MIT 6.875

Foundations of Cryptography Lecture 18

New Topic: Secure Computation

Input: *x*

Alice

Input: y

Output: $F_A(x, y)$

Output: $F_B(x, y)$

Semi-ftonest Security:

- Alice should not learn anything more than x and $F_A(x, y)$.
- Bob should not learn anything more than y and $F_B(x, y)$.

Malicious Security:

- No (PPT) Alice* can learn anything more than x^* and $F_A(x^*, y)$.
- No (PPT) Bob* can learn anything more than y^* and $F_B(x, y^*)$.

Tool 1: Secret Sharing

- □ Any **"authorized"** subset of players **can recover** b.
 - ☐ No other subset of players has any info about b.

○ Threshold (or t-out-of-n) SS [Shamir'79, Blakley'79]: "authorized" subset = has size \geq t.

Here is a solution.

Repeat for every two-person subset $\{P_i, P_j\}$:

- Generate a 2-out-of-2 secret sharing (s_i, s_j) of b.
- Give s_i to P_i and s_j to P_j

What is the size of shares each party gets?

How does this scale to t-out-of-n?

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

Shamir's 2-out-of-n Secret Sharing

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose constant term is the secret *b*.

f(x) = ax + b where *a* is uniformly random mod *p*

2. Compute the shares: $s_1 = f(1), s_2 = f(2), ..., s_i = f(i), ..., s_n = f(n)$

Correctness: can recover secret from any two shares.

Proof: Parties *i* and *j*, given shares $s_i = ai + b$ and $s_j = aj + b$ can solve for $b \ (= \frac{js_i - is_j}{j-i})$.

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose constant term is the secret *b*.

f(x) = ax + b where *a* is uniformly random mod *p*

2. Compute the shares: $s_1 = f(1), s_2 = f(2), ..., s_i = f(i), ..., s_n = f(n)$

Security: any single party has no information about the secret.

Proof: Party *i*'s share $s_i = a * i + b$ is uniformly random, independent of *b*, as *a* is random and so is a * i.

1. The dealer picks a uniformly random degree-(t-1) polynomial (mod p) whose constant term is the secret *b*.

$$f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$$

where a_i are uniformly random mod p

2. Compute the shares: $s_1 = f(1), s_2 = f(2), ..., s_i = f(i), ..., s_n = f(n)$

Correctness: can recover secret from any *t* shares.

Security: the distribution of any t - 1 shares is independent of the secret.

Note: need p to be larger than the number of parties n.

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

$$s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$$

Correctness: via Vandermonde matrices.

Let's look at shares of parties P_1, P_2, \dots, P_t .

$$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \dots \\ s_t \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 2^2 & \dots & 2^{t-1} \\ 1 & 3 & 3^2 & \dots & 3^{t-1} \\ 1 & \dots & \dots & \dots & \dots \\ 1 & t & t^2 & \dots & t^{t-1} \end{bmatrix} \begin{bmatrix} b \\ a_1 \\ a_2 \\ \dots \\ a_{t-1} \end{bmatrix} (\text{mod } p)$$

t-by-t Vandermonde matrix which is **invertible**

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

$$s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$$

Correctness: Alternatively, *Lagrange interpolation* gives an explicit formula that recovers b.

$$b = f(0) = \sum_{i=1}^{t} f(i) \left(\prod_{1 \le j \le t, j \ne i} \frac{-x_j}{x_i - x_j} \right)$$

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

$$s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$$

Security:

Let's look at shares of parties P_1, P_2, \dots, P_{t-1} .

$$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \dots \\ s_{t-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 2^2 & \dots & 2^{t-1} \\ 1 & 3 & 3^2 & \dots & 3^{t-1} \\ 1 & \dots & \dots & \dots & \dots \\ 1 & t-1 & (t-1)^2 & \dots & (t-1)^{t-1} \end{bmatrix} \begin{bmatrix} b \\ a_1 \\ a_2 \\ \dots \\ a_{t-1} \end{bmatrix} (\text{mod } p)$$

(t-1)-by-t Vandermonde matrix

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

$$s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$$

Security: For every value of *b* there is a unique polynomial with constant term *b* and shares $s_1, s_2, ..., s_{t-1}$.

$$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \dots \\ s_{t-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 2^2 & \dots & 2^{t-1} \\ 1 & 3 & 3^2 & \dots & 3^{t-1} \\ 1 & \dots & \dots & \dots & \dots \\ 1 & t-1 & (t-1)^2 & \dots & (t-1)^{t-1} \end{bmatrix} \begin{bmatrix} b \\ a_1 \\ a_2 \\ \dots \\ a_{t-1} \end{bmatrix} (\text{mod } p)$$

(t-1)-by-t Vandermonde matrix

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

 $s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$

Security: For every value of *b* there is a unique polynomial with constant term *b* and shares $s_1, s_2, ..., s_{t-1}$.

Corollary: for every value of the secret *b* is equally likely given the shares $s_1, s_2, ..., s_{t-1}$. In other words, the secret *b* is perfectly hidden given t - 1 shares.

Tool 2: Oblivious Transfer

Oblivious Transfer (OT)

- Sender holds two bits/strings x_0 and x_1 .
- Receiver holds a choice bit *b*.
- Receiver should learn x_b, sender should learn nothing.
 (We will consider honest-but-curious adversaries; formal definition in a little bit...)

Why OT? The Dating Problem

Alice and Bob want to compute the AND $\alpha \wedge \beta$.

Why OT? The Dating Problem Alice and Bob want to $\beta \in \{0,1\}$ $\alpha \in \{0,1\}$ compute the AND $\alpha \wedge \beta$. Run an OT protocol $\frac{x_0 = 0}{x_1 = \alpha}$ Choice bit $b = \beta$

Bob gets α if β =1, and 0 if β =0

Here is a way to write the OT selection function: $x_1b + x_0(1 - b)$ which, in this case is $= \alpha\beta$.

The Billionaires' Problem

Who is richer?

location and 0 elsewhere

Vector $v_Y = 1$ from the $(Y + 1)^{th}$ location onwards

$$f(X,Y) = \langle u_X, v_Y \rangle = \sum_{i=1}^{o} u_X[i] \wedge v_Y[i]$$

TT

Compute each AND individually and sum it up?

Detour: OT \Rightarrow **Secret-Shared-AND**

Alice outputs γ .

Bob gets $x_1b + x_0(1 \oplus b) = (x_1 \oplus x_0)b + x_0 = \alpha \beta \oplus \gamma \coloneqq \delta$

1. Alice and Bob run many OTs to get (γ_i, δ_i) s.t.

 $\gamma_i \oplus \delta_i = \boldsymbol{u}_X[\boldsymbol{i}] \wedge \boldsymbol{v}_Y[\boldsymbol{i}]$

2. Alice computes $\gamma = \bigoplus_i \gamma_i$ and Bob computes $\delta = \bigoplus_i \delta_i$.

3. Alice reveals γ and Bob reveals δ .

Check (correctness): $\gamma \oplus \delta = \langle u_X, v_Y \rangle = f(X, Y)$.

1. Alice and Bob run many OTs to get (γ_i, δ_i) s.t.

 $\gamma_i \oplus \delta_i = \boldsymbol{u}_{\boldsymbol{X}}[\boldsymbol{i}] \wedge \boldsymbol{v}_{\boldsymbol{Y}}[\boldsymbol{i}]$

2. Alice computes $\gamma = \bigoplus_i \gamma_i$ and Bob computes $\delta = \bigoplus_i \delta_i$.

Check (privacy): Alice & Bob get a bunch of random bits.

"OT is Complete"

Theorem (*lec18-19*): OT can solve not just love and money, but **any** two-party (and multi-party) problem efficiently.

Defining Security: The Ideal/Real Paradigm

There exists a PPT simulator SIM_A such that for any x and y:

$$SIM_A(x, F(x, y)) \cong View_A(x, y)$$

There exists a PPT simulator SIM_B such that for any x and y:

$$SIM_B(y, F(x, y)) \cong View_B(x, y)$$

Receiver Security: Sender should not learn b.

Define Sender's view $View_S(x_0, x_1, b)$ = her random coins and the protocol messages.

Receiver Security: Sender should not learn b.

There exists a PPT simulator SIM_S such that for any x_0, x_1 and b:

$$SIM_S(x_0, x_1) \cong View_S(x_0, x_1, b)$$

Sender Security: Receiver should not learn x_{1-b} .

Define Receiver's view $View_R(x_0, x_1, b)$ = his random coins and the protocol messages.

Sender Security: Receiver should not learn x_{1-b} .

There exists a PPT simulator SIM_R such that for any x_0, x_1 and b:

$$SIM_R(b, x_b) \cong View_R(x_0, x_1, b)$$

OT Protocols

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Alice's view is s_0 , s_1 one of which is chosen randomly from Z_N^* and the other by raising a random number to the *e*-th power. They look exactly the same!

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Exercise: Show how to construct the simulator.

How about Alice's security

(a.k.a. Why does Bob not learn both of Alice's bits)?

Assuming Bob is semi-honest, he chose s_{1-b} uniformly at random, so the hardcore bit of $s_{1-b} = r_{1-b}^d$ is computationally hidden from him.

How about Alice's security (a.k.a. Why does Bob not learn both of Alice's bits)?

Exercise: Show how to construct the simulator.

OT Protocol 2: from Oblivious PKE

A public-key encryption scheme (PKE) where there is an oblivious public-key generation algorithm that outputs a random public key "without knowing" the secret key.

 $pk \leftarrow \text{OblivGen}(1^n; r)$

Security: IND-CPA holds even given the randomness used by OblivGen.

Example: for El Gamal encryption where the public key is a pair $(g, h = g^x)$ and the private key is x, OblivGen simply outputs two random elements from the group.

OT Protocol 2: from Oblivious PKE

Input bits: (x_0, x_1)

Generate random pk_b with sk_b by running Gen. and pk_{1-b} by running OblivGen

$$\underbrace{c_0 \leftarrow Enc(pk_0, x_0)}_{c_1 \leftarrow Enc(pk_1, x_1)}$$

 pk_0, pk_1

Decrypt c_b using sk_b

Bob's security: computational, from CPA-security of Enc. *Alice's security*: statistical, from function-privacy of Eval.

Many More Constructions of OT

Theorem: OT protocols can be constructed based on the hardness of the Diffie-Hellman problem, factoring, quadratic residuosity, LWE, elliptic curve isogeny problem etc. etc.

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: OT can solve *any* two-party computation problem.

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR $(+ mod \ 2)$ and AND $(\times mod \ 2)$ gates.

Want: If you can compute XOR and AND *in the appropriate sense*, you can compute everything.

Recap: OT \Rightarrow **Secret-Shared-AND**

Alice outputs γ .

Bob gets $x_1b + x_0(1 \oplus b) = (x_1 \oplus x_0)b + x_0 = ab \oplus \gamma \coloneqq \delta$

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

Base Case: Input wires

Recap: XOR gate

Alice has
$$\alpha$$
 and Bob has β s.t.
 $\alpha \oplus \beta = x$

Alice has α' and Bob has β' s.t. $\alpha' \oplus \beta' = x'$

Alice computes $\alpha \oplus \alpha'$ and Bob computes $\beta \oplus \beta'$. So, we have: $(\alpha \oplus \alpha') \oplus (\beta \oplus \beta')$ $= (\alpha \oplus \beta) \oplus (\alpha' \oplus \beta') = x \oplus x'$

AND gate

Alice has α and Bob has β s.t. $\alpha \oplus \beta = x$

Alice has α' and Bob has β' s.t. $\alpha' \oplus \beta' = x'$

Desired output (to maintain invariant): Alice wants α'' and Bob wants β'' s.t. $\alpha'' \oplus \beta'' = xx'$

AND gate

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output wire, and XOR the shares together to obtain the output.

Security by Composition

Theorem:

If protocol Π securely realizes a function g in the "f-hybrid model" and protocol Π ' securely realizes f, then $\Pi \circ \Pi$ ' securely realizes g.

Imagine that the parties have access to an ss-AND angel.

 $\gamma \oplus \delta = ab$

Imagine that the parties have access to an ss-AND angel.

simulated given Alice's input

Simulator for Alice's view:

AND gate: simulate given Alice's input shares & outputs from the ss-AND angel.

Simulator for Alice's view:

Output wire: need to know both Alice and Bob's output shares.

Bob's output share = Alice's output share \oplus function output

Simulator knows the function output, and can compute Bob's output share given Alice's output share.

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

Input bit: a

Exercise: Construct simulators for Alice and Bob.

In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves **any** two-party computation problem against semi-honest adversaries.

In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves any *multi-party* computation problem against semi-honest adversaries.

MPC Outline

Secret-sharing Invariant: For each wire of the circuit, **the n parties have a bit each**, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares $(\alpha_1, ..., \alpha_n)$ s.t. $\bigoplus_{i=1}^n \alpha_i = a$ and $(\beta_1, ..., \beta_n)$ s.t. $\bigoplus_{i=1}^n \beta_i = b$, compute the shares of the output of the XOR gate:

$$(\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n)$$

AND gate: given input shares as above, compute the shares of the output of the XOR gate:

$$(o_1, \dots, o_n)$$
 s.t $\bigoplus_{i=1}^n o_i = ab$ **Exercise!**