: file storage, medical study with many
patients, analytics on user data

• Common solution: Store your data and run
computation on a remote server.

Basic Setup

Basic Setup

User

Server

Basic Setup

User

Server

Data

Source

Basic Setup

User

Server

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Data

Source

Basic Setup

User

Server

𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Data

Source

Basic Setup

User

Server

𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)
𝗋𝖾𝖺𝖽(3)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Data

Source

Basic Setup

User

Server

𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)

𝖽𝖺𝗍𝖺
𝗋𝖾𝖺𝖽(3)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Data

Source

• Common solution: Run computation on a remote
server.

Trusting the Remote Server

• Common solution: Run computation on a remote
server.

Trusting the Remote Server

• Common solution: Run computation on a remote
server.

• Great!

Trusting the Remote Server

• Common solution: Run computation on a remote
server.

• Great!

• …right? Do you trust them?

Trusting the Remote Server

• Common solution: Run computation on a remote
server.

• Great!

• …right? Do you trust them?

• Why shouldn’t we trust the server?

Trusting the Remote Server

• Common solution: Run computation on a remote
server.

• Great!

• …right? Do you trust them?

• Why shouldn’t we trust the server?

• What are we trying to prevent?

Trusting the Remote Server

Trust Issue 1: Integrity

Trust Issue 1: Integrity
• What if an adversarial server corrupts your data?

Trust Issue 1: Integrity
• What if an adversarial server corrupts your data?

• Can we prevent adversary from erasing your data?

Trust Issue 1: Integrity
• What if an adversarial server corrupts your data?

• Can we prevent adversary from erasing your data?

• Unavoidable… but at least you can detect this.

Trust Issue 1: Integrity
• What if an adversarial server corrupts your data?

• Can we prevent adversary from erasing your data?

• Unavoidable… but at least you can detect this.

• Can we prevent adversary from modifying data
undetectably?

Trust Issue 1: Integrity
• What if an adversarial server corrupts your data?

• Can we prevent adversary from erasing your data?

• Unavoidable… but at least you can detect this.

• Can we prevent adversary from modifying data
undetectably?

• Yes! (At some cost – we’ll see.)

Trust Issue 2: Privacy (Obliviousness)

Trust Issue 2: Privacy (Obliviousness)
• What if the server wants to see your data?

Trust Issue 2: Privacy (Obliviousness)
• What if the server wants to see your data?

• Can we prevent a curious adversary from learning
anything about your data?

Trust Issue 2: Privacy (Obliviousness)
• What if the server wants to see your data?

• Can we prevent a curious adversary from learning
anything about your data?

• Yes! (At some cost – we’ll see.)

Trust Issue 2: Privacy (Obliviousness)
• What if the server wants to see your data?

• Can we prevent a curious adversary from learning
anything about your data?

• Yes! (At some cost – we’ll see.)

• (Adversary will learn length of computation / amount
of data, but that’s it.)

Trust Issue 3: Both simultaneously?

Trust Issue 3: Both simultaneously?
• What if the server tries tampering your data with the

goal of learning something about your data?

Trust Issue 3: Both simultaneously?
• What if the server tries tampering your data with the

goal of learning something about your data?

• This is subtle!

Trust Issue 3: Both simultaneously?
• What if the server tries tampering your data with the

goal of learning something about your data?

• This is subtle!

• Still doable! (At some cost – we’ll see if time permits.)

Solutions to These Issues: Terminology

Solutions to These Issues: Terminology

1. Integrity issue: Memory Checking [Blum et al. ’91]

Solutions to These Issues: Terminology

1. Integrity issue: Memory Checking

2. Privacy issue: (honest-but-curious) Oblivious RAM (ORAM)

[Goldreich ’87,
Ostrovsky ’90,
Goldreich-
Ostrovsky ‘96]

[Blum et al. ’91]

Solutions to These Issues: Terminology

1. Integrity issue: Memory Checking

2. Privacy issue: (honest-but-curious) Oblivious RAM (ORAM)

3. Privacy and integrity issue: Maliciously Secure ORAM

[Goldreich ’87,
Ostrovsky ’90,
Goldreich-
Ostrovsky ‘96]

[Blum et al. ’91]

Setup
User

Server

Data

Source

Setup
User Client

Server

Data

Source

Setup
User

𝗊𝗎𝖾𝗋𝗒
Client

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

Data

Source

Setup
User

𝗊𝗎𝖾𝗋𝗒
Client

̂𝗊𝗎𝖾𝗋𝗒

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

Data

Source

Setup
User

𝗊𝗎𝖾𝗋𝗒
Client

̂𝗊𝗎𝖾𝗋𝗒

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

Data

Source

Setup
User

𝗊𝗎𝖾𝗋𝗒
Client

̂𝗊𝗎𝖾𝗋𝗒

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

Data

Source

Setup
User

𝗊𝗎𝖾𝗋𝗒
Client

̂𝗊𝗎𝖾𝗋𝗒

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

Data

Source

Setup
User

𝗊𝗎𝖾𝗋𝗒
Client

̂𝗊𝗎𝖾𝗋𝗒

response

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

Data

Source

Setup

• (Ensuring integrity) Memory Checking: For any user queries and all PPT servers, the
responses to the user are correct.

User
𝗊𝗎𝖾𝗋𝗒

Client
̂𝗊𝗎𝖾𝗋𝗒

response

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

Data

Source

Abort

Setup

• (Ensuring integrity) Memory Checking: For any user queries and all PPT servers, the
responses to the user are correct.

• (Ensuring privacy) Obliviousness: For an honest server, compiled queries leak nothing
about the user queries (except for the number of queries):

User
𝗊𝗎𝖾𝗋𝗒

Client
̂𝗊𝗎𝖾𝗋𝗒

response

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

Data

Source

Setup

• (Ensuring integrity) Memory Checking: For any user queries and all PPT servers, the
responses to the user are correct.

• (Ensuring privacy) Obliviousness: For an honest server, compiled queries leak nothing
about the user queries (except for the number of queries):

User
𝗊𝗎𝖾𝗋𝗒

Client
̂𝗊𝗎𝖾𝗋𝗒

response

Server

{ ̂𝗊𝗎𝖾𝗋𝗒} ≈𝖼𝗈𝗆𝗉 𝖲𝗂𝗆 (1 ⃗𝗊𝗎𝖾𝗋𝗒)

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

Data

Source

Application: File Storage Platforms

User

Server

🧔

Application: File Storage Platforms

User

Server

🧔
𝗊𝗎𝖾𝗋𝗒

Client

response

💻

• Secure Hardware Enclaves (e.g., Intel SGX) allow users to execute programs
securely on untrusted remote servers.

Application: Secure Hardware Enclaves

User Intel SGX

Untrusted Server

• Secure Hardware Enclaves (e.g., Intel SGX) allow users to execute programs
securely on untrusted remote servers.

• Some enclaves have tiny internal space. Use untrusted memory within the server!

Application: Secure Hardware Enclaves

User Intel SGX

• Secure Hardware Enclaves (e.g., Intel SGX) allow users to execute programs
securely on untrusted remote servers.

• Some enclaves have tiny internal space. Use untrusted memory within the server!

Application: Secure Hardware Enclaves

User Intel SGX

• Secure Hardware Enclaves (e.g., Intel SGX) allow users to execute programs
securely on untrusted remote servers.

• Some enclaves have tiny internal space. Use untrusted memory within the server!

Application: Secure Hardware Enclaves

User Intel SGX
Client

• Secure Hardware Enclaves (e.g., Intel SGX) allow users to execute programs
securely on untrusted remote servers.

• Some enclaves have tiny internal space. Use untrusted memory within the server!

Application: Secure Hardware Enclaves

User Intel SGX

• Real World: Signal very recently implemented
ORAM for private contact discovery!

Client

Efficiency

Efficiency
Two main complexity measures:

Efficiency
Two main complexity measures:

1. Local Space: Amount of space the client can store locally (trusted &
private).

Efficiency
Two main complexity measures:

1. Local Space: Amount of space the client can store locally (trusted &
private).

• For a RAM with entries, space is trivial (can store the full RAM itself).N N

Efficiency
Two main complexity measures:

1. Local Space: Amount of space the client can store locally (trusted &
private).

• For a RAM with entries, space is trivial (can store the full RAM itself).N N

• For the rest of lecture, think space or .Nϵ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(N)

Efficiency

User
𝗊𝗎𝖾𝗋𝗒

Client
̂𝗊𝗎𝖾𝗋𝗒

response

Server

Local Space

Efficiency

User
𝗊𝗎𝖾𝗋𝗒

Client
̂𝗊𝗎𝖾𝗋𝗒

response

Server

2. Overhead: Number of queries made to the server per user query.

Efficiency

User
𝗊𝗎𝖾𝗋𝗒

Client
̂𝗊𝗎𝖾𝗋𝗒

response

ServerOverhead

2. Overhead: Number of queries made to the server per user query.

Efficiency

User
𝗊𝗎𝖾𝗋𝗒

Client
̂𝗊𝗎𝖾𝗋𝗒

response

ServerOverhead

2. Overhead: Number of queries made to the server per user query.

• We want this to be as small as possible!

What’s known

What’s known

• Memory checker with overhead.O (log N/log log N) [BEGKN ’91]
[PT ’12]

What’s known

• Memory checker with overhead.O (log N/log log N)
• Matching lower bound (unconditional!)

[BEGKN ’91]

[DNRV ’09] [BKV ’23]

[PT ’12]

What’s known

• Memory checker with overhead.O (log N/log log N)
• Matching lower bound (unconditional!)

• ORAM construction with overhead.O (log N)

[BEGKN ’91]

[DNRV ’09] [BKV ’23]

[AKLNPS ’20]

[PT ’12]

What’s known

• Memory checker with overhead.O (log N/log log N)
• Matching lower bound (unconditional!)

• ORAM construction with overhead.O (log N)
• Matching lower bound (unconditional!)

[BEGKN ’91]

[DNRV ’09] [BKV ’23]

[Goldreich ’87] [LN ’18]

[AKLNPS ’20]

[PT ’12]

Today

Today

• Today, we’ll see:

Today

• Today, we’ll see:

• Memory checker construction with overhead.O (log N)

Today

• Today, we’ll see:

• Memory checker construction with overhead.O (log N)

Merkle Trees - used
everywhere in cryptography!

Today

• Today, we’ll see:

• Memory checker construction with overhead.O (log N)
• ORAM construction with overhead.O (log2 N)

Merkle Trees - used
everywhere in cryptography!

Today

• Today, we’ll see:

• Memory checker construction with overhead.O (log N)
• ORAM construction with overhead.O (log2 N)

Merkle Trees - used
everywhere in cryptography!

Path ORAM
[SvDSHCFRYD ’12]

Memory Checking

Memory Checking

Wait, does authentication solve the integrity issue?

(e.g., MACs, digital signatures)

MACs for Memory Checking?

User
Server

Client

𝗄𝖾𝗒

MACs for Memory Checking?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗄𝖾𝗒

MACs for Memory Checking?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, (𝖽𝖺𝗍𝖺, σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗄𝖾𝗒

MACs for Memory Checking?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, (𝖽𝖺𝗍𝖺, σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)
𝗄𝖾𝗒

MACs for Memory Checking?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, (𝖽𝖺𝗍𝖺, σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)
𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)𝗄𝖾𝗒

MACs for Memory Checking?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, (𝖽𝖺𝗍𝖺, σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)
𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

(𝖽𝖺𝗍𝖺, σ)
𝗄𝖾𝗒

MACs for Memory Checking?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, (𝖽𝖺𝗍𝖺, σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)
𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

(𝖽𝖺𝗍𝖺, σ)

Abort if 𝖵𝖾𝗋𝗂𝖿𝗒𝗄𝖾𝗒 (σ, (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)) = 0

𝗄𝖾𝗒

MACs for Memory Checking?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, (𝖽𝖺𝗍𝖺, σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)
𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

(𝖽𝖺𝗍𝖺, σ)𝖽𝖺𝗍𝖺

Abort if 𝖵𝖾𝗋𝗂𝖿𝗒𝗄𝖾𝗒 (σ, (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)) = 0

𝗄𝖾𝗒

MACs for Memory Checking?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, (𝖽𝖺𝗍𝖺, σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)
𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

(𝖽𝖺𝗍𝖺, σ)𝖽𝖺𝗍𝖺

Abort if 𝖵𝖾𝗋𝗂𝖿𝗒𝗄𝖾𝗒 (σ, (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)) = 0

𝗄𝖾𝗒

Does this work? What does it prevent?

Replay Attacks

Replay Attacks
• MACs prevent all (efficient) adversarial attacks except for replay attacks.

Replay Attacks
• MACs prevent all (efficient) adversarial attacks except for replay attacks.

• Stale values of will still pass MAC verification check.(𝖽𝖺𝗍𝖺, σ)

Replay Attacks
• MACs prevent all (efficient) adversarial attacks except for replay attacks.

• Stale values of will still pass MAC verification check.(𝖽𝖺𝗍𝖺, σ)

• Natural idea: add counters/time-stamps inside MACs.

Replay Attacks
• MACs prevent all (efficient) adversarial attacks except for replay attacks.

• Stale values of will still pass MAC verification check.(𝖽𝖺𝗍𝖺, σ)

• Natural idea: add counters/time-stamps inside MACs.

• (Fatal) issue: No way to check counters/time-stamps in low space.

Merkle Trees

Merkle Trees
• Totally different approach.

Merkle Trees
• Totally different approach.

• How can we “compress” the memory and save that locally?

Merkle Trees
• Totally different approach.

• How can we “compress” the memory and save that locally?

• Natural idea: Collision-Resistant Hash Functions (CRHFs)

Merkle Trees
• Totally different approach.

• How can we “compress” the memory and save that locally?

• Natural idea: Collision-Resistant Hash Functions (CRHFs)

• Hope: Store hash locally, and check correctness of the hash.

Merkle Trees
• Totally different approach.

• How can we “compress” the memory and save that locally?

• Natural idea: Collision-Resistant Hash Functions (CRHFs)

• Hope: Store hash locally, and check correctness of the hash.

• Throughout, let be a CRHF with .H : {0,1}* → {0,1}λ λ ≪ N

Merkle Trees

Merkle Trees
• Option 1: For all , locally store .i ∈ [N] H(𝖽𝖺𝗍𝖺i)

Merkle Trees
• Option 1: For all , locally store .i ∈ [N] H(𝖽𝖺𝗍𝖺i)

• Reads and writes have overhead 1!

Merkle Trees
• Option 1: For all , locally store .i ∈ [N] H(𝖽𝖺𝗍𝖺i)

• Reads and writes have overhead 1!

• Local storage is smaller than database, but still . Ω(N)

Merkle Trees
• Option 1: For all , locally store .i ∈ [N] H(𝖽𝖺𝗍𝖺i)

• Reads and writes have overhead 1!

• Local storage is smaller than database, but still . Ω(N)

• Option 2: Locally store .H(𝖽𝖺𝗍𝖺1, ⋯, 𝖽𝖺𝗍𝖺N)

Merkle Trees
• Option 1: For all , locally store .i ∈ [N] H(𝖽𝖺𝗍𝖺i)

• Reads and writes have overhead 1!

• Local storage is smaller than database, but still . Ω(N)

• Option 2: Locally store .H(𝖽𝖺𝗍𝖺1, ⋯, 𝖽𝖺𝗍𝖺N)

• Local storage is now very small!

Merkle Trees
• Option 1: For all , locally store .i ∈ [N] H(𝖽𝖺𝗍𝖺i)

• Reads and writes have overhead 1!

• Local storage is smaller than database, but still . Ω(N)

• Option 2: Locally store .H(𝖽𝖺𝗍𝖺1, ⋯, 𝖽𝖺𝗍𝖺N)

• Local storage is now very small!

• Verifying reads and writes are expensive, overhead .Θ(N)

Merkle Trees
• Option 1: For all , locally store .i ∈ [N] H(𝖽𝖺𝗍𝖺i)

• Reads and writes have overhead 1!

• Local storage is smaller than database, but still . Ω(N)

• Option 2: Locally store .H(𝖽𝖺𝗍𝖺1, ⋯, 𝖽𝖺𝗍𝖺N)

• Local storage is now very small!

• Verifying reads and writes are expensive, overhead .Θ(N)

• Option 3: Trade off between the two options with a binary tree!

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺010 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

𝖽𝖺𝗍𝖺100

h10 := ⋯

𝖽𝖺𝗍𝖺101

(Here, = 8.)N

Store locally

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺010 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Read to address 010:

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺010 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Read to address 010:

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺010 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Read to address 010:

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺010 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Read to address 010:

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺010 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Read to address 010:

If all hashes to are consistent, return . Otherwise, abort.𝗋𝗈𝗈𝗍 𝖽𝖺𝗍𝖺010

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺′ 010 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Write to address 010:𝖽𝖺𝗍𝖺′ 010

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺′ 010 𝖽𝖺𝗍𝖺011

h′ 01 := H(𝖽𝖺𝗍𝖺′ 010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Write to address 010:𝖽𝖺𝗍𝖺′ 010

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺′ 010 𝖽𝖺𝗍𝖺011

h′ 01 := H(𝖽𝖺𝗍𝖺′ 010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h′ 0 := H (h00 | |h′ 01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Write to address 010:𝖽𝖺𝗍𝖺′ 010

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺′ 010 𝖽𝖺𝗍𝖺011

h′ 01 := H(𝖽𝖺𝗍𝖺′ 010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h′ 0 := H (h00 | |h′ 01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍′ := H (h′ 0 | |h1)

h11 := ⋯

Write to address 010:𝖽𝖺𝗍𝖺′ 010

Merkle Trees

• Efficiency analysis:

Merkle Trees

• Efficiency analysis:

• Query all nodes on path from leaf to root: .≈ log N

Merkle Trees

• Efficiency analysis:

• Query all nodes on path from leaf to root: .≈ log N

• Query all neighbors along the path: .≈ log N

Merkle Trees

• Efficiency analysis:

• Query all nodes on path from leaf to root: .≈ log N

• Query all neighbors along the path: .≈ log N

• Total Overhead: .≈ 2 log N

Merkle Trees

• Efficiency analysis:

• Query all nodes on path from leaf to root: .≈ log N

• Query all neighbors along the path: .≈ log N

• Total Overhead: .≈ 2 log N

• Local Space: Hash root and key (can both be made small).

Merkle Trees

• Security:

Merkle Trees

• Security:

• Suppose adversary cheats (undetectably forces wrong output on some read).

Merkle Trees

• Security:

• Suppose adversary cheats (undetectably forces wrong output on some read).

• Consider first, top-most entry that adversary gives wrong hash value.

Merkle Trees

• Security:

• Suppose adversary cheats (undetectably forces wrong output on some read).

• Consider first, top-most entry that adversary gives wrong hash value.

• Can’t be the root, because we store the root locally.

Merkle Trees

• Security:

• Suppose adversary cheats (undetectably forces wrong output on some read).

• Consider first, top-most entry that adversary gives wrong hash value.

• Can’t be the root, because we store the root locally.

• This will be a hash collision!

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺𝖡𝖺𝖽 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺𝖡𝖺𝖽 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Corrupted Read to address 010:

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺𝖡𝖺𝖽 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺𝖡𝖺𝖽 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Corrupted Read to address 010:

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺𝖡𝖺𝖽 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺𝖡𝖺𝖽 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Corrupted Read to address 010:

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺𝖡𝖺𝖽 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺𝖡𝖺𝖽 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Corrupted Read to address 010:

Merkle Trees

𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺𝖡𝖺𝖽 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺𝖡𝖺𝖽 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Corrupted Read to address 010:

This is a hash collision!

Merkle Trees

Merkle Trees
This is just one use case of Merkle trees. There’s more!

Merkle Trees
This is just one use case of Merkle trees. There’s more!

1. Succinct Argument System for NP (Merkle trees + PCP theorem).

Merkle Trees
This is just one use case of Merkle trees. There’s more!

1. Succinct Argument System for NP (Merkle trees + PCP theorem).

2. Trusted Hardware (e.g., Apple’s Secure Enclave).

Merkle Trees
This is just one use case of Merkle trees. There’s more!

1. Succinct Argument System for NP (Merkle trees + PCP theorem).

2. Trusted Hardware (e.g., Apple’s Secure Enclave).

3. Blockchains (e.g., bitcoin)!

Solving Privacy: Oblivious RAM

Oblivious RAM (Solving Privacy Issue)

Oblivious RAM (Solving Privacy Issue)

Wait, does encryption solve the privacy issue?

Encryption as ORAM?

User
Server

Client

𝗄𝖾𝗒

Encryption as ORAM?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗄𝖾𝗒

Encryption as ORAM?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗐𝗋𝗂𝗍𝖾 (𝖺𝖽𝖽𝗋, 𝖼𝗍 ← 𝖤𝗇𝖼𝗄𝖾𝗒(𝖽𝖺𝗍𝖺))

𝗄𝖾𝗒

Encryption as ORAM?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗐𝗋𝗂𝗍𝖾 (𝖺𝖽𝖽𝗋, 𝖼𝗍 ← 𝖤𝗇𝖼𝗄𝖾𝗒(𝖽𝖺𝗍𝖺))
𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝗄𝖾𝗒

Encryption as ORAM?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗐𝗋𝗂𝗍𝖾 (𝖺𝖽𝖽𝗋, 𝖼𝗍 ← 𝖤𝗇𝖼𝗄𝖾𝗒(𝖽𝖺𝗍𝖺))
𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)𝗄𝖾𝗒

Encryption as ORAM?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗐𝗋𝗂𝗍𝖾 (𝖺𝖽𝖽𝗋, 𝖼𝗍 ← 𝖤𝗇𝖼𝗄𝖾𝗒(𝖽𝖺𝗍𝖺))
𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝖼𝗍

𝗄𝖾𝗒

Encryption as ORAM?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗐𝗋𝗂𝗍𝖾 (𝖺𝖽𝖽𝗋, 𝖼𝗍 ← 𝖤𝗇𝖼𝗄𝖾𝗒(𝖽𝖺𝗍𝖺))
𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝖼𝗍
𝖽𝖺𝗍𝖺 ← 𝖣𝖾𝖼𝗄𝖾𝗒(𝖼𝗍)

𝗄𝖾𝗒

Encryption as ORAM?

User
Server

Client
𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺)

𝗐𝗋𝗂𝗍𝖾 (𝖺𝖽𝖽𝗋, 𝖼𝗍 ← 𝖤𝗇𝖼𝗄𝖾𝗒(𝖽𝖺𝗍𝖺))
𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝖼𝗍
𝖽𝖺𝗍𝖺 ← 𝖣𝖾𝖼𝗄𝖾𝗒(𝖼𝗍)

𝗄𝖾𝗒

Does this work?

No!

• This solution still reveals the access pattern of the user.

No!

• This solution still reveals the access pattern of the user.

• Server knows where the user is querying.

No!

• This solution still reveals the access pattern of the user.

• Server knows where the user is querying.

• This matters!

No!

• This solution still reveals the access pattern of the user.

• Server knows where the user is querying.

• This matters!

No!
Server

• This solution still reveals the access pattern of the user.

• Server knows where the user is querying.

• This matters!

No!
Server

Brain

Data

Kidney
Data

Heart
Data

Scientist

• This solution still reveals the access pattern of the user.

• Server knows where the user is querying.

• This matters!

No!
Server

Brain

Data

Kidney
Data

Heart
Data

Scientist

• This solution still reveals the access pattern of the user.

• Server knows where the user is querying.

• This matters!

No!
Server

Brain

Data

Kidney
Data

Heart
Data

Scientist

• This solution still reveals the access pattern of the user.

• Server knows where the user is querying.

• This matters!

No!
Server

Brain

Data

Kidney
Data

Heart
Data

Many patients
have heart issues!

Scientist

• This solution still reveals the access pattern of the user.

• Server knows where the user is querying.

• This matters!

No!
Server

Brain

Data

Kidney
Data

Heart
Data

Many patients
have heart issues!

Scientist

• Real world example:
Adversary looking at accesses
to encrypted email repository
can recover as much as 80%
of search queries [IKK ’12].

What about permuting addresses?

What about permuting addresses?
• Fine, but why not randomly shuffle the address space?

What about permuting addresses?
• Fine, but why not randomly shuffle the address space?

• Specifically, apply a (pseudorandom) permutation to address space and
encrypt?

What about permuting addresses?
• Fine, but why not randomly shuffle the address space?

• Specifically, apply a (pseudorandom) permutation to address space and
encrypt?

• What goes wrong?

What about permuting addresses?
• Fine, but why not randomly shuffle the address space?

• Specifically, apply a (pseudorandom) permutation to address space and
encrypt?

• What goes wrong?

• Reveals repeated queries!

What about permuting addresses?
• Fine, but why not randomly shuffle the address space?

• Specifically, apply a (pseudorandom) permutation to address space and
encrypt?

• What goes wrong?

• Reveals repeated queries!

• Idea: “freshly” randomize address space each time.

Path ORAM

Path ORAM
• Once again, we’ll use a binary tree.

Path ORAM
• Once again, we’ll use a binary tree.

• (Throughout, we’ll encrypt everything using secret-key encryption.)

Path ORAM
• Once again, we’ll use a binary tree.

• (Throughout, we’ll encrypt everything using secret-key encryption.)

• Each vertex of a binary tree will store a bucket of data “blocks”.O(1)

Path ORAM
• Once again, we’ll use a binary tree.

• (Throughout, we’ll encrypt everything using secret-key encryption.)

• Each vertex of a binary tree will store a bucket of data “blocks”.O(1)

• Let be a locally stored array containing ’s “assigned” leaf.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] 𝖺𝖽𝖽𝗋

Path ORAM
• Once again, we’ll use a binary tree.

• (Throughout, we’ll encrypt everything using secret-key encryption.)

• Each vertex of a binary tree will store a bucket of data “blocks”.O(1)

• Let be a locally stored array containing ’s “assigned” leaf.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] 𝖺𝖽𝖽𝗋

• This is local storage! Let’s not worry about it for now.Ω(N)

Path ORAM
• Once again, we’ll use a binary tree.

• (Throughout, we’ll encrypt everything using secret-key encryption.)

• Each vertex of a binary tree will store a bucket of data “blocks”.O(1)

• Let be a locally stored array containing ’s “assigned” leaf.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] 𝖺𝖽𝖽𝗋

• This is local storage! Let’s not worry about it for now.Ω(N)

• Each data block consists of .(𝖺𝖽𝖽𝗋, 𝗉𝗈𝗌[𝖺𝖽𝖽𝗋], 𝖽𝖺𝗍𝖺)

Path ORAM

(3, 𝖠, 𝖽𝖺𝗍𝖺3) (0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2)

𝖠 𝖡 𝖢 𝖣

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] A

Path ORAM

(3, 𝖠, 𝖽𝖺𝗍𝖺3) (0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2)

𝖠 𝖡 𝖢 𝖣

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}

A

Path ORAM

(3, 𝖠, 𝖽𝖺𝗍𝖺3) (0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2)

𝖠 𝖡 𝖢 𝖣

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
1. Look up locally.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

A

Path ORAM

(3, 𝖠, 𝖽𝖺𝗍𝖺3) (0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2)

𝖠 𝖡 𝖢 𝖣

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
1. Look up locally.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}
2. Read full path for leaf .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

A

Path ORAM

(3, 𝖠, 𝖽𝖺𝗍𝖺3) (0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2)

𝖠 𝖡 𝖢 𝖣

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
1. Look up locally.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}
2. Read full path for leaf .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
3. Randomly sample new value .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

A

Path ORAM

(3, 𝖠, 𝖽𝖺𝗍𝖺3) (0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2)

𝖠 𝖡 𝖢 𝖣

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
1. Look up locally.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}
2. Read full path for leaf .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
3. Randomly sample new value .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}
4. Push new (and other) data blocks down old path.

A

Path ORAM

(3, 𝖠, 𝖽𝖺𝗍𝖺3) (0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2)

𝖠 𝖡 𝖢 𝖣

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
1. Look up locally.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}
2. Read full path for leaf .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
3. Randomly sample new value .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}
4. Push new (and other) data blocks down old path.

Example: Read 𝖺𝖽𝖽𝗋 = 3

A

Path ORAM

(3, 𝖠, 𝖽𝖺𝗍𝖺3) (0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2)

𝖠 𝖡 𝖢 𝖣

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
1. Look up locally.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}
2. Read full path for leaf .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
3. Randomly sample new value .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}
4. Push new (and other) data blocks down old path.

Example: Read 𝖺𝖽𝖽𝗋 = 3
1. Look up locally.𝗉𝗈𝗌[3] = 𝖠

A

Path ORAM

(3, 𝖠, 𝖽𝖺𝗍𝖺3) (0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2)

𝖠 𝖡 𝖢 𝖣

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
1. Look up locally.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}
2. Read full path for leaf .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
3. Randomly sample new value .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}
4. Push new (and other) data blocks down old path.

Example: Read 𝖺𝖽𝖽𝗋 = 3
1. Look up locally.𝗉𝗈𝗌[3] = 𝖠
2. Read full path for leaf .𝖠

A

Path ORAM

(3, 𝖠, 𝖽𝖺𝗍𝖺3) (0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2)

𝖠 𝖡 𝖢 𝖣

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
1. Look up locally.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}
2. Read full path for leaf .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
3. Randomly sample new value .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}
4. Push new (and other) data blocks down old path.

Example: Read 𝖺𝖽𝖽𝗋 = 3
1. Look up locally.𝗉𝗈𝗌[3] = 𝖠
2. Read full path for leaf .𝖠
3. Set randomly, say .𝗉𝗈𝗌[3] ← {𝖠, 𝖡, 𝖢, 𝖣} 𝖡

B

Path ORAM

(3, 𝖠, 𝖽𝖺𝗍𝖺3) (0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2)

𝖠 𝖡 𝖢 𝖣

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
1. Look up locally.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}
2. Read full path for leaf .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
3. Randomly sample new value .𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}
4. Push new (and other) data blocks down old path.

Example: Read 𝖺𝖽𝖽𝗋 = 3
1. Look up locally.𝗉𝗈𝗌[3] = 𝖠
2. Read full path for leaf .𝖠
3. Set randomly, say .𝗉𝗈𝗌[3] ← {𝖠, 𝖡, 𝖢, 𝖣} 𝖡
4. Push new (and other) blocks down path.𝖠

B

Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2)

(Here, = 4.)N

(3, 𝖡, 𝖽𝖺𝗍𝖺3)
0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Example: Read
1. Look up locally.

2. Read full path for leaf .

3. Set randomly, say .

4. Push new (and other) blocks down path.

𝖺𝖽𝖽𝗋 = 3
𝗉𝗈𝗌[3] = 𝖠

𝖠
𝗉𝗈𝗌[3] ← {𝖠, 𝖡, 𝖢, 𝖣} 𝖡

𝖠

B

𝖠 𝖡 𝖢 𝖣

Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2) (3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Example: Read
1. Look up locally.

2. Read full path for leaf .

3. Set randomly, say .

4. Push new (and other) blocks down path.

𝖺𝖽𝖽𝗋 = 3
𝗉𝗈𝗌[3] = 𝖠

𝖠
𝗉𝗈𝗌[3] ← {𝖠, 𝖡, 𝖢, 𝖣} 𝖡

𝖠

B

𝖠 𝖡 𝖢 𝖣

Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2) (3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

𝖠 𝖡 𝖢 𝖣

B

Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2) (3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write with .𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2

𝖠 𝖡 𝖢 𝖣

B

Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2) (3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write with .𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
1. Look up locally.𝗉𝗈𝗌[2] = 𝖡

𝖠 𝖡 𝖢 𝖣

B

Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2) (3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write with .𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
1. Look up locally.𝗉𝗈𝗌[2] = 𝖡
2. Read full path for leaf .𝖡

𝖠 𝖡 𝖢 𝖣

B

Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2) (3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write with .𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
1. Look up locally.𝗉𝗈𝗌[2] = 𝖡
2. Read full path for leaf .𝖡
3. Set randomly, say .𝗉𝗈𝗌[2] ← {𝖠, 𝖡, 𝖢, 𝖣} 𝖢

𝖠 𝖡 𝖢 𝖣

C

Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2) (3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here, = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write with .𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
1. Look up locally.𝗉𝗈𝗌[2] = 𝖡
2. Read full path for leaf .𝖡
3. Set randomly, say .𝗉𝗈𝗌[2] ← {𝖠, 𝖡, 𝖢, 𝖣} 𝖢
4. Push new (and other) blocks down path.𝖡

𝖠 𝖡 𝖢 𝖣

C

Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here, = 4.)N

(2, 𝖢, 𝖽𝖺𝗍𝖺′ 2)
0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write with .
1. Look up locally.

2. Read full path for leaf .

3. Set randomly, say .

4. Push new (and other) blocks down path.

𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
𝗉𝗈𝗌[2] = 𝖡

𝖡
𝗉𝗈𝗌[2] ← {𝖠, 𝖡, 𝖢, 𝖣} 𝖢

𝖡

𝖠 𝖡 𝖢 𝖣

C

Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)(3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here, = 4.)N

(2, 𝖢, 𝖽𝖺𝗍𝖺′ 2)
0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write with .
1. Look up locally.

2. Read full path for leaf .

3. Set randomly, say .

4. Push new (and other) blocks down path.

𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
𝗉𝗈𝗌[2] = 𝖡

𝖡
𝗉𝗈𝗌[2] ← {𝖠, 𝖡, 𝖢, 𝖣} 𝖢

𝖡

𝖠 𝖡 𝖢 𝖣

C

Analysis

Analysis
• Overhead: !≈ log N

Analysis
• Overhead: !≈ log N

• Local space:

Analysis
• Overhead: !≈ log N

• Local space:

• Position map: bits…≈ N log N

Analysis
• Overhead: !≈ log N

• Local space:

• Position map: bits…≈ N log N

• If each was bits long, then we are compressing database by
factor of 2!

𝖽𝖺𝗍𝖺 ≈ 2 log N

Analysis
• Overhead: !≈ log N

• Local space:

• Position map: bits…≈ N log N

• If each was bits long, then we are compressing database by
factor of 2!

𝖽𝖺𝗍𝖺 ≈ 2 log N

• So: recurse! Will be become levels, giving overhead .log N log2(N)

Analysis
• Overhead: !≈ log N

• Local space:

• Position map: bits…≈ N log N

• If each was bits long, then we are compressing database by
factor of 2!

𝖽𝖺𝗍𝖺 ≈ 2 log N

• So: recurse! Will be become levels, giving overhead .log N log2(N)

• (Technicality: also need to store -sized stash to prevent bucket
overflow.)

ω(log N)

Security

Security
• Why is this oblivious?

Security
• Why is this oblivious?

• Every query, the lookup is to an independent, uniformly random leaf!

Security
• Why is this oblivious?

• Every query, the lookup is to an independent, uniformly random leaf!

• Everything else is hidden by encryption.

Path ORAM is Used in Practice!

Path ORAM is Used in Practice!
• Signal previously used linear scans (trivial overhead ORAM) for private

contact discovery.
N

Path ORAM is Used in Practice!
• Signal previously used linear scans (trivial overhead ORAM) for private

contact discovery.
N

• Recently, they switched to using path ORAM instead, and they have seen
a reduction from 500 servers to 6 servers!

Solving Privacy and Integrity
Simultaneously:

Maliciously Secure ORAM

Exercise

Show that Path ORAM is not maliciously secure, in the sense
that a tampering adversary can distinguish between different

user queries.

Solving Issue 3: Maliciously Secure ORAM

Solving Issue 3: Maliciously Secure ORAM

• Intuitively, memory checking seems to solve the issue of a tampering
adversary in ORAM. Combine them!

Solving Issue 3: Maliciously Secure ORAM

• Intuitively, memory checking seems to solve the issue of a tampering
adversary in ORAM. Combine them!

• Theorem: Honest-but-curious ORAM + MC = maliciously secure ORAM.

Solving Issue 3: Maliciously Secure ORAM

• Intuitively, memory checking seems to solve the issue of a tampering
adversary in ORAM. Combine them!

• Theorem: Honest-but-curious ORAM + MC = maliciously secure ORAM.
• Idea:

Solving Issue 3: Maliciously Secure ORAM

• Intuitively, memory checking seems to solve the issue of a tampering
adversary in ORAM. Combine them!

• Theorem: Honest-but-curious ORAM + MC = maliciously secure ORAM.
• Idea:

Abort

User

Server

MCORAM

Solving Issue 3: Maliciously Secure ORAM

• Intuitively, memory checking seems to solve the issue of a tampering
adversary in ORAM. Combine them!

• Theorem: Honest-but-curious ORAM + MC = maliciously secure ORAM.
• Idea:

Abort

User

Server

MCORAM

Mal. Secure ORAM

Solving Issue 3: Maliciously Secure ORAM

• Intuitively, memory checking seems to solve the issue of a tampering
adversary in ORAM. Combine them!

• Theorem: Honest-but-curious ORAM + MC = maliciously secure ORAM.
• Idea:

Abort

User

Server

MCORAM

Mal. Secure ORAM

Solving Issue 3: Maliciously Secure ORAM

• Great! But this isn’t efficient enough.

Solving Issue 3: Maliciously Secure ORAM

• Great! But this isn’t efficient enough.

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

Solving Issue 3: Maliciously Secure ORAM

• Great! But this isn’t efficient enough.

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

log2(N)

Solving Issue 3: Maliciously Secure ORAM

• Great! But this isn’t efficient enough.

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

log2(N) log N

Solving Issue 3: Maliciously Secure ORAM

• Great! But this isn’t efficient enough.

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

log2(N) log Nlog3(N)

Solving Issue 3: Maliciously Secure ORAM

• Great! But this isn’t efficient enough.

• Can we non-trivially combine the two constructions we saw?

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

log2(N) log Nlog3(N)

Yes!

Yes!
• They’re both trees! Do them both at the same time!

Yes!
• They’re both trees! Do them both at the same time!

• Specifically, for both constructions, each user query results in a lookup
of the path from the root to the tree.

Yes!
• They’re both trees! Do them both at the same time!

• Specifically, for both constructions, each user query results in a lookup
of the path from the root to the tree.

• Run Path ORAM, and store and compute hashes along the way.

Yes!
• They’re both trees! Do them both at the same time!

• Specifically, for both constructions, each user query results in a lookup
of the path from the root to the tree.

• Run Path ORAM, and store and compute hashes along the way.

• Result: Maliciously secure ORAM with overhead!O(log2 N)

Happy Thanksgiving!

