MIT 6.875/6.5620/18.425

Foundations of Cryptography Lecture 2

Course website: https://mit6875.github.io/

Lecture 1 Recap

Secure Communication

- Alice and Bob have a common key k
- Algorithms (Gen, Enc, Dec).
- Correctness: $\operatorname{Dec}(k, E n c(k, m))=m$.
- Security: Perfect Secrecy = Perfect Indistinguishability.

How to Define Security

Perfect secrecy: A Posteriori $=$ A Priori

$$
\text { For all } m, c: \operatorname{Pr}[\mathcal{M}=m \mid E(\mathcal{K}, \mathcal{M})=c]=\operatorname{Pr}[\mathcal{M}=m]
$$

Perfect indistinguishability:

For all $m_{0}, m_{1}, c: \operatorname{Pr}\left[E\left(\mathcal{K}, m_{0}\right)=c\right]=\operatorname{Pr}\left[E\left(\mathcal{K}, m_{1}\right)=c\right]$

The two definitions are equivalent!

Is there a perfectly secure scheme?

- One-time Pad: $E(k, m)=k \oplus m$
- However: Keys are as long as Messages
- WORSE, Shannon's theorem: for any perfectly secure scheme, \mid key $|\geq|$ message \mid.

Can we overcome Shannon's conundrum?

Perfect Indistinguishability: a Turing test

For all $m_{0}, m_{1}, c: \operatorname{Pr}\left[E\left(\mathcal{K}, m_{0}\right)=c\right]=\operatorname{Pr}\left[E\left(\mathcal{K}, m_{1}\right)=c\right]$

$$
\begin{aligned}
& \text { World } \mathrm{O} \text { : } \\
& \mathrm{k} \leftarrow \mathcal{K} \\
& c=E\left(k, m_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { World l: } \\
& \mathrm{k} \leftarrow \mathcal{K} \\
& c=E\left(k, m_{1}\right)
\end{aligned}
$$

For all EVE and all $m_{0}, m_{1}: \operatorname{Pr}\left[E V E(c)=0 \mid k \leftarrow \mathcal{K} ; c=E\left(k, m_{0}\right)\right]$

$$
=\operatorname{Pr}\left[\operatorname{EVE}(c)=0 \mid k \leftarrow \mathcal{K} ; c=E\left(k, m_{1}\right)\right]
$$

Perfect Indistinguishability: a Turing test

For all $m_{0}, m_{1}, c: \operatorname{Pr}\left[E\left(\mathcal{K}, m_{0}\right)=c\right]=\operatorname{Pr}\left[E\left(\mathcal{K}, m_{1}\right)=c\right]$

$$
\begin{aligned}
& \text { World } \mathrm{O} \text { : } \\
& \mathrm{k} \leftarrow \mathcal{K} \\
& c=E\left(k, m_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { World l: } \\
& \mathrm{k} \leftarrow \mathcal{K} \\
& c=E\left(k, m_{1}\right)
\end{aligned}
$$

For all EVE and all $m_{0}, m_{1}: \operatorname{Pr}\left[k \leftarrow \mathcal{K} ; c=E\left(k, m_{0}\right): E V E(c)=0\right]$

$$
=\operatorname{Pr}\left[k \leftarrow \mathcal{K} ; c=E\left(k, m_{1}\right): E V E(c)=0\right]
$$

Perfect Indistinguishability: a Turing test

For all $m_{0}, m_{1}, c: \operatorname{Pr}\left[E\left(\mathcal{K}, m_{0}\right)=c\right]=\operatorname{Pr}\left[E\left(\mathcal{K}, m_{1}\right)=c\right]$

$$
\begin{aligned}
& \text { World } \mathrm{O} \text { : } \\
& \mathrm{k} \leftarrow \mathcal{K} \\
& c=E\left(k, m_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { World l: } \\
& \mathrm{k} \leftarrow \mathcal{K} \\
& c=E\left(k, m_{1}\right)
\end{aligned}
$$

For all EVE and all m_{0}, m_{1} :

$$
\operatorname{Pr}\left[k \leftarrow \mathcal{K} ; b \leftarrow\{0,1\} ; c=E\left(k, m_{b}\right): E V E(c)=b\right]=1 / 2
$$

The Key Idea:

Computationally Bounded Adversaries

Life
 The Axiom of AAodern Crypto-

Feasible Computation $=$ Probabilistic polynomial-time*
(p.p.t. = Probabilistic polynomial-time)
(polynomial in a security parameter n)

So, Alice and Bob are fixed p.p.t. algorithms. (e.g., run in time $n^{\wedge} 2$)

Eve is any p.p.t. algorithm.
(e.g., run in time $n^{\wedge} 4$, or $n^{\wedge} 100$, or $n^{\wedge} 10000$,...)

Computational Indistinguishability (take 1)

World O:
$\mathrm{k} \leftarrow \mathcal{K}$
$c=E\left(k, m_{0}\right)$

World 1:
$\mathrm{k} \leftarrow \mathcal{K}$
$c=E\left(k, m_{1}\right)$
is a p.p.t. distinguisher.
For all P.P.t. EVE and all m_{0}, m_{1} :

$$
\operatorname{Pr}\left[k \leftarrow \mathcal{K} ; b \leftarrow\{0,1\} ; c=E\left(k, m_{b}\right): E V E(c)=b\right]=1 / 2
$$

Still subject to Shannon's impossibility!

Consider Eve that picks a random key k and $\begin{array}{ll}\text { outputs } 0 \text { if } D(k, c)=m_{0} & \text { w. } \mathbf{p} \geq \mathbf{1} / \mathbf{2}^{\boldsymbol{n}} \\ \text { outputs } 1 \text { if } D(k, c)=m_{1} & \text { w. } \mathbf{p}=\mathbf{0}\end{array}$ and a random bit if neither holds.

Bottomline: $\operatorname{Pr}[E V E$ succeeds $] \geq 1 / 2+1 / 2^{n}$

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function $\mu: \mathbb{N} \rightarrow \mathbb{R}$ is negligible if for every polynomial function p, there exists an n_{0} s.t.
for all $n>n_{0}$:
$\mu(n)<1 / p(n)$

Key property: Events that occur with negligible probability look to poly-time algorithms like they never occur.

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function $\mu: \mathbb{N} \rightarrow \mathbb{R}$ is negligible if for every polynomial function p, there exists an n_{0} s.t.
for all $n>n_{0}$:
$\mu(n)<1 / p(n)$

Question: Let $\mu(n)=1 / n^{\log n}$. Is μ negligible?

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function $\mu: \mathbb{N} \rightarrow \mathbb{R}$ is negligible if for every polynomial function p, there exists an n_{0} s.t.
for all $n>n_{0}$:
$\mu(n)<1 / p(n)$

Question: Let $\mu(n)=1 / n^{100}$ if n is prime and $\mu(n)=1 / 2^{n}$ otherwise. Is μ negligible?

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function $\mu: \mathbb{N} \rightarrow \mathbb{R}$ is negligible if for every polynomial function p,
there exists an n_{0} s.t.
for all $n>n_{0}$:
$\mu(n)<1 / p(n)$

Question (PS1) Let $\boldsymbol{\mu}(\boldsymbol{n})$ be a negligible function and $\mathbf{q}(\boldsymbol{n})$ a polynomial function. Is $\boldsymbol{\mu}(\boldsymbol{n}) \boldsymbol{q}(\boldsymbol{n})$ a negligible function?

Security Parameter: \boldsymbol{n} (sometimes λ)

Definition: A function $\mu: \mathbb{N} \rightarrow \mathbb{R}$ is negligible if for every polynomial function p, there exists an n_{0} s.t. for all $n>n_{0}$:
$\mu(\mathrm{n})<1 / \mathrm{p}(\mathrm{n})$

- Runtimes \& success probabilities are measured as a function of n.
- Want: Honest parties run in time (fixed) polynomial in n.
- Allow: Adversaries to run in time (arbitrary) polynomial in n,
- Require: adversaries to have success probability negligible in n.

Computational Indistinguishability (take 2)

World 0:
$\mathrm{k} \leftarrow \mathcal{K}$
$c=E\left(k, m_{0}\right)$

World 1:
$\mathrm{k} \leftarrow \mathcal{K}$
$c=E\left(k, m_{1}\right)$
is a distinguisher.
For all P.P.t. EVE, there is a negligible function μ s.t. for all m_{0}, m_{1} :

$$
\operatorname{Pr}\left[k \leftarrow K ; b \leftarrow\{0,1\} ; c=E\left(k, m_{b}\right): E V E(c)=b\right] \leq \frac{1}{2}+\mu(n)
$$

Our First Crypto Tool: Pseudorandom Generators (PRG)

Pseudo-random Generators

Informally: Deterministic Programs that stretch a "truly random" seed into a (much) longer sequence of "seemingly random" bits.

How to define "seemingly random"?
Can such a G exist?

How to Define a Strong Pseudo Random Number Generator?

Def 1 [Indistinguishability]

"No polynomial-time algorithm can distinguish r 'ween the output of a PRG on a random seed vs. a truly randor \mathbf{N}. ${ }^{\prime \prime}$ = "as good as" a truly random string for _cical purposes.

Def 2 [Next-bit Unpredictab; "No polynomial-time als $D^{\text {c }}$. can predict the $(i+1)^{\text {th }}$ bit of the output of a PRG give ${ }^{2}$.rst i bits, better than chance"

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function $\mathrm{G}:\{0,1\}^{\mathrm{n}} \rightarrow$ $\{0,1\}^{\mathrm{m}}$ is a PRG if:
(a) It is expanding: $\mathrm{m}>\mathrm{n}$ and
(b) for every PPT algorithm D (called a distinguisher or a statistical test) if there is a negligible function μ such that:

$$
\left|\operatorname{Pr}\left[\boldsymbol{D}\left(\boldsymbol{G}\left(\boldsymbol{U}_{n}\right)\right)=\mathbf{1}\right]-\operatorname{Pr}\left[\boldsymbol{D}\left(\boldsymbol{U}_{m}\right)=\mathbf{1}\right]\right|=\boldsymbol{\mu}(\boldsymbol{n})
$$

Notation: U_{n} (resp. U_{m}) denotes the random distribution on n-bit (resp. m-bit) strings; m is shorthand for $m(n)$.

PRG Def 1: Indistinguishability

WORLD 1:

The Pseudorandom World

$$
y \leftarrow G\left(U_{n}\right)
$$

WORLD 2:
The Truly Random World
$y \leftarrow U_{m}$

PPT Distinguisher gets y but cannot tell which world she is in

Why is this a good definition

Good for all Applications:

As long as we can find truly random seeds, can replace true randomness by the output of PRG(seed) in ANY (polynomial-time) application.

If the application behaves differently, then it constitutes a (polynomial-time) statistical test between PRG(seed) and a truly random string.

PRG \Longrightarrow Overcoming Shannon's Conundrum

 (or, How to Encrypt $n+1$ bits using an n-bit key)$\operatorname{Gen}\left(1^{n}\right)$: Generate a random n-bit key k .
$\operatorname{Enc}(k, m)$ where m is an $(\mathrm{n}+1)$-bit message:
Expand k into a $(\mathrm{n}+1)$-bit pseudorandom string $\mathrm{k}^{\prime}=G(\mathrm{k})$
One-time pad with k^{\prime} : ciphertext is $k^{\prime} \oplus m$
$\operatorname{Dec}(k, c)$ outputs $\mathrm{G}(k) \oplus c$

Correctness:
$\operatorname{Dec}(k, c)$ outputs $\mathrm{G}(k) \oplus c=\mathrm{G}(k) \oplus G(k) \oplus \mathrm{m}=\mathrm{m}$

PRG \Rightarrow Overcoming Shannon's Conundrum

Security: your first reduction!

Suppose for contradiction that there is a p.p.t. EVE, a polynomial function p and m_{0}, m_{1} s.t.

$$
\operatorname{Pr}\left[k \leftarrow \mathcal{K} ; b \leftarrow\{0,1\} ; c=E\left(k, m_{b}\right): E V E(c)=b\right] \geq \frac{1}{2}+1 / p(n)
$$

PRG \Longrightarrow Overcoming Shannon's Conundrum

Security: your first reduction!

Suppose for contradiction that there is a p.p.t. EVE, a polynomial function p and m_{0}, m_{1} s.t.

$$
\begin{aligned}
& \rho=\operatorname{Pr}\left[k \leftarrow\{0,1\}^{n} ; b \leftarrow\{0,1\} ; c=G(k) \oplus m_{b}: E V E(c)=b\right] \\
& \geq \frac{1}{2}+1 / p(n) \\
& \text { Let } \rho^{\prime}=\operatorname{Pr}\left[k^{\prime} \leftarrow\{0,1\}^{n+1} ; b \leftarrow\{0,1\} ; c=k^{\prime} \oplus m_{b}: E V E(c)=b\right] \\
& \quad=\frac{1}{2}
\end{aligned}
$$

This will give us a distinguisher EVE' for G , contradicting the assumption that G is a pseudorandom generator. QED.

PRG \Rightarrow Overcoming Shannon's Conundrum

Distinguisher EVE' for G.

Get as input a string y , run $\mathrm{EVE}\left(\mathrm{y} \oplus m_{b}\right)$ for a random b , and let EVE's output be b '. Output "PRG" if $\mathrm{b}=\mathrm{b}$ ' and "RANDOM" otherwise.

$$
\begin{aligned}
& \operatorname{Pr}\left[E V E^{\prime} \text { outputs " } P R G^{\prime} \mid y \text { is pseudorandom }\right] \\
& \quad=\rho \geq \frac{1}{2}+1 / p(n) \\
& \operatorname{Pr}\left[E V E^{\prime} \text { outputs " } P R G^{\prime \prime} \mid y \text { is random }\right]=\rho^{\prime}=\frac{1}{2}
\end{aligned}
$$

Therefore, $\operatorname{Pr}\left[E V E^{\prime}\right.$ outputs " $P R G$ " \mid y is pseudorandom $]$ -

$$
\begin{gathered}
\operatorname{Pr}\left[E V E^{\prime} \text { outputs "PRG" } \mid y \text { is random }\right] \\
\geq 1 / p(n)
\end{gathered}
$$

PRG \Longrightarrow Overcoming Shannon's Conundrum

 (or, How to Encrypt $n+1$ bits using an n-bit key)Q1: Do PRGs exist?
(Exercise: If $\mathrm{P}=\mathrm{NP}, \mathrm{PRGs}$ do not exist.)

Q2: How do we encrypt longer messages or many messages with a fixed key?
(Length extension: If there is a PRG that stretches by one bit, there is one that stretches by polynomially many bits)
(Pseudorandom functions: PRGs with exponentially large stretch and "random access" to the output.)

Q1: Do PRGs exist?

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. "appropriately chosen functions composed appropriately many times look random")

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework (e.g. "appropriately chosen functions composed appropriately many times look random")
2. Come up with a candidate construction

Rijndael
(now the Advanced
Encryption Standard)

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. "appropriately chosen functions composed appropriately many times look random")
2. Come up with a candidate construction
3. Do extensive cryptanalysis.

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)
Reduce to simpler primitives.
"Science wins either way" -Silvio Micali

well-studied, average-case hard, problems

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

A PRG Candidate from the average-case hardness of Subset-sum:

$$
\begin{aligned}
& \mathrm{G}\left(a_{1}, \ldots, a_{n}, x_{1}, \ldots, x_{n}\right)=\left(a_{1}, \ldots, a_{n}, \sum_{i=1}^{n} x_{i} a_{i} \bmod 2^{n+1}\right) \\
& \text { where } a_{i} \text { are random }(\mathrm{n}+1) \text {-bit numbers, and } x_{i} \text { are } \\
& \text { random bits. }
\end{aligned}
$$

Beautiful Function:

If G is a one-way function, then G is a PRG.
If lattice problems are hard on the worst-case, G is a PRG.

Pseudorandom Generators and (T)CS

Randomness is a Fundamental Resource

Simulation/Sampling/MCMC
Distributed Computing
Probabilistic Algorithms
Cryptography

Where do we get random bits from?

1) Specialized Hardware: e.g., Transistor noise.
2) User Input: Every time random number used, user is queried.
3) Quantumness (not for much of this class)

Usually biased, but can "extract" unbiased bits assuming the source has "some structure and enough entropy" [randomness extraction: von Neumann,...]

BUT: True randomness is an expensive commodity.

Application of PRGs: De-randomization

- Recall: L \in BPP implies \exists poly-time algorithm M

$$
\begin{aligned}
& x \in L \Longrightarrow \operatorname{Pr}_{\text {coins } y}[M(x, y) \text { accepts }]>2 / 3 \\
& x \notin L \Longrightarrow \operatorname{Pr}_{\text {coins } y}[M(x, y) \text { accepts }]<1 / 3
\end{aligned}
$$

- Use a PRG to generate the m random bits y :

Application of PRGs: De-randomization

Theorem: if PRGs exist, then $B P P \subseteq \cap_{\varepsilon>0} \operatorname{TIME}\left(2^{m^{\varepsilon}}\right)$.

(in English) if PRGs exist, then every randomized poly-time algorithm can be simulated in deterministic sub-exponential time.

Proof Sketch: use PRG that expands from $n=m^{\varepsilon}$ bits to m bits.

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}_{\text {seed } y}[M(x, G(y)) \text { accepts }]>\frac{2}{3}-\mu(n) \\
& x \notin L \Rightarrow \operatorname{Pr}_{\text {seed } y}[M(x, G(y)) \text { accepts }]<\frac{1}{3}+\mu(n)
\end{aligned}
$$

Why? If the above is not true, M is a distinguisher for the PRG!
Note: M is a (known, fixed, fixed poly-time) distinguisher.

Application of PRGs: De-randomization

Theorem: if PRGs exist, then $B P P \subseteq \cap_{\varepsilon>0} \operatorname{TIME}\left(2^{m^{\varepsilon}}\right)$.

(in English) if PRGs exist, then every randomized poly-time algorithm can be simulated in deterministic sub-exponential time.

Proof Sketch: use PRG that expands from $n=m^{\varepsilon}$ bits to m bits.

$$
\begin{aligned}
& x \in L \Rightarrow \text { \#seed } y: M(x, G(y)) \text { accepts }>0.65 * 2^{n}=0.65 * 2^{m^{\varepsilon}} \\
& x \notin L \Rightarrow \text { \#seed } y: M(x, G(y)) \text { accepts }<0.35 * 2^{n}=0.35 * 2^{m^{\varepsilon}}
\end{aligned}
$$

Here is the deterministic algorithm: enumerate over all seeds y and run $M(x, G(y))$. If \#accepts $>0.65 * 2^{m^{\varepsilon}}$, accept else reject.

Application of PRGs: De-randomization

Theorem: if "exponentially secure" PRGs exist, then $B P P=P$.

Proof Sketch:

Use a PRG that expands from $n=O(\log m)$ bits to m bits that are indistinguishable not just by poly (n)-time algorithms but also by $2^{c_{1} n}=m^{c_{2}}$ - time algorithms (for some $c_{1}<1$).

The previous proof goes through mutatis mutandis, using crucially the fact that the randomized algorithm (adversary for us) runs in fixed polynomial-time.

Next Lecture:

Q2: How do we encrypt longer messages or many messages with a fixed key?

1. PRG length extension,
2. Pseudorandom functions (PRF) and PRG $\Longrightarrow P R F$
