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Elephant in the room: 
I’m not Vinod
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Today’s Setting: Computing on large data

• Your goal: Run an algorithm on lots of data.

• Problem: You don’t have enough storage (even to store 
the data!)

• Examples: file storage, medical study with many 
patients, analytics on user data

• Common solution: Store your data and run 
computation on a remote server.
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• Common solution: Run computation on a remote 
server.

• Great!

• …right? Do you trust them?

• Why shouldn’t we trust the server?

• What are we trying to prevent?

Trusting the Remote Server
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Trust Issue 2: Privacy (Obliviousness)
• What if the server wants to see your data?

• Can we prevent a curious adversary from learning 
anything about your data?

• Yes! (At some cost – we’ll see.)

• (Adversary will learn length of computation / amount 
of data, but that’s it.)
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Trust Issue 3: Both simultaneously?
• What if the server tries tampering your data with the 

goal of learning something about your data?

• This is subtle!

• Still doable! (At some cost – we’ll see if time permits.)
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Solutions to These Issues: Terminology

1. Integrity issue: Memory Checking

2. Privacy issue: (honest-but-curious) Oblivious RAM (ORAM)

3. Privacy and integrity issue: Maliciously Secure ORAM

[Goldreich ’87, 
Ostrovsky ’90, 
Goldreich-
Ostrovsky ‘96]

[Blum et al. ’91]
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• (Ensuring integrity) Memory Checking: For any user queries and all PPT servers, the 
responses to the user are correct.

• (Ensuring privacy) Obliviousness: For an honest server, compiled queries leak nothing 
about the user queries (except for the number of queries):
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• Secure Hardware Enclaves (e.g., Intel SGX) allow users to execute programs 
securely on untrusted remote servers.

• Some enclaves have tiny internal space. Use untrusted memory within the server!

Application: Secure Hardware Enclaves

User Intel SGX

• Real World: Signal very recently implemented 
ORAM for private contact discovery!

Client



Efficiency



Efficiency
Two main complexity measures:



Efficiency
Two main complexity measures:

1. Local Space: Amount of space the client can store locally (trusted & 
private).



Efficiency
Two main complexity measures:

1. Local Space: Amount of space the client can store locally (trusted & 
private).

• For a RAM with  entries, space  is trivial (can store the full RAM itself).N N



Efficiency
Two main complexity measures:

1. Local Space: Amount of space the client can store locally (trusted & 
private).

• For a RAM with  entries, space  is trivial (can store the full RAM itself).N N

• For the rest of lecture, think space  or .Nϵ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(N)
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𝗊𝗎𝖾𝗋𝗒

Client
̂𝗊𝗎𝖾𝗋𝗒

response

ServerOverhead

2.  Overhead: Number of queries made to the server per user query.

• We want this to be as small as possible!
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What’s known

• Memory checker with  overhead.O (log N/log log N)
• Matching lower bound (unconditional!)

• ORAM construction with  overhead.O (log N)
• Matching lower bound (unconditional!)

[BEGKN ’91]

[DNRV ’09] [BKV ’23]

[Goldreich ’87] [LN ’18]

[AKLNPS ’20]

[PT ’12]
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Today

• Today, we’ll see:

• Memory checker construction with  overhead.O (log N)
• ORAM construction with  overhead.O (log2 N)

Merkle Trees - used 
everywhere in cryptography!

Path ORAM 
[SvDSHCFRYD ’12] 
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Wait, does authentication solve the integrity issue?

(e.g., MACs, digital signatures)
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Does this work? What does it prevent? 
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Replay Attacks
• MACs prevent all (efficient) adversarial attacks except for replay attacks.

• Stale values of  will still pass MAC verification check.(𝖽𝖺𝗍𝖺, σ)

• Natural idea: add counters/time-stamps inside MACs.

• (Fatal) issue: No way to check counters/time-stamps in low space.
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Merkle Trees
• Totally different approach.

• How can we “compress” the memory and save that locally?

• Natural idea: Collision-Resistant Hash Functions (CRHFs)

• Hope: Store hash locally, and check correctness of the hash.

• Throughout, let  be a CRHF with .H : {0,1}* → {0,1}λ λ ≪ N
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• Option 1: For all , locally store .i ∈ [N] H(𝖽𝖺𝗍𝖺i)

• Reads and writes have overhead 1!

• Local storage is smaller than database, but still . Ω(N)

• Option 2: Locally store .H(𝖽𝖺𝗍𝖺1, ⋯, 𝖽𝖺𝗍𝖺N)

• Local storage is now very small!

• Verifying reads and writes are expensive, overhead .Θ(N)

• Option 3: Trade off between the two options with a binary tree!
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𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺010 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

𝖽𝖺𝗍𝖺100

h10 := ⋯

𝖽𝖺𝗍𝖺101

(Here,  = 8.)N

Store locally
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𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺010 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Read to address 010:

If all hashes to  are consistent, return . Otherwise, abort.𝗋𝗈𝗈𝗍 𝖽𝖺𝗍𝖺010
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𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺′ 010 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Write  to address 010:𝖽𝖺𝗍𝖺′ 010
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𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001
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𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺′ 010 𝖽𝖺𝗍𝖺011

h′ 01 := H(𝖽𝖺𝗍𝖺′ 010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h′ 0 := H (h00 | |h′ 01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Write  to address 010:𝖽𝖺𝗍𝖺′ 010
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𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺′ 010 𝖽𝖺𝗍𝖺011

h′ 01 := H(𝖽𝖺𝗍𝖺′ 010 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h′ 0 := H (h00 | |h′ 01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍′ := H (h′ 0 | |h1)

h11 := ⋯

Write  to address 010:𝖽𝖺𝗍𝖺′ 010
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Merkle Trees

• Efficiency analysis:

• Query all nodes on path from leaf to root: .≈ log N

• Query all neighbors along the path: .≈ log N

• Total Overhead: .≈ 2 log N

• Local Space: Hash root and key (can both be made small).
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Merkle Trees

• Security:

• Suppose adversary cheats (undetectably forces wrong output on some read).

• Consider first, top-most entry that adversary gives wrong hash value.

• Can’t be the root, because we store the root locally.

• This will be a hash collision!
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𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺𝖡𝖺𝖽 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺𝖡𝖺𝖽 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Corrupted Read to address 010:
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𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Corrupted Read to address 010:
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𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Corrupted Read to address 010:
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𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)

𝖽𝖺𝗍𝖺𝖡𝖺𝖽 𝖽𝖺𝗍𝖺011

h01 := H(𝖽𝖺𝗍𝖺𝖡𝖺𝖽 | |𝖽𝖺𝗍𝖺011)

𝖽𝖺𝗍𝖺100 𝖽𝖺𝗍𝖺101

h10 := ⋯

𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111
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𝖽𝖺𝗍𝖺000 𝖽𝖺𝗍𝖺001

h00 := H(𝖽𝖺𝗍𝖺000 | |𝖽𝖺𝗍𝖺001)
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𝖽𝖺𝗍𝖺110 𝖽𝖺𝗍𝖺111

h0 := H (h00 | |h01) h1 := H (h10 | |h11)

𝗋𝗈𝗈𝗍 := H (h0 | |h1)

h11 := ⋯

Corrupted Read to address 010:

This is a hash collision!
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Merkle Trees
This is just one use case of Merkle trees. There’s more!

1. Succinct Argument System for NP (Merkle trees + PCP theorem).

2. Trusted Hardware (e.g., Apple’s Secure Enclave).

3. Blockchains (e.g., bitcoin)!
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Oblivious RAM (Solving Privacy Issue)

Wait, does encryption solve the privacy issue?
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• This solution still reveals the access pattern of the user.

• Server knows where the user is querying.

• This matters!

No!
Server

Brain

Data 

Kidney 
Data 

Heart 
Data 

Many patients 
have heart issues!

Scientist

• Real world example: 
Adversary looking at accesses 
to encrypted email repository 
can recover as much as 80% 
of search queries [IKK ’12].
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What about permuting addresses?
• Fine, but why not randomly shuffle the address space?

• Specifically, apply a (pseudorandom) permutation to address space and 
encrypt?

• What goes wrong?

• Reveals repeated queries!

• Idea: “freshly” randomize address space each time.
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• Once again, we’ll use a binary tree.

• (Throughout, we’ll encrypt everything using secret-key encryption.)

• Each vertex of a binary tree will store a bucket of  data “blocks”.O(1)

• Let  be a locally stored array containing ’s “assigned” leaf.𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] 𝖺𝖽𝖽𝗋
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2. Read full path for leaf .
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1. Look up  locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write  with .𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
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(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2) (3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here,  = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up  locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write  with .𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
1. Look up  locally.𝗉𝗈𝗌[2] = 𝖡

𝖠 𝖡 𝖢 𝖣
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Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2) (3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here,  = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up  locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write  with .𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
1. Look up  locally.𝗉𝗈𝗌[2] = 𝖡
2. Read full path for leaf .𝖡

𝖠 𝖡 𝖢 𝖣

B



Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2) (3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here,  = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up  locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write  with .𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
1. Look up  locally.𝗉𝗈𝗌[2] = 𝖡
2. Read full path for leaf .𝖡
3. Set  randomly, say .𝗉𝗈𝗌[2] ← {𝖠, 𝖡, 𝖢, 𝖣} 𝖢

𝖠 𝖡 𝖢 𝖣

C



Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(2, 𝖡, 𝖽𝖺𝗍𝖺2) (3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here,  = 4.)N

0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up  locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write  with .𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
1. Look up  locally.𝗉𝗈𝗌[2] = 𝖡
2. Read full path for leaf .𝖡
3. Set  randomly, say .𝗉𝗈𝗌[2] ← {𝖠, 𝖡, 𝖢, 𝖣} 𝖢
4. Push new (and other) blocks down  path.𝖡

𝖠 𝖡 𝖢 𝖣

C



Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)

(3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here,  = 4.)N

(2, 𝖢, 𝖽𝖺𝗍𝖺′ 2)
0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up  locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write  with . 
1. Look up  locally.

2. Read full path for leaf .

3. Set  randomly, say .

4. Push new (and other) blocks down  path.

𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
𝗉𝗈𝗌[2] = 𝖡

𝖡
𝗉𝗈𝗌[2] ← {𝖠, 𝖡, 𝖢, 𝖣} 𝖢

𝖡

𝖠 𝖡 𝖢 𝖣

C



Path ORAM

(0, 𝖡, 𝖽𝖺𝗍𝖺0) (1, 𝖢, 𝖽𝖺𝗍𝖺1)(3, 𝖡, 𝖽𝖺𝗍𝖺3)

(Here,  = 4.)N

(2, 𝖢, 𝖽𝖺𝗍𝖺′ 2)
0 1 2 3
B C B

𝖺𝖽𝖽𝗋

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]

On each query to :

1. Look up  locally.

2. Read full path for leaf .

3. Randomly sample new value .

4. Push new (and other) data blocks down old path.

𝖺𝖽𝖽𝗋 ∈ {0, 1, 2, 3}
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ∈ {𝖠, 𝖡, 𝖢, 𝖣}

𝗉𝗈𝗌[𝖺𝖽𝖽𝗋]
𝗉𝗈𝗌[𝖺𝖽𝖽𝗋] ← {𝖠, 𝖡, 𝖢, 𝖣}

Next Example: Write  with . 
1. Look up  locally.

2. Read full path for leaf .

3. Set  randomly, say .

4. Push new (and other) blocks down  path.

𝖺𝖽𝖽𝗋 = 2 𝖽𝖺𝗍𝖺′ 2
𝗉𝗈𝗌[2] = 𝖡

𝖡
𝗉𝗈𝗌[2] ← {𝖠, 𝖡, 𝖢, 𝖣} 𝖢

𝖡

𝖠 𝖡 𝖢 𝖣

C
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Analysis
• Overhead: !≈ log N

• Local space:

• Position map:  bits…≈ N log N

• If each  was  bits long, then we are compressing database by 
factor of 2!

𝖽𝖺𝗍𝖺 ≈ 2 log N

• So: recurse! Will be become  levels, giving overhead .log N log2(N)

• (Technicality: also need to store -sized stash to prevent bucket 
overflow.)

ω(log N)
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Security
• Why is this oblivious?

• Every query, the lookup is to an independent, uniformly random leaf!

• Everything else is hidden by encryption.



Path ORAM is Used in Practice!
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Path ORAM is Used in Practice!
• Signal previously used linear scans (trivial overhead  ORAM) for private 

contact discovery.
N

• Recently, they switched to using path ORAM instead, and they have seen 
a reduction from 500 servers to 6 servers!



Solving Privacy and Integrity 
Simultaneously: 

Maliciously Secure ORAM



Exercise

Show that Path ORAM is not maliciously secure, in the sense 
that a tampering adversary can distinguish between different 

user queries.
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• Intuitively, memory checking seems to solve the issue of a tampering 
adversary in ORAM. Combine them!

• Theorem: Honest-but-curious ORAM + MC = maliciously secure ORAM.
• Idea:

Abort
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Server

MCORAM
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Solving Issue 3: Maliciously Secure ORAM

• Great! But this isn’t efficient enough.

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

log2(N) log Nlog3(N)



Solving Issue 3: Maliciously Secure ORAM

• Great! But this isn’t efficient enough.

• Can we non-trivially combine the two constructions we saw?

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

log2(N) log Nlog3(N)
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Yes!
• They’re both trees! Do them both at the same time!

• Specifically, for both constructions, each user query results in a lookup 
of the path from the root to the tree.

• Run Path ORAM, and store and compute hashes along the way.

• Result: Maliciously secure ORAM with  overhead!O(log2 N)



Happy Thanksgiving!


