MIT 6.875

Foundations of Cryptography Lecture 19

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves any two-party computation problem against semi-honest adversaries.

Two-Party Impossibility

Theorem (folklore):
There is no perfectly / statistically secure twoparty protocol for computing the AND function.

Impossibility of 2-Party Secure MPC (due to Rotem Oshman)

- Alice: $a \in\{0,1\}$, Bob: $b \in\{0,1\}$
- Goal: compute $a \wedge b$
- No information-theoretically secure implementation!
- Fix any protocol Π
- Let $\pi_{a, b}(\tau)=$ probability of transcript τ on input a, b
- w.l.o.g, the transcript contains $a \wedge b$

Impossibility of 2-Party Secure MPC

- Claim: $\pi_{a, b}(\tau)=A(a, \tau) \cdot B(b, \tau)$ for some A, B
- Proof:

$$
\pi_{a, b}(\tau)=\prod_{r=1}^{R} \operatorname{Pr}\left[\tau_{r} \text { is sent } \mid \tau_{r-1}, \ldots, \tau_{1}, a, b\right]
$$

$$
=\left(\prod_{r: \text { Alice speaks }} \operatorname{Pr}\left[\tau_{r} \text { is sent } \mid \tau_{r-1}, \ldots, \tau_{1}, a, \not \not \notin\right]\right) A(\tau, a)
$$

$$
\cdot\left(\prod_{r: \text { Bob speaks }} \operatorname{Pr}\left[\tau_{r} \text { is sent } \mid \tau_{r-1}, \ldots, \tau_{1}, a, b\right]\right) B(\tau, b)
$$

Impossibility of 2-Party Secure MPC

- Claim: $\pi_{a, b}(\tau)=A(a, \tau) \cdot B(b, \tau)$ for some A, B
- From (perfect) security: for every τ,

$$
\begin{gathered}
\pi_{1,0}(\tau)=\pi_{0,0}(\tau)=\pi_{0,1}(\tau) \\
A(1, \tau) B(0, \tau)=A(0, \tau) B(0, \tau)=A(0, \tau) B(1, \tau) \\
A(0, \tau)=A(1, \tau) \text { and } B(0, \tau)=B(1, \tau)
\end{gathered}
$$

- But then,

$$
\pi_{1,1}(\tau)=A(1, \tau) B(1, \tau)=A(0, \tau) B(0, \tau)=\pi_{0,0}(\tau)
$$

The protocol is incorrect!

Extend to statistical security?

Exercise.

Where to Go From Here?

- Option 1: reduce the number of corrupt parties
- Option 2: introduce cryptographic assumptions

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves any two-party computation problem against semi-honest adversaries.

How to Compute Arbitrary Functions

For us, programs $=$ functions $=$ Boolean circuits with XOR $(+\bmod 2)$ and AND $(\times \bmod 2)$ gates.

Want: If you can compute XOR and AND in the appropriate sense, you can compute everything.

Recap: OT \Rightarrow Secret-Shared-AND

Alice gets random γ, Bob gets
random δ s.t. $\gamma \oplus \delta=\mathrm{ab}$.

Output: γ

$$
\begin{array}{|c|}
x_{0}=\gamma \\
\hline x_{1}=a \oplus \gamma \\
\hline
\end{array}
$$

Choice bit b

Alice outputs γ.
Bob gets $x_{1} b+x_{0}(\mathbf{1} \oplus b)=\left(x_{1} \oplus x_{0}\right) b+x_{0}=a b \oplus \gamma:=\delta$

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

AND gate??
XOR gate:

Base Case: Input wires

Recap: XOR gate

Alice has α and Bob has β s.t.

$$
\alpha \oplus \beta=x
$$

Alice has α^{\prime} and Bob has β^{\prime} s.t.

$$
\alpha^{\prime} \oplus \beta^{\prime}=x^{\prime}
$$

Alice computes $\boldsymbol{\alpha} \oplus \boldsymbol{\alpha}^{\prime}$ and Bob computes $\boldsymbol{\beta} \oplus \boldsymbol{\beta}^{\prime}$.
So, we have: $\left(\alpha \oplus \alpha^{\prime}\right) \oplus\left(\beta \oplus \beta^{\prime}\right)$

$$
=(\alpha \oplus \beta) \oplus\left(\alpha^{\prime} \oplus \beta^{\prime}\right)=\mathrm{x} \oplus \mathrm{x}^{\prime}
$$

AND gate

Alice has α and Bob has β s.t.

$$
\alpha \oplus \beta=x
$$

Alice has α^{\prime} and Bob has β^{\prime} s.t.

$$
\alpha^{\prime} \oplus \beta^{\prime}=x^{\prime}
$$

Desired output (to maintain invariant): Alice wants $\boldsymbol{\alpha}^{\prime \prime}$ and Bob wants $\boldsymbol{\beta}^{\prime \prime}$ s.t. $\boldsymbol{\alpha}^{\prime \prime} \oplus \boldsymbol{\beta}^{\prime \prime}=x x^{\prime}$

AND gate

$$
\begin{aligned}
& x x^{\prime}=(\alpha \oplus \beta)\left(\alpha^{\prime} \oplus \beta^{\prime}\right) \\
& =\alpha \alpha^{\prime} \oplus \gamma_{a} \oplus \delta_{a} \oplus \beta \beta^{\prime} \\
& \Omega \\
& \begin{array}{cc}
\oplus & \oplus \\
\gamma_{b} & \stackrel{\oplus}{\delta_{b}}
\end{array}
\end{aligned}
$$

$$
\alpha^{\prime \prime}=\alpha \alpha^{\prime} \oplus \gamma_{a} \oplus \delta_{a} \quad \beta^{\prime \prime}=\beta \beta^{\prime} \oplus \gamma_{b} \oplus \delta_{b}
$$

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output wire, and XOR the shares together to obtain the output.

Security by Composition

Theorem:

If protocol Π securely realizes a function g in the " f-hybrid model" and protocol Π ' securely realizes f, then $\Pi \circ \Pi^{\prime}$ securely realizes g.

Security: Intuition (ss-AND hybrid model)

 Imagine that the parties have access to an ss-AND angel.

$$
\gamma \oplus \delta=\mathrm{ab}
$$

Security: Intuition (ss-AND hybrid model)

 Imagine that the parties have access to an ss-AND angel.Simulator for Alice's view:
XOR gate: simulate given
Alice's input shares

Input wires: can be
simulated given Alice's input

Security: Intuition (ss-AND hybrid model)

Simulator for Alice's view:

AND gate: simulate given Alice's input shares \& outputs from the ss-AND angel.

Alice's share

$$
\begin{aligned}
& =a \cdot 0 \\
& +\gamma_{\text {alice }} \\
& +\delta_{\text {alice }}
\end{aligned}
$$

$\gamma_{\text {alice }}$ and $\delta_{\text {alice }}$ are random, independent of b

Security: Intuition (ss-AND hybrid model)

Simulator for Alice's view:

Output wire: need to know both Alice and Bob's output shares.

Bob's output share = Alice's output share \bigoplus function output

Simulator knows the function output, and can compute Bob's output share given Alice's output share.

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

IInput bit: a

Pick $N=P Q$ and RSA exponent e.

Let x_{0} be random and $x_{1}=x_{0} \oplus \mathrm{a}$.

$$
s_{0}, s_{1}
$$

Choose random r_{b} and set $s_{b}=r_{b}^{e} \bmod N$

Choose random s_{1-b}

Compute r_{0}, r_{1} and one-time pad x_{0}, x_{1} using hardcore bits

Alice outputs x_{0}
Bob outputs x_{b}

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

Exercise: Construct simulators for Alice and Bob.

In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves any two-party computation problem against semi-honest adversaries.

In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves any multi-party computation problem against semi-honest adversaries.

MPC Outline

Secret-sharing Invariant: For each wire of the circuit, the n parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.
XOR gate: given input shares $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ s.t. $\oplus_{i=1}^{n} \alpha_{i}=a$ and $\left(\beta_{1}, \ldots, \beta_{n}\right)$ s.t. $\oplus_{i=1}^{n} \beta_{i}=b$, compute the shares of the output of the XOR gate:

$$
\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{n}+\beta_{n}\right)
$$

AND gate: given input shares as above, compute the shares of the output of the XOR gate:

$$
\left(o_{1}, \ldots, o_{n}\right) \text { s.t } \oplus_{i=1}^{n} o_{i}=a b
$$

Security against Malicious (Active) Adversaries

Secure Two-Party Comp: New Def

 (possibly randomized) $F(x, y ; r)=\left(F_{A}(x, y ; r), F_{B}(x, y ; r)\right)$
Input: x

Alice

Input: y

There exists a PPT simulator SIM_{A} such that for any x and y :
$\left(\operatorname{SIM}_{A}\left(x, F_{A}(x, y)\right), F(x, y)\right) \cong\left(\operatorname{View}_{A}(x, y), F(x, y)\right)$
i.e. the joint distribution of the view and the output is correct

Counterexample

Randomized functionality $F\left(1^{n}, 1^{n}\right)=(r, \perp)$.
Protocol:
Alice picks a random r, outputs it and sends it to Bob.

Is this secure?

Secure acc. to old def, insecure acc. to new def.
Ergo, old def is insufficient.

Malicious Parties: Issues to Handle

1. Input (In)dependence: A malicious Alice could choose her input to depend on Bob's, something she cannot do in the ideal world.

$$
\text { Example: } F((a, b), x)=(\perp, a x+b)
$$

2. Randomness: A malicious Bob could choose his "random string" in the protocol the way she wants, something she cannot do in the ideal world.

Example: our OT protocol
unavoidable
3. (Un)fairness: A malicious party could block the honest party from learning the output, while learning it herself.
4. Deviate from

Protocol Instructions.

New (Less) Ideal Model

The "GMW Compiler"

Theorem [Goldreich-Micali-Wigderson'87]:
Assuming one-way functions exist, there is a general way to transform any semi-honest secure protocol computing a (possibly randomized) function F into a maliciously secure protocol for F.

Input Independence

1. Input (In)dependence: A malicious party could choose her input to depend on Bob's, something she cannot do in the ideal world.

Solution: Each party commits to their input in sequence, and provides a zero-knowledge proof of knowledge of the underlying input.

Solution: Coin-Tossing Protocol

2. Randomness: A malicious party could choose her "random string" in the protocol the way she wants, something she cannot do in the ideal world.

Def: Realize the functionality $F\left(1^{n}, 1^{n}\right)=(r, \operatorname{Com}(r))$.

Output $r=r_{1} \oplus r_{2}$
Output $\left(\operatorname{Com}\left(r_{1}\right), r_{2}\right)$

Zero Knowledge Proofs

4. Deviate from Other Protocol Instructions.

Solution: Each message of each party is a deterministic function of their input, their random coins and messages from party B.

When party A sends a message $m=m\left(x_{A}, r_{A}, \overline{m s g_{B}}\right)$, they also prove in zero-knowledge that they did so correctly. That is, they prove in ZK the following NP statement:

$$
\begin{gathered}
\left(m, \overline{m s g_{B}}, X \operatorname{Com}, R \operatorname{Com}\right): \exists x_{A}, r_{A} \text { s.t. } \\
m=m\left(x_{A}, r_{A}, \overline{m s g_{B}}\right) \wedge X \operatorname{Com}=\operatorname{Com}\left(x_{A}\right) \wedge \\
R \operatorname{Com}=\operatorname{Com}\left(r_{A}\right)
\end{gathered}
$$

Optimizations

Optimization 1: Preprocessing OTs

Random OT tuple (or AND tuple, or Beaver tuple after D. Beaver): Alice has (α, γ_{a}) and Bob has (β, γ_{b}) which are random s.t. $\gamma_{a} \oplus \gamma_{b}=\boldsymbol{\alpha} \boldsymbol{\beta}$.

Theorem: Given O(1) many random OT tuples, we can do OT with information-theoretic security, exchanging $O(1)$ bits.

Optimization 2: OT Extension

Theorem
[Beaver'96, Ishai-Kushilevitz-Nissim-Pinkas'03]:

Given $O(\lambda)$ many random OT tuples, we can generate n OT tuples exchanging $O(n)$ bits --- as opposed to the trivial $O(n \lambda)$ bits --- and using only symmetric-key crypto.

Complexity of the 2-party solution

Number of OT protocol invocations $=2 * \# A N D$ gates Can be made into O(\#inputs • λ): Yao's garbled circuits

Number of rounds = AND-depth of the circuit
Can be made into O(1) rounds: Yao's garbled circuits

Communication in bits =

$$
O(\# A N D \cdot \lambda+\# o u t p u t s)
$$

Can be made into O (λ \#inputs) using FHE: but FHE is computationally more expensive concretely.

