MIT 6.875

Foundations of Cryptography
Lecture 20



Security against Malicious (Active)
Adversaries



New (Less) Ideal Model




Secure Two-Party Comp: New Def
(possibly randomized) F(x,y;1r) = (Fa(x,y; 1), Fg(x,y; 1))

Input: x Input: y
L— &

Alice Bob

There exists a PPT simulator SIM, such that for any x
and y:

(SIM,(x, Fy(x, 7)), F(x,¥)) = (View,(x,y), F(x,¥))

l.e. the joint distribution of the view and the output is correct



Malicious Parties: Issues to Handle

1. Input (In)dependence: A malicious Alice could choose
her input to depend on Bob’s, something she cannot do in
the ideal world.

Example: F((a,b),x) = (L, ax + b)

2. Randomness: A malicious Bob could choose his
“‘random string” in the protocol the way she wants,
something she cannot do in the ideal world.

Example: our OT protocol
unavoidable

3. (Un)fairness: A malicious party could block the honest
party from learning the output, while learning it herself.

4. Deviate from Protocol Instructions.



The “GMW Compiler”

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming one-way functions exist, there is a general
way to transform any semi-honest secure protocol
computing a (possibly randomized) function F into a

maliciously secure protocol for F.



Input Independence

1. Input (In)dependence: A malicious party could choose
her input to depend on Bob’s, something she cannot do in
the ideal world.

Solution: Each party commits to their input in sequence,
and provides a zero-knowledge proof of knowledge of
the underlying input.




Solution: Coin-Tossing Protocol

2. Randomness: A malicious party could choose her
“random string” in the protocol the way she wants,
something she cannot do in the ideal world.

Def: Realize the functionality F(1™,1™) = (r, Com(r)).

il

Outputr =r; @ nry Output (Com(ry), 1)

Com(ry)

()




Zero Knowledge Proofs

4. Deviate from Other Protocol Instructions.

Solution: Each message of each party is a deterministic
function of their input, their random coins and messages
from party B.

When party A sends a message m = m(xy, 14, mMSgg), they
also prove in zero-knowledge that they did so correctly.
That is, they prove in ZK the following NP statement:

(m,msgg, XCom,RCom): I x,, 7y s.t.
m = m(xy, 14, msgg) AXCom = Com(xy) A
RCom = Com(ry)




Optimizations



Optimization 1: Preprocessing OTs

Random OT tuple (or AND tuple, or Beaver tuple
after D. Beaver): Alice has (a, y,) and Bob has

(f,ys) which are randoms.t. y, © vy, = ap.

Theorem: Given O(1) many random OT tuples, we
can do OT with information-theoretic security,
exchanging O(1) bits.



Optimization 2: OT Extension

Theorem
[Beaver’96, Ishai-Kushilevitz-Nissim-Pinkas’03]:

Given O(A) many random OT tuples, we can
generate n OT tuples exchanging O(n) bits --- as

opposed to the trivial O(nA) bits --- and using only
symmetric-key crypto.



Complexity of the 2-party solution

Number of OT protocol invocations = 2 * #AND gates
Can be made into O(#inputs - A): Yao’s garbled circuits

Number of rounds = AND-depth of the circuit

Can be made into O(1) rounds: Yao’s garbled circuits

Communication in bits =
O(#AND - A + #outputs)

Can be made into O(A #inputs) using FHE: but FHE is
computationally more expensive concretely.



O(1)-Round
Secure Two-Party Computation
(on the board)



