MIT 6.875

Foundations of Cryptography
Lecture 19

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that

solves any two-party computation problem
against semi-honest adversaries.

Two-Party Impossibility

Theorem (folklore):
There is no perfectly / statistically secure two-
party protocol for computing the AND function.

Impossibility of 2-Party Secure MPC

(due to Rotem Oshman)

Alice: a € {0,1}, Bob: b € {0,1}
Goal: computea A b

No information-theoretically secure
implementation!

Fix any protocol II

Let 7, , (T) = probability of transcript T on input
a,b

w.l.0.g, the transcript containsa A b

Impossibility of 2-Party Secure MPC

* Claim: g p(7) = A(a,7) - B(b, 7) for some 4, B
* Proof:

R
Tap(T) = 1_[Pr| 7, issent | 17,_q,...,7T1,a,b]
r=1

A(t,a)

B(t,b)

Impossibility of 2-Party Secure MPC

* Claim:m, ,(t) = A(a,7) - B(b,7) for some 4, B

* From (perfect) security: for every T,

1,0 (v) = o0 (r) = 7T0,1(T)

-
A(1,7)B(0,7) = A(0,7)B(0,7) = A(0,7)B(1, 1)
¥
A(0,7) = A(1,7) anda B(0,7) = B(1,1)

e But then,
m11(t) = A1, 7)B(1,7) = A(0,7)B(0,7) = m(0(7)

The protocol is incorrect!

Extend to statistical security?

Exercise.

Where to Go From Here?

* Option 1: reduce the number of corrupt
parties

f Option 2: introduce cryptographic
| assumptions

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that

solves any two-party computation problem
against semi-honest adversaries.

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR
(+ mod 2) and AND (X mod 2) gates.

ab(a'+b') £ 8
Fx\
ab] a + b
()

||
{la b& {) a b’@

Want: If you can compute XOR and AND in the appropriate
sense, you can compute everything.

Recap: OT = Secret-Shared-AND

Alice gets random y, Bob gets
random d s.t.y @ 6 = ab.

Output: y Output: &
— Run an OT protocol
x1=a®y

Alice outputs y.
Bob gets x1b + xo(1®b) = (x1 D x¢9)b + x9g = abBy =6

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

XOR gate:

AND gate?? Locally XOR the shares
X
[1] @ 4l
b 8
o
I

) a 0 [d @0 |
S50 b [0 @b |

Base Case: Input wires

Recap: XOR gate

Alice has a and Bob has f s.t. x D x
a@PDp=x | +

Alice has a’ and Bob has ' s.t.
al @ ﬁl — xl

Alice computes a @ a’ and Bob computes 8 @ B'.

So,we have: (a D a')D (B D B)
=(aDp) D@ D) =xBX

AND gate

Alice has a and Bob has f s.t. -
a@Dpf =x | X

Alice has a’ and Bob has ' s.t.
al @ ﬁl — xl

Desired output (to maintain invariant):
Alice wants a’’ and Bob wants B s.t. a'’ @ B”

= XX

AND gate

xx'
xx' = (a @ pB)(a D p) rl)h

=ad' @D va ® 5, ©LP 1
L o
Vb

il

a”:aa,@ya@ga ﬁ,’:ﬁﬁ’@yb@5b

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output
wire, and XOR the shares together to obtain the output.

ﬁ'“ a®p=ab(d ®b)
X ® B

Security by Composition

Theorem:

If protocol II securely realizes a function g in the
“f-hybrid model” and protocol IT" securely
realizes f, then IT o I1' securely realizes g.

Protocol for g in the f-hybrid model Protocol for f

Security: Intuition (ss-AND hybrid model)

Imagine that the parties have access to an ss-AND angel.

Security: Intuition (ss-AND hybrid model)
Imagine that the parties have access to an ss-AND angel.

Simulator for Alice’s view: XOR gate: simulate given
Alice’s input shares

g

Input wires: can be
simulated given Alice’s input

Security: Intuition (ss-AND hybrid model)
Simulator for Alice’s view:

AND gate: simulate given Alice’s input shares &
outputs from the ss-AND angel.

Alice’s share m ,
=a-(a ﬂ
T Yalice
|
6alice +

{1 a 0 a 0

Yalice and 5alice are
random, independent of b

Security: Intuition (ss-AND hybrid model)

Simulator for Alice’s view:

Output wire: need to know both Alice and Bob’s output
shares.

Bob’s output share = Alice’s
output share @ function output X a {)

Simulator knows the
function output, and +
can compute Bob’s [I

output share given dba O a 0
Alice’s output share.

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

il

Input bit: a

Pick N = PQ and
RSA exponent e.

Let x, be random
and x; = x,®a.

Compute ry, r; and
one-time pad x,, x4
using hardcore bits

Alice outputs x,

Input bit: b

N,e
>
Choose random r;, and
set s, =1y mod N
50,51
> Choose random s;_,
XO@HCB(T())
>
x1€9HCB(1"1)

Bob outputs x;

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

Input bit: a Input bit: b

Exercise: Construct simulators for Alice and Bob.

In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that

solves any two-party computation problem
against semi-honest adversaries.

In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that

solves any multi-party computation problem
against semi-honest adversaries.

MPC Outline

Secret-sharing Invariant: For each wire of the circuit, the n
parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares (aq, ...,a,) st. B, a; = a
and (B4, ..., Bn) s-t. @i, B; = b, compute the shares of the
output of the XOR gate:

(al + 1811 ey Up + :Bn)

AND gate: given input shares as above, compute the shares
of the output of the XOR gate:

(01, ...,0,) S. t D, 0; = ab Exercise!

Security against Malicious (Active)
Adversaries

Secure Two-Party Comp: New Def
(possibly randomized) F(x,y;1r) = (Fa(x,y; 1), Fg(x,y; 1))

Input: x

{) «—

Alice

There exists a PPT simulator SIM, such that for any x
and y:

(SIM,(x, Fy(x, 7)), F(x,)) = (View,(x,y), F(x,¥))

l.e. the joint distribution of the view and the output is correct

Counterexample

Randomized functionality F(1",1") = (r, 1).

Protocol:

Alice picks a random r, outputs it and sends it to Bob.

Is this secure?

Secure acc. to old def, insecure acc. to new def.

Ergo, old def is insufficient.

Malicious Parties: Issues to Handle

1. Input (In)dependence: A malicious Alice could choose
her input to depend on Bob’s, something she cannot do in
the ideal world.

Example: F((a,b),x) = (L, ax + b)

2. Randomness: A malicious Bob could choose his
“‘random string” in the protocol the way she wants,
something she cannot do in the ideal world.

Example: our OT protocol
unavoidable

3. (Un)fairness: A malicious party could block the honest
party from learning the output, while learning it herself.

4. Deviate from Protocol Instructions.

New (Less) Ideal Model

The “GMW Compiler”

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming one-way functions exist, there is a general
way to transform any semi-honest secure protocol
computing a (possibly randomized) function F into a

maliciously secure protocol for F.

Input Independence

1. Input (In)dependence: A malicious party could choose
her input to depend on Bob’s, something she cannot do in
the ideal world.

Solution: Each party commits to their input in sequence,
and provides a zero-knowledge proof of knowledge of
the underlying input.

Solution: Coin-Tossing Protocol

2. Randomness: A malicious party could choose her
“random string” in the protocol the way she wants,
something she cannot do in the ideal world.

Def: Realize the functionality F(1™,1™) = (r, Com(r)).

il

Outputr =r; @ nry Output (Com(ry), 1)

Com(ry)

()

Zero Knowledge Proofs

4. Deviate from Other Protocol Instructions.

Solution: Each message of each party is a deterministic
function of their input, their random coins and messages
from party B.

When party A sends a message m = m(xy, 14, mMSgg), they
also prove in zero-knowledge that they did so correctly.
That is, they prove in ZK the following NP statement:

(m,msgg, XCom,RCom): I x,, 7y s.t.
m = m(xy, 14, msgg) AXCom = Com(xy) A
RCom = Com(ry)

Optimizations

Optimization 1: Preprocessing OTs

Random OT tuple (or AND tuple, or Beaver tuple
after D. Beaver): Alice has («a, y,) and Bob has

(,yp) which are randoms.t. y, @ y, = ap.

Theorem: Given O(1) many random OT tuples, we
can do OT with information-theoretic security,
exchanging O(1) bits.

Optimization 2: OT Extension

Theorem
[Beaver’96, Ishai-Kushilevitz-Nissim-Pinkas’03]:

Given O(A) many random OT tuples, we can
generate n OT tuples exchanging O(n) bits --- as

opposed to the trivial O(nA) bits --- and using only
symmetric-key crypto.

Complexity of the 2-party solution

Number of OT protocol invocations = 2 * #AND gates
Can be made into O(#inputs - A): Yao’s garbled circuits

Number of rounds = AND-depth of the circuit

Can be made into O(1) rounds: Yao’s garbled circuits

Communication in bits =
O(#AND - A + #outputs)

Can be made into O(A #inputs) using FHE: but FHE is
computationally more expensive concretely.

