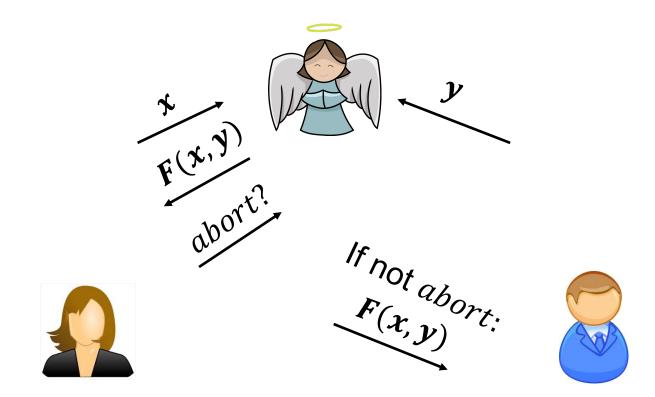
MIT 6.875

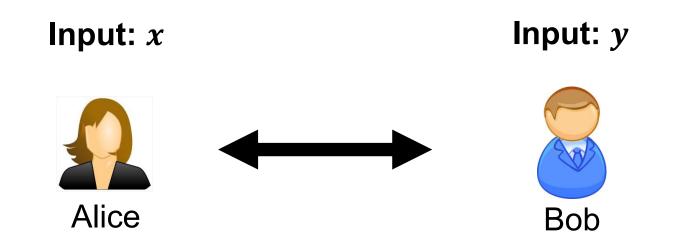
Foundations of Cryptography Lecture 20

Security against Malicious (Active) Adversaries

New (Less) Ideal Model



Secure Two-Party Comp: New Def (possibly randomized) $F(x, y; r) = (F_A(x, y; r), F_B(x, y; r))$



There exists a PPT simulator SIM_A such that for any x and y:

$$(SIM_A(x, F_A(x, y)), F(x, y)) \cong (View_A(x, y), F(x, y))$$

i.e. the joint distribution of the view and the output is correct

Malicious Parties: Issues to Handle

1. Input (In)dependence: A malicious Alice could choose her input to depend on Bob's, something she cannot do in the ideal world.

Example: $F((a,b),x) = (\bot, ax + b)$

2. Randomness: A malicious Bob could choose his "random string" in the protocol the way she wants, something she cannot do in the ideal world.

Example: our OT protocol

unavoidable

3. (Un)fairness: A malicious party could block the honest party from learning the output, while learning it herself.

4. Deviate from Protocol Instructions.

The "GMW Compiler"

Theorem [Goldreich-Micali-Wigderson'87]:

Assuming one-way functions exist, there is a general way to transform any semi-honest secure protocol computing a (possibly randomized) function F into a maliciously secure protocol for F.

Input Independence

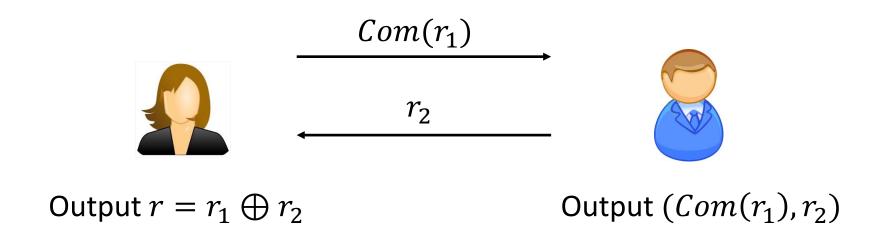
1. Input (In)dependence: A malicious party could choose her input to depend on Bob's, something she cannot do in the ideal world.

<u>Solution</u>: Each party commits to their input in sequence, and provides a **zero-knowledge proof of knowledge** of the underlying input.

Solution: Coin-Tossing Protocol

2. Randomness: A malicious party could choose her "random string" in the protocol the way she wants, something she cannot do in the ideal world.

<u>*Def:*</u> Realize the functionality $F(1^n, 1^n) = (r, Com(r))$.



Zero Knowledge Proofs

4. Deviate from Other Protocol Instructions.

<u>Solution</u>: Each message of each party is a *deterministic* function of their input, their random coins and messages from party B.

When party A sends a message $m = m(x_A, r_A, \overline{msg_B})$, they also prove in zero-knowledge that they did so correctly. That is, they prove in ZK the following NP statement:

$$\begin{array}{l} (m,\overline{msg_B},XCom,RCom)\colon\exists\ x_A,r_A\ \text{s.t.}\\ m=m(x_A,r_A,\overline{msg_B})\ \land\ XCom=\operatorname{Com}(x_A)\land\\ RCom=\operatorname{Com}(r_A) \end{array}$$

Optimizations

Optimization 1: Preprocessing OTs

Random OT tuple (or AND tuple, or Beaver tuple after D. Beaver): Alice has (α, γ_a) and Bob has (β, γ_b) which are random s.t. $\gamma_a \bigoplus \gamma_b = \alpha \beta$.

Theorem: Given O(1) many *random* OT tuples, we can do OT with information-theoretic security, exchanging O(1) bits.

Optimization 2: OT Extension

Theorem [Beaver'96, Ishai-Kushilevitz-Nissim-Pinkas'03]:

Given $O(\lambda)$ many *random* OT tuples, we can generate n OT tuples exchanging O(n) bits --- as opposed to the trivial $O(n\lambda)$ bits --- and using only symmetric-key crypto.

Complexity of the 2-party solution

Number of OT protocol invocations = 2 * #AND gates Can be made into O(#inputs $\cdot \lambda$): Yao's garbled circuits

Number of rounds = AND-depth of the circuit Can be made into O(1) rounds: Yao's garbled circuits

Communication in bits = $O(\#AND \cdot \lambda + \#outputs)$

Can be made into $O(\lambda \text{ #inputs})$ using FHE: but FHE is computationally more expensive concretely.

O(1)-Round Secure Two-Party Computation (on the board)