
MIT 6.875

Lecture 20
Foundations of Cryptography

Security against Malicious (Active)
Adversaries

New (Less) Ideal Model

𝒙 𝒚

𝑭(𝒙
, 𝒚)

𝑭(𝒙, 𝒚)

𝑎𝑏𝑜
𝑟𝑡?

If not 𝑎𝑏𝑜𝑟𝑡:

Secure Two-Party Comp: New Def

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀! such that for any 𝑥
and 𝑦:

(𝑆𝐼𝑀! 𝑥, 𝐹! 𝑥, 𝑦 , 𝐹(𝑥, 𝑦)) ≅ (𝑉𝑖𝑒𝑤!(𝑥, 𝑦), 𝐹(𝑥, 𝑦))

i.e. the joint distribution of the view and the output is correct

(possibly randomized) 𝐹 𝑥, 𝑦; 𝑟 = (𝐹! 𝑥, 𝑦; 𝑟 , 𝐹"(𝑥, 𝑦; 𝑟))

Malicious Parties: Issues to Handle
1. Input (In)dependence: A malicious Alice could choose
her input to depend on Bob’s, something she cannot do in
the ideal world.

2. Randomness: A malicious Bob could choose his
“random string” in the protocol the way she wants,
something she cannot do in the ideal world.

Example: 𝐹 𝑎, 𝑏 , 𝑥 = (⊥, 𝑎𝑥 + 𝑏)

Example: our 𝑂𝑇 protocol

4. Deviate from Other Protocol Instructions.

3. (Un)fairness: A malicious party could block the honest
party from learning the output, while learning it herself.

unavoidable

The “GMW Compiler”

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming one-way functions exist, there is a general
way to transform any semi-honest secure protocol
computing a (possibly randomized) function F into a
maliciously secure protocol for F.

Input Independence

1. Input (In)dependence: A malicious party could choose
her input to depend on Bob’s, something she cannot do in
the ideal world.

Solution: Each party commits to their input in sequence,
and provides a zero-knowledge proof of knowledge of
the underlying input.

Solution: Coin-Tossing Protocol

2. Randomness: A malicious party could choose her
“random string” in the protocol the way she wants,
something she cannot do in the ideal world.

Def: Realize the functionality 𝐹 1", 1" = (𝑟, 𝐶𝑜𝑚(𝑟)).

𝐶𝑜𝑚(𝑟#)

𝑟$

Output 𝑟 = 𝑟#⊕ 𝑟$ Output (𝐶𝑜𝑚 𝑟# , 𝑟$)

Zero Knowledge Proofs

4. Deviate from Other Protocol Instructions.

Solution: Each message of each party is a deterministic
function of their input, their random coins and messages
from party B.

When party A sends a message 𝑚 = 𝑚(𝑥!, 𝑟!, 𝑚𝑠𝑔%), they
also prove in zero-knowledge that they did so correctly.
That is, they prove in ZK the following NP statement:

𝑚,𝑚𝑠𝑔%, 𝑋𝐶𝑜𝑚, 𝑅𝐶𝑜𝑚 :	∃	𝑥!, 𝑟! s.t.
 𝑚 = 𝑚 𝑥!, 𝑟!, 𝑚𝑠𝑔% 	∧ 𝑋𝐶𝑜𝑚 = Com 𝑥! ∧

𝑅𝐶𝑜𝑚 = Com 𝑟!

Optimizations

Optimization 1: Preprocessing OTs

Random OT tuple (or AND tuple, or Beaver tuple
after D. Beaver): Alice has (𝛼, 𝛾!) and Bob has
(𝛽, 𝛾") which are random s.t. 𝜸𝒂⊕𝜸𝒃 = 𝜶𝜷.

Theorem: Given O(1) many random OT tuples, we
can do OT with information-theoretic security,
exchanging O(1) bits.

Optimization 2: OT Extension

Theorem
[Beaver’96, Ishai-Kushilevitz-Nissim-Pinkas’03]:

Given O(𝜆) many random OT tuples, we can
generate 𝑛 OT tuples exchanging O(𝑛) bits --- as
opposed to the trivial O(𝑛𝜆) bits --- and using only
symmetric-key crypto.

Complexity of the 2-party solution

Number of OT protocol invocations = 2	 ∗ 	#𝐴𝑁𝐷 gates

Number of rounds = AND-depth of the circuit

Communication in bits =
𝑂(#𝐴𝑁𝐷 6 𝜆 + #𝑜𝑢𝑡𝑝𝑢𝑡𝑠)

Can be made into O(1) rounds: Yao’s garbled circuits

Can be made into O(𝝀 #inputs) using FHE: but FHE is
computationally more expensive concretely.

Can be made into O(#inputs 6 𝝀): Yao’s garbled circuits

𝑶 𝟏 -Round
Secure Two-Party Computation

(on the board)

