MIT 6.875

Foundations of Cryptography Lecture 19

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves **any** two-party computation problem against semi-honest adversaries.

Two-Party Impossibility

Theorem (folklore):

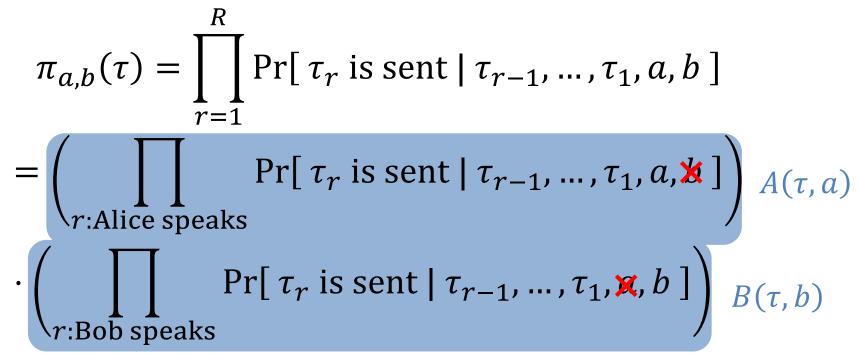
There is no perfectly / statistically secure twoparty protocol for computing the AND function.

Impossibility of 2-Party Secure MPC (due to Rotem Oshman)

- Alice: $a \in \{0,1\}$, Bob: $b \in \{0,1\}$
- Goal: compute $a \land b$
- No information-theoretically secure implementation!
- Fix any protocol Π
- Let $\pi_{a,b}(\tau) = \text{probability of transcript } \tau$ on input a, b
- w.l.o.g, the transcript contains $a \wedge b$

Impossibility of 2-Party Secure MPC

- Claim: $\pi_{a,b}(\tau) = A(a,\tau) \cdot B(b,\tau)$ for some A, B
- Proof:



Impossibility of 2-Party Secure MPC

- Claim: $\pi_{a,b}(\tau) = A(a,\tau) \cdot B(b,\tau)$ for some A, B
- From (perfect) security: for every τ ,

$$\pi_{1,0}(\tau) = \pi_{0,0}(\tau) = \pi_{0,1}(\tau)$$

$$A(1,\tau)B(0,\tau) = A(0,\tau)B(0,\tau) = A(0,\tau)B(1,\tau)$$

$$A(0,\tau) = A(1,\tau) \text{ and } B(0,\tau) = B(1,\tau)$$

• But then, $\pi_{1,1}(\tau) = A(1,\tau)B(1,\tau) = A(0,\tau)B(0,\tau) = \pi_{0,0}(\tau)$

The protocol is incorrect!

Extend to statistical security?

Exercise.

Where to Go From Here?

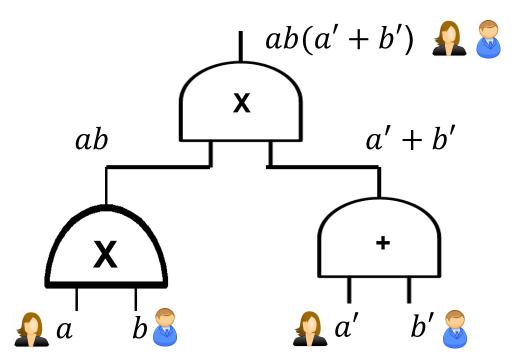
- Option 1: reduce the number of corrupt parties
- Option 2: introduce cryptographic assumptions

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves **any** two-party computation problem against semi-honest adversaries.

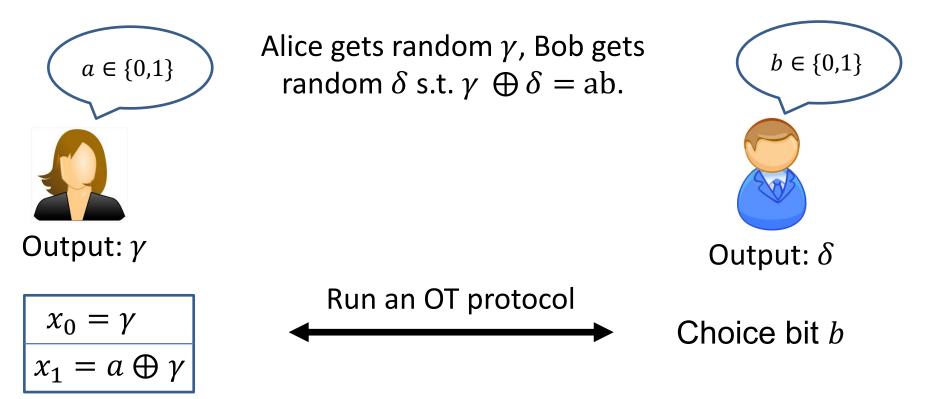
How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR $(+ mod \ 2)$ and AND $(\times mod \ 2)$ gates.



Want: If you can compute XOR and AND *in the appropriate sense*, you can compute everything.

Recap: OT \Rightarrow **Secret-Shared-AND**

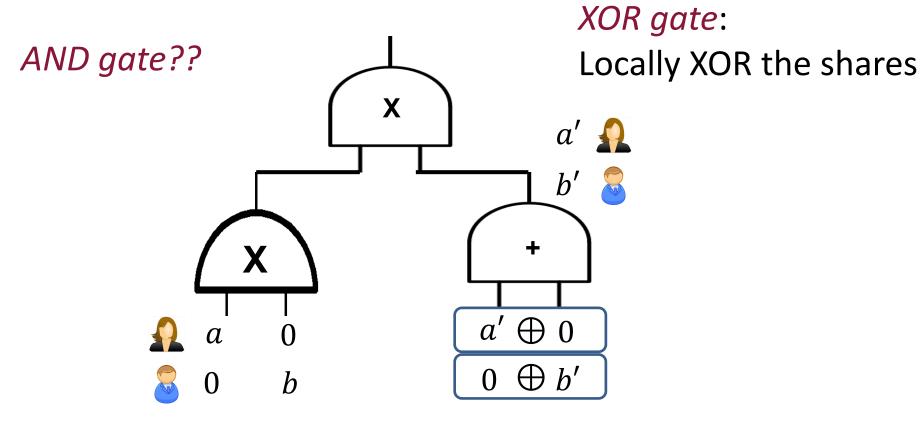


Alice outputs γ .

Bob gets $x_1b + x_0(1 \oplus b) = (x_1 \oplus x_0)b + x_0 = ab \oplus \gamma \coloneqq \delta$

How to Compute Arbitrary Functions

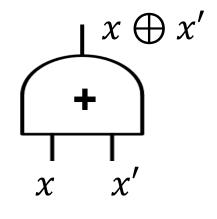
Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.



Base Case: Input wires

Recap: XOR gate

Alice has
$$\alpha$$
 and Bob has β s.t.
 $\alpha \oplus \beta = x$

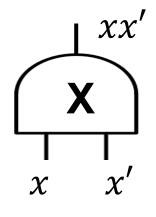


Alice has α' and Bob has β' s.t. $\alpha' \oplus \beta' = x'$

Alice computes $\alpha \oplus \alpha'$ and Bob computes $\beta \oplus \beta'$. So, we have: $(\alpha \oplus \alpha') \oplus (\beta \oplus \beta')$ $= (\alpha \oplus \beta) \oplus (\alpha' \oplus \beta') = x \oplus x'$

AND gate

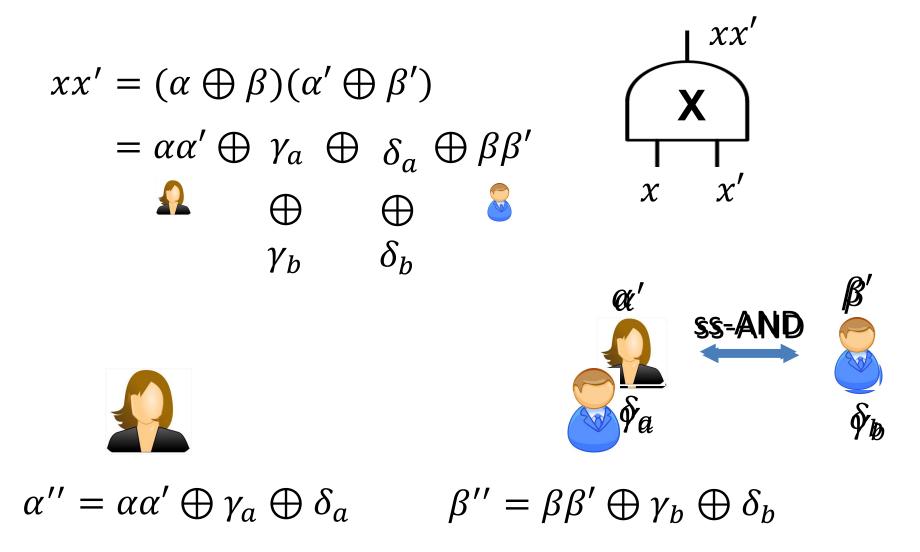
Alice has α and Bob has β s.t. $\alpha \oplus \beta = x$



Alice has α' and Bob has β' s.t. $\alpha' \oplus \beta' = x'$

Desired output (to maintain invariant): Alice wants α'' and Bob wants β'' s.t. $\alpha'' \oplus \beta'' = xx'$

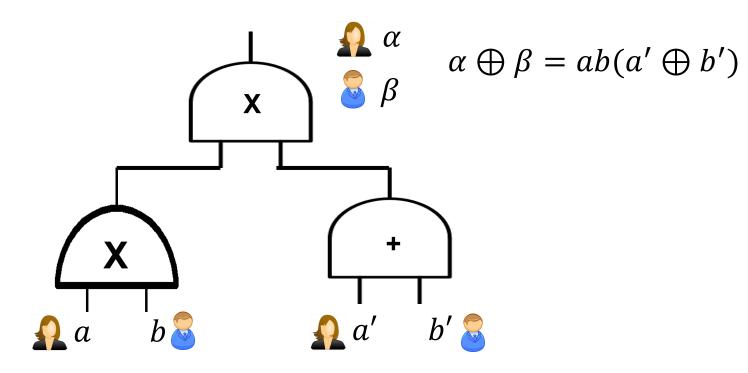
AND gate



How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

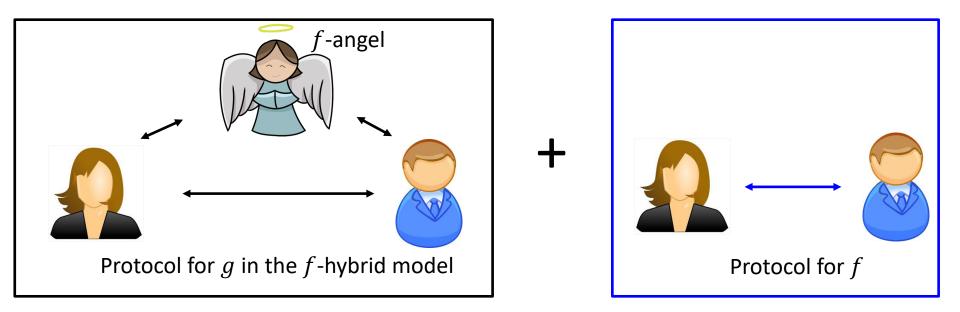
Finally, Alice and Bob exchange the shares at the output wire, and XOR the shares together to obtain the output.



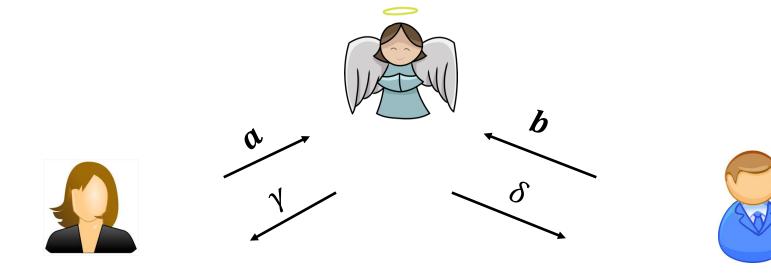
Security by Composition

Theorem:

If protocol Π securely realizes a function g in the "f-hybrid model" and protocol Π ' securely realizes f, then $\Pi \circ \Pi$ ' securely realizes g.

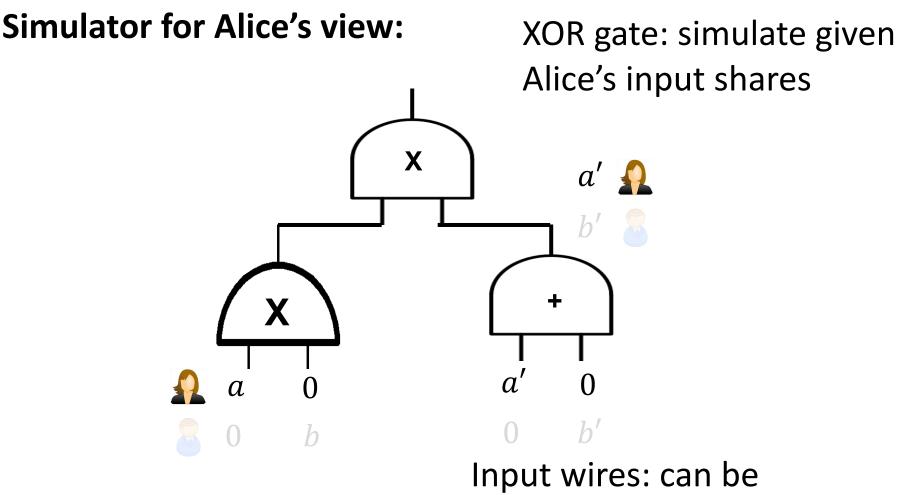


Imagine that the parties have access to an ss-AND angel.



 $\gamma \oplus \delta = ab$

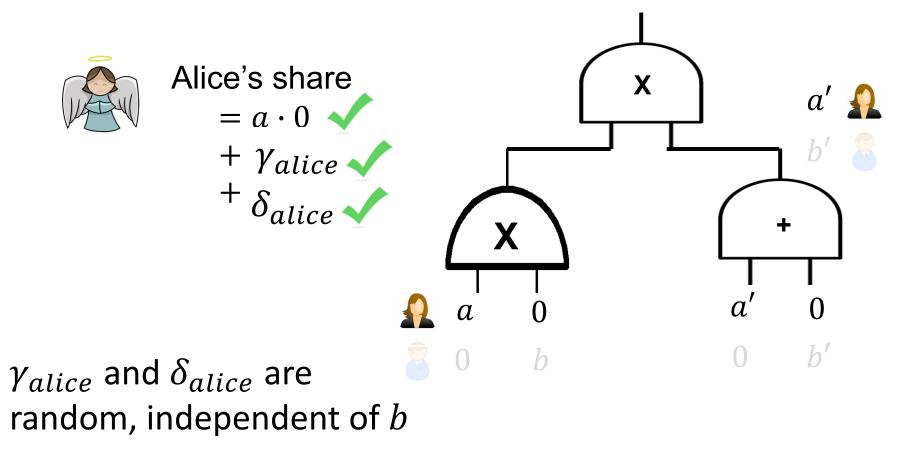
Imagine that the parties have access to an ss-AND angel.



simulated given Alice's input

Simulator for Alice's view:

AND gate: simulate given Alice's input shares & outputs from the ss-AND angel.

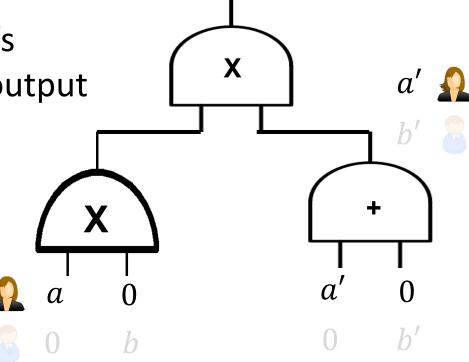


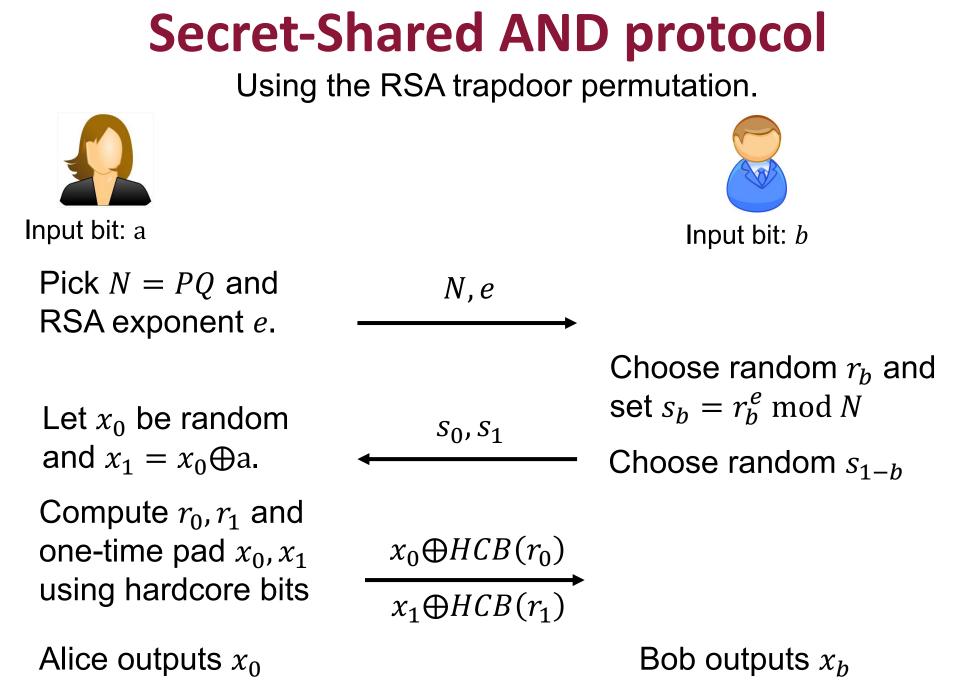
Simulator for Alice's view:

Output wire: need to know both Alice and Bob's output shares.

Bob's output share = Alice's output share \oplus function output

Simulator knows the function output, and can compute Bob's output share given Alice's output share.





Secret-Shared AND protocol

Using the RSA trapdoor permutation.

Input bit: a



Exercise: Construct simulators for Alice and Bob.

In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves **any** two-party computation problem against semi-honest adversaries.

In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves any *multi-party* computation problem against semi-honest adversaries.

MPC Outline

Secret-sharing Invariant: For each wire of the circuit, **the n parties have a bit each**, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares $(\alpha_1, ..., \alpha_n)$ s.t. $\bigoplus_{i=1}^n \alpha_i = a$ and $(\beta_1, ..., \beta_n)$ s.t. $\bigoplus_{i=1}^n \beta_i = b$, compute the shares of the output of the XOR gate:

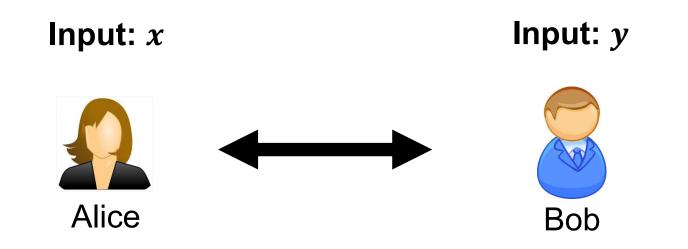
$$(\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n)$$

AND gate: given input shares as above, compute the shares of the output of the XOR gate:

$$(o_1, \dots, o_n)$$
 s.t $\bigoplus_{i=1}^n o_i = ab$ **Exercise!**

Security against Malicious (Active) Adversaries

Secure Two-Party Comp: New Def (possibly randomized) $F(x, y; r) = (F_A(x, y; r), F_B(x, y; r))$



There exists a PPT simulator SIM_A such that for any x and y:

$$(SIM_A(x, F_A(x, y)), F(x, y)) \cong (View_A(x, y), F(x, y))$$

i.e. the joint distribution of the view and the output is correct

Counterexample

Randomized functionality $F(1^n, 1^n) = (r, \bot)$.

Protocol:

Alice picks a random r, outputs it and sends it to Bob.

Is this secure?

Secure acc. to old def, insecure acc. to new def.

Ergo, old def is insufficient.

Malicious Parties: Issues to Handle

1. Input (In)dependence: A malicious Alice could choose her input to depend on Bob's, something she cannot do in the ideal world.

Example: $F((a,b),x) = (\bot, ax + b)$

2. Randomness: A malicious Bob could choose his "random string" in the protocol the way she wants, something she cannot do in the ideal world.

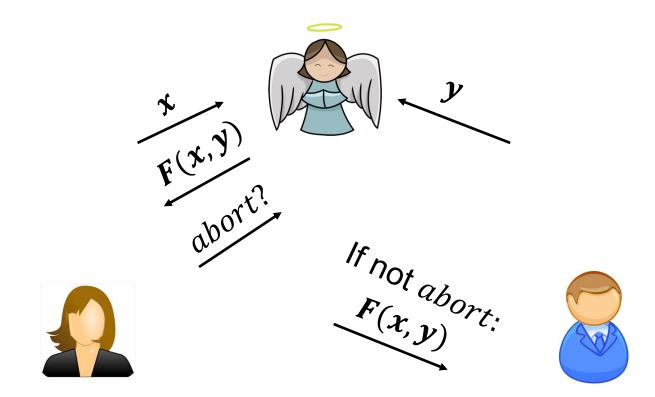
Example: our OT protocol

unavoidable

3. (Un)fairness: A malicious party could block the honest party from learning the output, while learning it herself.

4. Deviate from Protocol Instructions.

New (Less) Ideal Model



The "GMW Compiler"

Theorem [Goldreich-Micali-Wigderson'87]:

Assuming one-way functions exist, there is a general way to transform any semi-honest secure protocol computing a (possibly randomized) function F into a maliciously secure protocol for F.

Input Independence

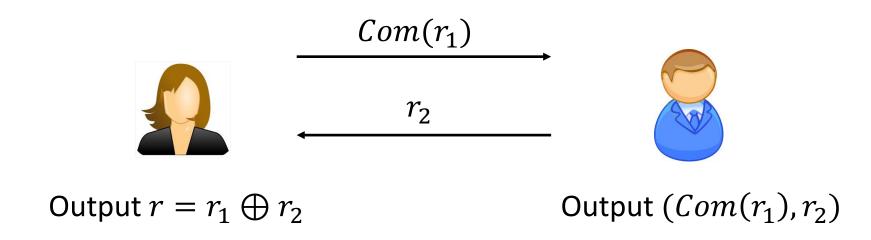
1. Input (In)dependence: A malicious party could choose her input to depend on Bob's, something she cannot do in the ideal world.

<u>Solution</u>: Each party commits to their input in sequence, and provides a **zero-knowledge proof of knowledge** of the underlying input.

Solution: Coin-Tossing Protocol

2. Randomness: A malicious party could choose her "random string" in the protocol the way she wants, something she cannot do in the ideal world.

<u>*Def:*</u> Realize the functionality $F(1^n, 1^n) = (r, Com(r))$.



Zero Knowledge Proofs

4. Deviate from Other Protocol Instructions.

<u>Solution</u>: Each message of each party is a *deterministic* function of their input, their random coins and messages from party B.

When party A sends a message $m = m(x_A, r_A, \overline{msg_B})$, they also prove in zero-knowledge that they did so correctly. That is, they prove in ZK the following NP statement:

$$\begin{array}{l} (m,\overline{msg_B},XCom,RCom)\colon\exists\ x_A,r_A\ \text{s.t.}\\ m=m(x_A,r_A,\overline{msg_B})\ \land\ XCom=\operatorname{Com}(x_A)\land\\ RCom=\operatorname{Com}(r_A) \end{array}$$

Optimizations

Optimization 1: Preprocessing OTs

Random OT tuple (or AND tuple, or Beaver tuple after D. Beaver): Alice has (α, γ_a) and Bob has (β, γ_b) which are random s.t. $\gamma_a \bigoplus \gamma_b = \alpha \beta$.

Theorem: Given O(1) many *random* OT tuples, we can do OT with information-theoretic security, exchanging O(1) bits.

Optimization 2: OT Extension

Theorem [Beaver'96, Ishai-Kushilevitz-Nissim-Pinkas'03]:

Given $O(\lambda)$ many *random* OT tuples, we can generate n OT tuples exchanging O(n) bits --- as opposed to the trivial $O(n\lambda)$ bits --- and using only symmetric-key crypto.

Complexity of the 2-party solution

Number of OT protocol invocations = 2 * #AND gates Can be made into O(#inputs $\cdot \lambda$): Yao's garbled circuits

Number of rounds = AND-depth of the circuit Can be made into O(1) rounds: Yao's garbled circuits

Communication in bits = $O(\#AND \cdot \lambda + \#outputs)$

Can be made into $O(\lambda \text{ #inputs})$ using FHE: but FHE is computationally more expensive concretely.