
MIT 6.875

Lecture 18
Foundations of Cryptography

New Topic:
Secure Computation

Secure Two-Party Computation

Bob

Input: 𝒚

Output: 	𝐹! 𝑥, 𝑦

Alice

Input: 𝒙

Output: 	𝐹" 𝑥, 𝑦

Secure Two-Party Computation

Bob

Input: 𝒚

Output: 	𝐹! 𝑥, 𝑦

• Alice should not learn anything more than 𝑥 and 𝐹! 𝑥, 𝑦 .

Alice

Input: 𝒙

• Bob should not learn anything more than 𝑦 and 𝐹" 𝑥, 𝑦 .

Semi-honest Security:Security:

Output: 	𝐹" 𝑥, 𝑦

Secure Two-Party Computation

Bob

Input: 𝒚

Output: 	𝐹! 𝑥, 𝑦

• No (PPT) Alice* can learn anything more than 𝑥∗ and 𝐹! 𝑥∗, 𝑦 .

Alice

Input: 𝒙

• No (PPT) Bob* can learn anything more than 𝑦∗ and 𝐹" 𝑥, 𝑦∗ .

Malicious Security:

Output: 	𝐹" 𝑥, 𝑦

Tool 1: Secret Sharing

Secret Sharing
secret b

share 𝑠! share 𝑠" share 𝑠# share 𝑠$ share 𝑠%

𝑃! 𝑃" 𝑃# 𝑃$ 𝑃%Dealer

o Threshold (or t-out-of-n) SS [Shamir’79, Blakley’79]:

q Any “authorized” subset of players can recover b.

q No other subset of players has any info about b.

“authorized” subset = has size ≥	t.

…

𝟐-out-of-𝒏 Secret Sharing?
secret b	∈ 𝑍&

Here is a solution.

Repeat for every two-person subset {𝑃$, 𝑃%}:	
• Generate a 2-out-of-2 secret sharing (𝑠$, 𝑠%) of b.
• Give 𝑠$ to 𝑃$ and 𝑠% to 𝑃%

𝑃! 𝑃" 𝑃# 𝑃$ 𝑃%Dealer

…

What is the size of shares each party gets?

How does this scale to t-out-of-n?

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

Shamir’s 2-out-of-n Secret Sharing

𝒔𝟏 𝒔𝟐

𝒔𝟑
secret 𝑏

(1, 𝑠!)
(2, 𝑠")

(3, 𝑠#)

Each share 𝑠$ is truly
random (independent of

secret b)
Any two shares uniquely
determine b.

random line through (0,b)

Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose
constant term is the secret 𝑏.

𝑓 𝑥 = 𝑎𝑥 + 𝑏 where 𝑎 is uniformly random mod 𝑝

2. Compute the shares:
𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Correctness: can recover secret from any two shares.

Proof: Parties 𝑖 and 𝑗, given shares 𝑠$ = 𝑎𝑖 + 𝑏 and 𝑠% =
𝑎𝑗 + 𝑏 can solve for 𝑏	(= %,!-$,"

%-$).

Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose
constant term is the secret 𝑏.

𝑓 𝑥 = 𝑎𝑥 + 𝑏 where 𝑎 is uniformly random mod 𝑝

2. Compute the shares:
𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Security: any single party has no information about the secret.

Proof: Party 𝑖’s share 𝑠$ = 𝑎 ∗ 𝑖 + 𝑏 is uniformly random,
independent of 𝑏, as 𝑎 is random and so is 𝑎 ∗ 𝑖.

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1)
polynomial (mod p) whose constant term is the secret 𝑏.

𝑓 𝑥 = 𝑎.-)𝑥.-) +⋯+ 𝑎)𝑥 + 𝑏
 where 𝑎$ are uniformly random mod 𝑝

2. Compute the shares:
𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Correctness: can recover secret from any 𝑡 shares.

Security: the distribution of 𝑎𝑛𝑦	𝑡 − 1 shares is
independent of the secret.

Note: need p to be larger than the number of parties n.

𝑠)
𝑠*
𝑠/
…
𝑠.

=

1 1 1 … 1
1 2 2* … 2.-)
1 3 3* … 3.-)
1 … … … …
1 𝑡 𝑡* … 𝑡.-)

𝑏
𝑎)
𝑎*
…
𝑎.-)

(mod	𝑝)

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎.-)𝑥.-) +⋯+ 𝑎)𝑥 + 𝑏
 where 𝑎$ are uniformly random mod 𝑝

𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Correctness: via Vandermonde matrices.

Let’s look at shares of parties 𝑃), 𝑃*, … , 𝑃..

𝑡-by-𝑡 Vandermonde matrix which is invertible

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎.-)𝑥.-) +⋯+ 𝑎)𝑥 + 𝑏
 where 𝑎$ are uniformly random mod 𝑝

𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Correctness: Alternatively, Lagrange interpolation gives
an explicit formula that recovers b.

𝑏 = 𝑓 0 =F
$0)

.

𝑓(𝑖) G
)1%1.,%3$

−𝑥%
𝑥$ − 𝑥%

𝑠)
𝑠*
𝑠/
…
𝑠.-)

=

1 1 1 … 1
1 2 2* … 2.-)
1 3 3* … 3.-)
1 … … … …
1 𝑡 − 1 (𝑡 − 1)* … (𝑡 − 1).-)

𝑏
𝑎)
𝑎*
…
𝑎.-)

(mod	𝑝)

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎.-)𝑥.-) +⋯+ 𝑎)𝑥 + 𝑏
 where 𝑎$ are uniformly random mod 𝑝

𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Security:

Let’s look at shares of parties 𝑃), 𝑃*, … , 𝑃.-).

(𝑡 − 1)-by-𝑡 Vandermonde matrix

𝑠)
𝑠*
𝑠/
…
𝑠.-)

=

1 1 1 … 1
1 2 2* … 2.-)
1 3 3* … 3.-)
1 … … … …
1 𝑡 − 1 (𝑡 − 1)* … (𝑡 − 1).-)

𝑏
𝑎)
𝑎*
…
𝑎.-)

(mod	𝑝)

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎.-)𝑥.-) +⋯+ 𝑎)𝑥 + 𝑏
 where 𝑎$ are uniformly random mod 𝑝

𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Security: For every value of 𝑏 there is a unique polynomial
with constant term 𝑏 and shares 𝑠), 𝑠*, … , 𝑠.-).

(𝑡 − 1)-by-𝑡 Vandermonde matrix

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎.-)𝑥.-) +⋯+ 𝑎)𝑥 + 𝑏
 where 𝑎$ are uniformly random mod 𝑝

𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Security: For every value of 𝑏 there is a unique polynomial
with constant term 𝑏 and shares 𝑠), 𝑠*, … , 𝑠.-).

Corollary: for every value of the secret 𝑏	is equally likely
given the shares 𝑠), 𝑠*, … , 𝑠.-). In other words, the secret 𝑏	is
perfectly hidden given 𝑡 − 1 shares.

Tool 2: Oblivious Transfer

Oblivious Transfer (OT)

Receiver

Choice bit: 𝒃
𝑥4
𝑥)

• Sender holds two bits/strings 𝑥4 and 𝑥).

• Receiver holds a choice bit 𝑏.

• Receiver should learn 𝑥5, sender should learn nothing.
(We will consider honest-but-curious adversaries; formal
definition in a little bit…)

Sender

Why OT? The Dating Problem
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice and Bob want to

compute the AND 𝛼 ∧ 𝛽.

Why OT? The Dating Problem
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice and Bob want to

compute the AND 𝛼 ∧ 𝛽.

𝑥4 = 0
𝑥) = 𝛼

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets 𝛼 if 𝛽=1, and 0 if 𝛽=0

Here is a way to write the OT selection function: 𝒙𝟏𝒃 +	𝒙𝟎 𝟏 − 𝒃
which, in this case is = 𝛼𝛽.

The Billionaires’ Problem
Net worth:

$X
Net worth:

$Y

Who is richer?

The Billionaires’ Problem

𝑋 𝑌

𝑓(𝑋, 𝑌) = 1
if and only if 𝑋 > 𝑌

Unit Vector 𝑢> = 1 in the 𝑋.?
location and 0 elsewhere

10 0 0 ……

Vector 𝑣@ = 1 from the (𝑌 + 1).?
location onwards

10 1 1… 1 1 1

𝒇 𝑿, 𝒀 = 𝒖𝑿, 𝒗𝒀 =F
𝒊0𝟏

𝑼

𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

Compute each AND individually and sum it up?

Detour: OT ⇒ Secret-Shared-AND
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice gets random 𝛾, Bob gets

random 𝛿 s.t. 𝛾	⨁𝛿 = 𝛼𝛽.

𝑥4 = 𝛾
𝑥) = 𝛼⨁ 𝛾

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets 𝒙𝟏𝒃 +	𝒙𝟎 𝟏⨁𝒃

Output: 𝛾 Output: 𝛿

= (𝒙𝟏 ⨁	𝒙𝟎)𝒃 + 𝒙𝟎 = 𝛼𝛽⨁𝛾 ≔ 𝛿

Alice outputs 𝛾.

The Billionaires’ Problem
𝑓(𝑋, 𝑌) = 1

if and only if 𝑋 > 𝑌

Unit Vector 𝑢>

10 0 0 ……

Vector 𝑣@

10 1 1… 1 1 1

𝒇 𝑿, 𝒀 = 𝒖𝑿, 𝒗𝒀 =F
𝒊0𝟏

𝑼

𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

1. Alice and Bob run many OTs to get (𝛾$, 𝛿$) s.t.

𝛾$⨁𝛿$ = 	𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

2. Alice computes 𝛾 = 	⨁$	𝛾$ and Bob computes 𝛿 = 	⨁$	𝛿$.

Check (correctness): 𝛾⨁𝛿 = 𝒖𝑿, 𝒗𝒀 = 𝒇 𝑿, 𝒀 .
3. Alice reveals 𝛾 and Bob reveals 𝛿.

The Billionaires’ Problem
𝑓(𝑋, 𝑌) = 1

if and only if 𝑋 > 𝑌

Unit Vector 𝑢>

10 0 0 ……

Vector 𝑣@

10 1 1… 1 1 1

𝒇 𝑿, 𝒀 = 𝒖𝑿, 𝒗𝒀 =F
𝒊0𝟏

𝑼

𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

1. Alice and Bob run many OTs to get (𝛾$, 𝛿$) s.t.

𝛾$⨁𝛿$ = 	𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

2. Alice computes 𝛾 = 	⨁$	𝛾$ and Bob computes 𝛿 = 	⨁$	𝛿$.

Check (privacy): Alice & Bob get a bunch of random bits.

“OT is Complete”

Theorem (lec18-19): OT can solve not just love and
money, but any two-party (and multi-party) problem
efficiently.

Defining Security:
The Ideal/Real Paradigm

Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙REAL
WORLD:

IDEAL
WORLD: 𝒙

𝒚

𝑭(𝒙
, 𝒚) 𝑭(𝒙, 𝒚)

≈

Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀! such that for any 𝑥
and 𝑦:

𝑆𝐼𝑀1(𝑥, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤1(𝑥, 𝑦)

Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀" such that for any 𝑥
and 𝑦:

𝑆𝐼𝑀2(𝑦, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤2(𝑥, 𝑦)

OT Definition

Receiver

Choice bit: 𝒃
𝑥4
𝑥)

Receiver Security: Sender should not learn b.

Sender

Define Sender’s view 𝑉𝑖𝑒𝑤E(𝑥4, 𝑥), 𝑏) = her random coins
and the protocol messages.

OT Definition

Receiver

Choice bit: 𝒃
𝑥4
𝑥)

Receiver Security: Sender should not learn b.

Sender

There exists a PPT simulator 𝑆𝐼𝑀E such that for any
𝑥4,𝑥) and 𝑏:

𝑆𝐼𝑀3(𝑥4, 𝑥5) ≅ 𝑉𝑖𝑒𝑤3(𝑥4, 𝑥5, 𝑏)

OT Definition

Receiver

Choice bit: 𝒃
𝑥4
𝑥)

Sender Security: Receiver should not learn 𝑥)-5.

Sender

Define Receiver’s view 𝑉𝑖𝑒𝑤F(𝑥4, 𝑥), 𝑏) = his random coins
and the protocol messages.

OT Definition

Receiver

Choice bit: 𝒃
𝑥4
𝑥)

Sender Security: Receiver should not learn 𝑥)-5.

Sender

There exists a PPT simulator 𝑆𝐼𝑀F such that for any
𝑥4,𝑥) and 𝑏:

𝑆𝐼𝑀6(𝑏, 𝑥7) ≅ 𝑉𝑖𝑒𝑤6(𝑥4, 𝑥5, 𝑏)

OT Protocols

OT Protocol 1: Trapdoor Permutations

Pick 𝑁 = 𝑃𝑄 and
RSA exponent 𝑒.

𝑁, 𝑒

Choose random 𝑟5 and
set 𝑠5 = 𝑟5G	mod	𝑁

For concreteness, let’s use the RSA trapdoor permutation.

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

Choose random 𝑠)-5
𝑠4, 𝑠)

𝑥4⨁𝐻𝐶𝐵 𝑟4
Compute 𝑟4, 𝑟) and
one-time pad 𝑥4, 𝑥)
using hardcore bits 𝑥)⨁𝐻𝐶𝐵 𝑟)

Bob can recover 𝑥5
but not 𝑥)-5

OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

𝑠4, 𝑠)

𝑥4⨁𝐻𝐶𝐵 𝑟4

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

𝑥)⨁𝐻𝐶𝐵 𝑟)

Alice’s view is 𝑠4, 𝑠) one of which is chosen randomly
from 𝑍H∗ and the other by raising a random number to
the 𝑒-th power. They look exactly the same!

OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

𝑠4, 𝑠)

𝑥4⨁𝐻𝐶𝐵 𝑟4

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

𝑥)⨁𝐻𝐶𝐵 𝑟)

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

𝑠4, 𝑠)

𝑥4⨁𝐻𝐶𝐵 𝑟4

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

𝑥)⨁𝐻𝐶𝐵 𝑟)

Assuming Bob is semi-honest, he chose 𝑠)-5 uniformly
at random, so the hardcore bit of 𝑠)-5 = 𝑟)-5I is
computationally hidden from him.

𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

𝑠4, 𝑠)

𝑥4⨁𝐻𝐶𝐵 𝑟4

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

𝑥)⨁𝐻𝐶𝐵 𝑟)

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations

OT Protocol 2: from Oblivious PKE

A public-key encryption scheme (PKE) where there is
an oblivious public-key generation algorithm that outputs
a random public key “without knowing” the secret key.

 𝑝𝑘 ← OblivGen(1+; 𝑟)

Security: IND-CPA holds even given the randomness
used by OblivGen.

Example: for El Gamal encryption where the public key is
a pair 𝑔, ℎ = 𝑔J and the private key is 𝑥, OblivGen
simply outputs two random elements from the group.

OT Protocol 2: from Oblivious PKE

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

𝑝𝑘4, 𝑝𝑘)
Generate random 𝑝𝑘5
with 𝑠𝑘5 by running
Gen. and 𝑝𝑘)-5 by
running OblivGen

𝑐4 ← 𝐸𝑛𝑐(𝑝𝑘4, 𝑥4)

𝑐) ← 	𝐸𝑛𝑐(𝑝𝑘), 𝑥))

Decrypt 𝑐5 using 𝑠𝑘5

OT Protocol 3: Additive HE

Encrypt choice bit b

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

𝑐 ⟵ Enc(𝑠𝑘, 𝑏)

𝑐K = Eval(𝑆𝐸𝐿J#,J$(𝑏), 𝑐)

Homomorphically
evaluate the
selection function

𝑐

𝑺𝑬𝑳𝒙𝟎,𝒙𝟏 𝒃 =
(𝒙𝟏 ⨁	𝒙𝟎)𝒃	⨁	𝒙𝟎

Decrypt to get 𝑥5

Bob’s security: computational, from CPA-security of Enc.
Alice’s security: statistical, from function-privacy of Eval.

Many More Constructions of OT

Theorem: OT protocols can be constructed based
on the hardness of the Diffie-Hellman problem,
factoring, quadratic residuosity, LWE, elliptic curve
isogeny problem etc. etc.

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any two-party computation problem.

How to Compute Arbitrary Functions

+X

X

For us, programs = functions = Boolean circuits with XOR
(+	𝑚𝑜𝑑	2) and AND (×	𝑚𝑜𝑑	2) gates.

Want: If you can compute XOR and AND in the appropriate
sense, you can compute everything.

𝑎 𝑏 𝑎′ 𝑏′

𝑎𝑏(𝑎′ + 𝑏′)

𝑎𝑏 𝑎K + 𝑏′

Recap: OT ⇒ Secret-Shared-AND
𝑎 ∈ {0,1} 𝑏 ∈ {0,1}Alice gets random 𝛾, Bob gets

random 𝛿 s.t. 𝛾	⨁𝛿 = ab.

𝑥4 = 𝛾
𝑥) = 𝑎	⨁ 𝛾

Choice bit 𝑏
Run an OT protocol

Bob gets 𝒙𝟏𝒃 +	𝒙𝟎 𝟏⨁𝒃

Output: 𝛾 Output: 𝛿

= (𝒙𝟏 ⨁	𝒙𝟎)𝒃 + 𝒙𝟎 = 𝑎𝑏⨁𝛾

Alice outputs 𝛾.

≔ 𝛿

+X

X

How to Compute Arbitrary Functions
Secret-sharing Invariant: For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Base Case: Input wires

XOR gate:
Locally XOR the shares

𝑎′
𝑏′

⊕
⊕

AND gate??

Recap: XOR gate
Alice has 𝛼 and Bob has 𝛽 s.t.

+

𝑥 𝑥′

𝑥 ⊕ 𝑥′

𝛼 ⊕ 𝛽 = 𝑥

Alice has 𝛼′ and Bob has 𝛽′ s.t.
𝛼′ ⊕ 𝛽′ = 𝑥′

Alice computes 𝜶⊕𝜶′ and Bob computes 𝜷⊕𝜷@.

So, we have: (𝛼 ⊕ 𝛼′) ⊕ 𝛽 ⊕ 𝛽@
	 	 = 𝛼 ⊕ 𝛽 ⊕ 𝛼@⊕𝛽@ = x⊕ x′

AND gate
Alice has 𝛼 and Bob has 𝛽 s.t.

X

𝑥 𝑥′

𝑥𝑥′

𝛼 ⊕ 𝛽 = 𝑥

Alice has 𝛼′ and Bob has 𝛽′ s.t.
𝛼′ ⊕ 𝛽′ = 𝑥′

Desired output (to maintain invariant):
Alice wants 𝜶′′ and Bob wants 𝜷′′ s.t. 𝜶@@⊕𝜷@@ = 𝑥𝑥′

AND gate

X

𝑥 𝑥′

𝑥𝑥′
𝑥𝑥@ = (𝛼 ⊕ 𝛽)(𝛼′ ⊕ 𝛽′)

= 𝛼𝛼′ ⊕ 𝛽𝛼′ ⊕ 𝛼𝛽′ ⊕ 𝛽𝛽′

𝛽𝛼′
ss-AND

𝛾7𝛾A

𝛾A
⊕
𝛾7

𝛽′𝛼
ss-AND

𝛿7𝛿A

𝛿A
⊕
𝛿7

𝛼@@ = 𝛼𝛼′ ⊕ 𝛾A ⊕𝛿A 𝛽@@ = 𝛽𝛽′ ⊕ 𝛾7 ⊕𝛿7

+X

X

How to Compute Arbitrary Functions
Secret-sharing Invariant: For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

𝑎 𝑏 𝑎′ 𝑏′

Finally, Alice and Bob exchange the shares at the output
wire, and XOR the shares together to obtain the output.

𝛼

𝛽
𝛼 ⊕ 𝛽 = 𝑎𝑏(𝑎K⊕𝑏K)

Security by Composition
Theorem:
If protocol Π securely realizes a function 𝑔 in the
“𝑓-hybrid model” and protocol Π′ securely
realizes 𝑓, then Π ∘ Π′ securely realizes 𝑔.

𝑓-angel

Protocol for 𝑔 in the 𝑓-hybrid model Protocol for 𝑓

+

Security: Intuition (ss-AND hybrid model)
Imagine that the parties have access to an ss-AND angel.

𝒂
𝒃

𝛾 𝛿

𝛾	⨁𝛿 = ab

Imagine that the parties have access to an ss-AND angel.

+X

X

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Simulator for Alice’s view:

𝑎′
𝑏′

Input wires: can be
simulated given Alice’s input

XOR gate: simulate given
Alice’s input shares

Security: Intuition (ss-AND hybrid model)

+X

X

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Simulator for Alice’s view:

𝑎′
𝑏′

AND gate: simulate given Alice’s input shares &
outputs from the ss-AND angel.

Alice’s share
= 𝑎 � 0
+ 𝑠𝑠𝑎𝑛𝑑 𝑎, 𝑏
+ 𝑠𝑠𝑎𝑛𝑑(0,0)
𝛾ABCDE
𝛿ABCDE

𝛾ABCDE and 𝛿ABCDE are
random, independent of 𝑏

Security: Intuition (ss-AND hybrid model)

+X

X

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Simulator for Alice’s view:

𝑎′
𝑏′

Output wire: need to know both Alice and Bob’s output
shares.

Bob’s output share = Alice’s
output share ⊕ function output

Simulator knows the
function output, and
can compute Bob’s
output share given
Alice’s output share.

Security: Intuition (ss-AND hybrid model)

Secret-Shared AND protocol

Pick 𝑁 = 𝑃𝑄 and
RSA exponent 𝑒.

𝑁, 𝑒

Choose random 𝑟5 and
set 𝑠5 = 𝑟5G	mod	𝑁

Using the RSA trapdoor permutation.

Input bit: 𝑏Input bit: a

Choose random 𝑠)-5
𝑠4, 𝑠)

𝑥4⨁𝐻𝐶𝐵 𝑟4
Compute 𝑟4, 𝑟) and
one-time pad 𝑥4, 𝑥)
using hardcore bits 𝑥)⨁𝐻𝐶𝐵 𝑟)

Let 𝑥4 be random
and 𝑥) = 𝑥4⨁a.

Alice outputs 𝑥4 Bob outputs 𝑥5

Secret-Shared AND protocol
Using the RSA trapdoor permutation.

Input bit: 𝑏Input bit: a

Exercise: Construct simulators for Alice and Bob.

In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that
solves any two-party computation problem
against semi-honest adversaries.

In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that
solves any multi-party computation problem
against semi-honest adversaries.

MPC Outline
Secret-sharing Invariant: For each wire of the circuit, the n
parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares 𝛼5, … , 𝛼G s.t. ⊕CH5
G 𝛼C = 𝑎

and 𝛽5, … , 𝛽G s.t. ⊕CH5
G 𝛽C = 𝑏, compute the shares of the

output of the XOR gate:
𝛼5 + 𝛽5, … , 𝛼G + 𝛽G

AND gate: given input shares as above, compute the shares
of the output of the XOR gate:

𝑜5, … , 𝑜G 	s. t ⊕CH5
G 𝑜C = 𝑎𝑏 Exercise!

