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Security against Malicious (Active)
Adversaries



New (Less) Ideal Model
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Secure Two-Party Comp: New Def

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀! such that for any 𝑥 
and 𝑦: 

(𝑆𝐼𝑀! 𝑥, 𝐹! 𝑥, 𝑦 , 𝐹(𝑥, 𝑦)) ≅ (𝑉𝑖𝑒𝑤!(𝑥, 𝑦), 𝐹(𝑥, 𝑦))

i.e. the joint distribution of the view and the output is correct

(possibly randomized) 𝐹 𝑥, 𝑦; 𝑟 = (𝐹! 𝑥, 𝑦; 𝑟 , 𝐹"(𝑥, 𝑦; 𝑟))



Malicious Parties: Issues to Handle
1. Input (In)dependence: A malicious Alice could choose 
her input to depend on Bob’s, something she cannot do in 
the ideal world.

2. Randomness: A malicious Bob could choose his 
“random string” in the protocol the way she wants, 
something she cannot do in the ideal world.

Example:  𝐹 𝑎, 𝑏 , 𝑥 = (⊥, 𝑎𝑥 + 𝑏)

Example:  our 𝑂𝑇 protocol

4. Deviate from Other Protocol Instructions.

3. (Un)fairness: A malicious party could block the honest 
party from learning the output, while learning it herself. 

unavoidable



The “GMW Compiler”

Theorem [Goldreich-Micali-Wigderson’87]: 
Assuming one-way functions exist, there is a general 
way to transform any semi-honest secure protocol 
computing a (possibly randomized) function F into a 
maliciously secure protocol for F. 



Input Independence

1. Input (In)dependence: A malicious party could choose 
her input to depend on Bob’s, something she cannot do in 
the ideal world.

Solution: Each party commits to their input in sequence, 
and provides a zero-knowledge proof of knowledge of 
the underlying input.



Solution: Coin-Tossing Protocol

2. Randomness: A malicious party could choose her 
“random string” in the protocol the way she wants, 
something she cannot do in the ideal world.

Def: Realize the functionality 𝐹 1", 1" = (𝑟, 𝐶𝑜𝑚(𝑟)).

𝐶𝑜𝑚(𝑟#)

𝑟$

Output 𝑟 = 𝑟#⊕ 𝑟$ Output (𝐶𝑜𝑚 𝑟# , 𝑟$)



Zero Knowledge Proofs

4. Deviate from Other Protocol Instructions.

Solution: Each message of each party is a deterministic 
function of their input, their random coins and messages 
from party B. 

When party A sends a message 𝑚 = 𝑚(𝑥!, 𝑟!, 𝑚𝑠𝑔%), they 
also prove in zero-knowledge that they did so correctly. 
That is, they prove in ZK the following NP statement:

𝑚,𝑚𝑠𝑔%, 𝑋𝐶𝑜𝑚, 𝑅𝐶𝑜𝑚 :	∃	𝑥!, 𝑟! s.t. 
        𝑚 = 𝑚 𝑥!, 𝑟!, 𝑚𝑠𝑔% 	∧ 𝑋𝐶𝑜𝑚 = Com 𝑥! ∧

𝑅𝐶𝑜𝑚 = Com 𝑟!



Optimizations



Optimization 1: Preprocessing OTs

Random OT tuple (or AND tuple, or Beaver tuple 
after D. Beaver): Alice has (𝛼, 𝛾!) and Bob has 
(𝛽, 𝛾") which are random s.t. 𝜸𝒂⊕𝜸𝒃 = 𝜶𝜷.

Theorem: Given O(1) many random OT tuples, we 
can do OT with information-theoretic security, 
exchanging O(1) bits.



Optimization 2: OT Extension

Theorem 
[Beaver’96, Ishai-Kushilevitz-Nissim-Pinkas’03]:
 
Given O(𝜆) many random OT tuples, we can 
generate 𝑛 OT tuples exchanging O(𝑛) bits --- as 
opposed to the trivial O(𝑛𝜆) bits --- and using only 
symmetric-key crypto. 



Complexity of the 2-party solution

Number of OT protocol invocations = 2	 ∗ 	#𝐴𝑁𝐷 gates  

Number of rounds =  AND-depth of the circuit

Communication in bits =  
𝑂(#𝐴𝑁𝐷 6 𝜆 + #𝑜𝑢𝑡𝑝𝑢𝑡𝑠)

Can be made into O(1) rounds: Yao’s garbled circuits

Can be made into O(𝝀 #inputs) using FHE: but FHE is 
computationally more expensive concretely.

Can be made into O(#inputs 6 𝝀): Yao’s garbled circuits



𝑶 𝟏 -Round
Secure Two-Party Computation

(on the board)


