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Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that 
solves any two-party computation problem 
against semi-honest adversaries.



Two-Party Impossibility

Theorem (folklore):
There is no perfectly / statistically secure two-
party protocol for computing the AND function.



Impossibility of 2-Party Secure MPC

• Alice: ! ∈ 0,1 , Bob: & ∈ 0,1
• Goal: compute ! ∧ &
• No information-theoretically secure 

implementation!

• Fix any protocol Π
• Let )*,+ , = probability of transcript , on input 
!, &

• w.l.o.g, the transcript contains ! ∧ &

(due to Rotem Oshman)



Impossibility of 2-Party Secure MPC

• Claim: !",$ % = ' (, % ⋅ * +, % for some ', *
• Proof:

!",$ % =,
-./

0
Pr %- is sent | %-9/, … , %/, (, +

= ,
-:<=>?@ AB@CDA

Pr %- is sent | %-9/, … , %/, (, +

⋅ ,
-:EFG AB@CDA

Pr %- is sent | %-9/, … , %/, (, +

' %, (

* %, +



• Claim: !",$ % = ' (, % ⋅ * +, % for some ', *
Impossibility of 2-Party Secure MPC

• From (perfect) security: for every %,

!,,- % = !-,- % = !-,, %

' 1, % * 0, % = ' 0, % * 0, % = ' 0, % * 1, %

' 0, % = ' 1, % and * 0, % = * 1, %
• But then,
!,,, % = ' 1, % * 1, % = ' 0, % * 0, % = !-,- %

The protocol is incorrect!



Exercise.

Extend to statistical security?



Where to Go From Here?

• Option 1: reduce the number of corrupt 
parties

• Option 2: introduce cryptographic 
assumptions



Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that 
solves any two-party computation problem 
against semi-honest adversaries.



How to Compute Arbitrary Functions

+X

X

For us, programs = functions = Boolean circuits with XOR 
(+"#$ 2) and AND (×"#$ 2) gates.

Want: If you can compute XOR and AND in the appropriate 
sense, you can compute everything.

' ( '′ (′

'(('′ + (′)

'( '+ + (′



Recap: OT ⇒ Secret-Shared-AND
" ∈ {0,1} ) ∈ {0,1}Alice gets random *, Bob gets 

random + s.t. * ⨁+ = ab.

01 = *
02 = " ⨁ *

Choice bit )
Run an OT protocol

Bob gets 345 + 37 4⨁5

Output: * Output: +

= (34 ⨁ 37)5 + 37 = ")⨁*
Alice outputs *.

≔ +



+X

X

How to Compute Arbitrary Functions
Secret-sharing Invariant: For each wire of the circuit, Alice 
and Bob each have a bit whose XOR is the value at the wire.

!
0 #

0 !′
#′0
0

Base Case: Input wires

XOR gate: 
Locally XOR the shares

!′
#′

⊕
⊕

AND gate??



Recap: XOR gate
Alice has ! and Bob has " s.t.

+

# #′

# ⊕ #′

! ⊕ " = #

Alice has !′ and Bob has "′ s.t.
!′ ⊕ "′ = #′

Alice computes '⊕'′ and Bob computes (⊕().
So, we have: (! ⊕ !′ ) ⊕ " ⊕ ")

= ! ⊕ " ⊕ !) ⊕ ") = x⊕ x′



AND gate
Alice has ! and Bob has " s.t.

X

# #′

##′

! ⊕ " = #

Alice has !′ and Bob has "′ s.t.
!′ ⊕ "′ = #′

Desired output (to maintain invariant):  
Alice wants '′′ and Bob wants (′′ s.t. ')) ⊕ ()) = ##′



AND gate

X

! !′

!!′
!!# = (& ⊕ ()(&′ ⊕ (′)

= &&′ ⊕ (&′ ⊕ &(′ ⊕ ((′

(&′
ss-AND

*+*,

*,
⊕
*+ (′&

ss-AND

-+-,

-,
⊕
-+

&## = &&′ ⊕ *, ⊕ -, (## = ((′ ⊕ *+ ⊕ -+
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How to Compute Arbitrary Functions
Secret-sharing Invariant: For each wire of the circuit, Alice 
and Bob each have a bit whose XOR is the value at the wire.

! " !′ "′

Finally, Alice and Bob exchange the shares at the output 
wire, and XOR the shares together to obtain the output.

$
%

$ ⊕ % = !"(!) ⊕ "))



Security by Composition
Theorem:
If protocol Π securely realizes a function " in the 
“#-hybrid model” and  protocol Π′ securely 
realizes #, then Π ∘ Π′ securely realizes ". 

#-angel 

Protocol for " in the #-hybrid model Protocol for #

+



Security: Intuition (ss-AND hybrid model)
Imagine that the parties have access to an ss-AND angel.

! "

# $

# ⨁$ = ab



Imagine that the parties have access to an ss-AND angel.

+X

X

!
0 #

0 !′
#′0
0

Simulator for Alice’s view:

!′
#′

Input wires: can be 
simulated given Alice’s input

XOR gate: simulate given 
Alice’s input shares 

Security: Intuition (ss-AND hybrid model)



+X

X

!
0 #

0 !′
#′0
0

Simulator for Alice’s view:

!′
#′

AND gate: simulate given Alice’s input shares & 
outputs from the ss-AND angel.

Alice’s share 
= ! & 0
+ ((!)* !, #
+ ((!)*(0,0)
./0123
4/0123

./0123 and 4/0123 are 
random, independent of #

Security: Intuition (ss-AND hybrid model)



+X

X

!
0 #

0 !′
#′0
0

Simulator for Alice’s view:

!′
#′

Output wire: need to know both Alice and Bob’s output 
shares.

Bob’s output share = Alice’s 
output share ⊕ function output

Simulator knows the 
function output, and
can compute Bob’s 
output share given 
Alice’s output share. 

Security: Intuition (ss-AND hybrid model)



Secret-Shared AND protocol

Pick ! = #$ and 
RSA exponent %.

!, %

Choose random () and  
set *) = ()+ mod !

Using the RSA trapdoor permutation.

Input bit: /Input bit: a

Choose random *12)
*3, *1

43⨁678 (3
Compute (3, (1 and 
one-time pad 43, 41
using hardcore bits 41⨁678 (1

Let 43 be random 
and 41 = 43⨁a.

Alice outputs 43 Bob outputs 4)



Secret-Shared AND protocol
Using the RSA trapdoor permutation.

Input bit: !Input bit: a

Exercise: Construct simulators for Alice and Bob.



In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that 
solves any two-party computation problem 
against semi-honest adversaries.



In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that 
solves any multi-party computation problem 
against semi-honest adversaries.



MPC Outline
Secret-sharing Invariant: For each wire of the circuit, the n 
parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares !", … , !% s.t. ⊕'("
% !' = *

and +", … , +% s.t. ⊕'("
% +' = ,, compute the shares of the 

output of the XOR gate:  
!" + +", … , !% + +%

AND gate: given input shares as above, compute the shares 
of the output of the XOR gate:  

.", … , .% s. t ⊕'("
% .' = *, Exercise!



Security against Malicious (Active)
Adversaries



Secure Two-Party Comp: New Def

Bob

Input: !

Alice

Input: "

There exists a PPT simulator #$%& such that for any '
and (: 

(#$%& ', *& ', ( , *(', ()) ≅ (./01&(', (), *(', ())

i.e. the joint distribution of the view and the output is correct

(possibly randomized) * ', (; 3 = (*& ', (; 3 , *5(', (; 3))



Counterexample

Randomized functionality ! 1#, 1# = (', ⊥).

Protocol:

Alice picks a random ', outputs it and sends it to Bob.

Is this secure?

Secure acc. to old def, insecure acc. to new def. 

Ergo, old def is insufficient.



Malicious Parties: Issues to Handle
1. Input (In)dependence: A malicious Alice could choose 
her input to depend on Bob’s, something she cannot do in 
the ideal world.

2. Randomness: A malicious Bob could choose his 
“random string” in the protocol the way she wants, 
something she cannot do in the ideal world.

Example:  ! ", $ , % = (⊥, "% + $)

Example:  our +, protocol

4. Deviate from Other Protocol Instructions.

3. (Un)fairness: A malicious party could block the honest 
party from learning the output, while learning it herself. 

unavoidable



New (Less) Ideal Model

! "

#(!
, ")

#(!, ")

'()
*+?

If not '()*+:



The “GMW Compiler”

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming one-way functions exist, there is a general 
way to transform any semi-honest secure protocol 
computing a (possibly randomized) function F into a 
maliciously secure protocol for F.



Input Independence

1. Input (In)dependence: A malicious party could choose 
her input to depend on Bob’s, something she cannot do in 
the ideal world.

Solution: Each party commits to their input in sequence, 
and provides a zero-knowledge proof of knowledge of 
the underlying input.



Solution: Coin-Tossing Protocol

2. Randomness: A malicious party could choose her 
“random string” in the protocol the way she wants, 
something she cannot do in the ideal world.

Def: Realize the functionality ! 1#, 1# = (', ()*(')).

()*(',)

'-

Output ' = ', ⊕ '- Output (()* ', , '-)



Zero Knowledge Proofs
4. Deviate from Other Protocol Instructions.

Solution: Each message of each party is a deterministic
function of their input, their random coins and messages 
from party B. 

When party A sends a message ! = !($%, '%,!()*), they 
also prove in zero-knowledge that they did so correctly. 
That is, they prove in ZK the following NP statement:

!,!()*, ,-.!, /-.! : ∃ $%, '% s.t.
! = ! $%, '%,!()* ∧ ,-.! = Com $% ∧

/-.! = Com '%



Optimizations



Optimization 1: Preprocessing OTs
Random OT tuple (or AND tuple, or Beaver tuple 
after D. Beaver): Alice has (", $%) and Bob has 
(', $() which are random s.t. )* ⊕ ), = ./.

Theorem: Given O(1) many random OT tuples, we 
can do OT with information-theoretic security, 
exchanging O(1) bits.



Optimization 2: OT Extension

Theorem 
[Beaver’96, Ishai-Kushilevitz-Nissim-Pinkas’03]:

Given O(!) many random OT tuples, we can 
generate " OT tuples exchanging O(") bits --- as 
opposed to the trivial O("!) bits --- and using only 
symmetric-key crypto. 



Complexity of the 2-party solution

Number of OT protocol invocations = 2 ∗ #%&' gates  

Number of rounds =  AND-depth of the circuit

Communication in bits =  
((#%&' * + + #-./0./1)

Can be made into O(1) rounds: Yao’s garbled circuits

Can be made into O(3 #inputs) using FHE: but FHE is 
computationally more expensive concretely.

Can be made into O(#inputs * 3): Yao’s garbled circuits


