MIT 6.875

Foundations of Cryptography Lecture 18

New Topic:

Secure Computation

Secure Two-Party Computation

Input: x

Alice
Output: $F_{A}(x, y)$

Input: y

Bob

Output: $F_{B}(x, y)$

Secure Two-Party Computation

Input: x

Alice
Output: $F_{A}(x, y)$

Input: y

Bob

Output: $F_{B}(x, y)$

Semifftornest Security:

- Alice should not learn anything more than x and $F_{A}(x, y)$.
- Bob should not learn anything more than y and $F_{B}(x, y)$.

Secure Two-Party Computation

Input: x

Alice
Output: $F_{A}(x, y)$

Input: y

Bob

Output: $F_{B}(x, y)$

Malicious Security:

- No (PPT) Alice* can learn anything more than x^{*} and $F_{A}\left(x^{*}, y\right)$.
- No (PPT) Bob* can learn anything more than y^{*} and $F_{B}\left(x, y^{*}\right)$.

Tool 1: Secret Sharing

Secret Sharing

[Any "authorized" subset of players can recover b.
I No other subset of players has any info about b.

- Threshold (or t-out-of-n) SS [Shamir'79, Blakley'79]: "authorized" subset $=$ has size \geq t.

2-out-of-n Secret Sharing?

Dealer

P_{n}
Here is a solution.

Repeat for every two-person subset $\left\{P_{i}, P_{j}\right\}$:

- Generate a 2 -out-of-2 secret sharing (s_{i}, s_{j}) of b.
- Give s_{i} to P_{i} and s_{j} to P_{j}

What is the size of shares each party gets?
How does this scale to t-out-of-n?

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

Shamir's 2-out-of-n Secret Sharing

Each share s_{i} is truly random (independent of secret b)
Any two shares uniquely determine b .

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line $(\bmod p)$ whose constant term is the secret b.

$$
f(x)=a x+b \text { where } a \text { is uniformly random } \bmod p
$$

2. Compute the shares:

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Correctness: can recover secret from any two shares.
Proof: Parties i and j, given shares $s_{i}=a i+b$ and $s_{j}=$ $a j+b$ can solve for $b\left(=\frac{j s_{i}-i s_{j}}{j-i}\right)$.

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line $(\bmod p)$ whose constant term is the secret b.

$$
f(x)=a x+b \text { where } a \text { is uniformly random } \bmod p
$$

2. Compute the shares:

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Security: any single party has no information about the secret.
Proof: Party i 's share $s_{i}=a * i+b$ is uniformly random, independent of b, as a is random and so is $a * i$.

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) polynomial $(\bmod \mathbf{p})$ whose constant term is the secret b.

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p
\end{aligned}
$$

2. Compute the shares:

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Correctness: can recover secret from any t shares.
Security: the distribution of any $t-1$ shares is independent of the secret.

Note: need p to be larger than the number of parties n.

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p
\end{aligned}
$$

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Correctness: via Vandermonde matrices.
Let's look at shares of parties $P_{1}, P_{2}, \ldots, P_{t}$.

$$
\left[\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
\ldots \\
s_{t}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2^{2} & \ldots & 2^{t-1} \\
1 & 3 & 3^{2} & \ldots & 3^{t-1} \\
1 & \ldots & \ldots & \ldots & \ldots \\
1 & t & t^{2} & \ldots & t^{t-1}
\end{array}\right]\left[\begin{array}{c}
b \\
a_{1} \\
a_{2} \\
\ldots \\
a_{t-1}
\end{array}\right](\bmod p)
$$

t-by-t Vandermonde matrix which is invertible

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
& f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \quad \text { where } a_{i} \text { are uniformly random } \bmod p \\
& s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Correctness: Alternatively, Lagrange interpolation gives an explicit formula that recovers b.

$$
b=f(0)=\sum_{i=1}^{t} f(i)\left(\prod_{1 \leq j \leq t, j \neq i} \frac{-x_{j}}{x_{i}-x_{j}}\right)
$$

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p
\end{aligned}
$$

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Security:

Let's look at shares of parties $P_{1}, P_{2}, \ldots, P_{t-1}$.
$\left[\begin{array}{c}s_{1} \\ s_{2} \\ s_{3} \\ \cdots \\ s_{t-1}\end{array}\right]=\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 2^{2} & \cdots & 2^{t-1} \\ 1 & 3 & 3^{2} & \cdots & 3^{t-1} \\ 1 & \cdots & \cdots & \cdots & \cdots \\ 1 & t-1 & (t-1)^{2} & \cdots & (t-1)^{t-1}\end{array}\right]\left[\begin{array}{c}b \\ a_{1} \\ a_{2} \\ \cdots \\ a_{t-1}\end{array}\right](\bmod p)$
($t-1$)-by-t Vandermonde matrix

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
& f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \quad \text { where } a_{i} \text { are uniformly random } \bmod p \\
& s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Security: For every value of b there is a unique polynomial with constant term b and shares $s_{1}, s_{2}, \ldots, s_{t-1}$.

$$
\left[\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
\cdots \\
s_{t-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2^{2} & \ldots & 2^{t-1} \\
1 & 3 & 3^{2} & \ldots & 3^{t-1} \\
1 & \ldots & \ldots & \cdots & \ldots \\
1 & t-1 & (t-1)^{2} & \ldots & (t-1)^{t-1}
\end{array}\right]\left[\begin{array}{c}
b \\
a_{1} \\
a_{2} \\
\ldots \\
a_{t-1}
\end{array}\right](\bmod p)
$$

$$
(t-1) \text {-by-t Vandermonde matrix }
$$

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
& f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \quad \text { where } a_{i} \text { are uniformly random } \bmod p \\
& s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Security: For every value of b there is a unique polynomial with constant term b and shares $s_{1}, s_{2}, \ldots, s_{t-1}$.

Corollary: for every value of the secret b is equally likely given the shares $s_{1}, s_{2}, \ldots, s_{t-1}$. In other words, the secret b is perfectly hidden given $t-1$ shares.

Tool 2: Oblivious Transfer

Oblivious Transfer (OT)

Choice bit: b

Sender

- Sender holds two bits/strings x_{0} and x_{1}.
- Receiver holds a choice bit b.
- Receiver should learn x_{b}, sender should learn nothing.
(We will consider honest-but-curious adversaries; formal definition in a little bit...)

Why OT? The Dating Problem

Alice and Bob want to compute the AND $\alpha \wedge \beta$.

Why OT? The Dating Problem

$x_{0}=0$
$x_{1}=\alpha$

Alice and Bob want to compute the AND $\alpha \wedge \beta$.

Choice bit $b=\beta$

Bob gets α if $\beta=1$, and 0 if $\beta=0$
Here is a way to write the OT selection function: $x_{1} b+x_{0}(\mathbf{1}-\boldsymbol{b})$ which, in this case is $=\alpha \beta$.

The Billionaires' Problem

Who is richer?

The Billionaires' Problem

$$
f(X, Y)=1
$$

if and only if $X>Y$

Unit Vector $u_{X}=1$ in the $X^{t h}$ location and 0 elsewhere

Vector $v_{Y}=1$ from the $(Y+1)^{\text {th }}$ location onwards

$$
f(X, Y)=\left\langle u_{X}, v_{Y}\right\rangle=\sum_{i=1}^{U} u_{X}[i] \wedge v_{Y}[i]
$$

Detour: OT \Rightarrow Secret-Shared-AND

Alice gets random γ, Bob gets

Output: γ

$$
\begin{gathered}
x_{0}=\gamma \\
x_{1}=\alpha \oplus \gamma
\end{gathered}
$$

random δ s.t. $\gamma \oplus \delta=\alpha \beta$.

Output: δ
Run an OT protocol
Choice bit $b=\beta$

Alice outputs γ.
Bob gets $x_{\mathbf{1}} \boldsymbol{b}+\boldsymbol{x}_{\mathbf{0}}(\mathbf{1} \oplus \boldsymbol{b})=\left(\boldsymbol{x}_{\mathbf{1}} \oplus \boldsymbol{x}_{\mathbf{0}}\right) \boldsymbol{b}+\boldsymbol{x}_{\mathbf{0}}=\alpha \beta \oplus \gamma:=\delta$

The Billionaires' Problem

1. Alice and Bob run many OTs to get $\left(\gamma_{i}, \delta_{i}\right)$ s.t.

$$
\gamma_{i} \oplus \delta_{i}=\boldsymbol{u}_{X}[\boldsymbol{i}] \wedge \boldsymbol{v}_{\boldsymbol{Y}}[\boldsymbol{i}]
$$

2. Alice computes $\gamma=\oplus_{i} \gamma_{i}$ and Bob computes $\delta=\oplus_{i} \delta_{i}$.
3. Alice reveals γ and Bob reveals δ.

Check (correctness): $\gamma \oplus \delta=\left\langle u_{X}, v_{Y}\right\rangle=\boldsymbol{f}(X, Y)$.

The Billionaires' Problem

1. Alice and Bob run many OTs to get $\left(\gamma_{i}, \delta_{i}\right)$ s.t.

$$
\gamma_{i} \oplus \delta_{i}=\boldsymbol{u}_{X}[\boldsymbol{i}] \wedge \boldsymbol{v}_{Y}[\boldsymbol{i}]
$$

2. Alice computes $\gamma=\oplus_{i} \gamma_{i}$ and Bob computes $\delta=\oplus_{i} \delta_{i}$.

Check (privacy): Alice \& Bob get a bunch of random bits.

"OT is Complete"

Theorem (lec18-19): OT can solve not just love and money, but any two-party (and multi-party) problem efficiently.

Defining Security: The Ideal/Real Paradigm

Secure Two-Party Computation

REAL Input: x
Input: y
WORLD:

Alice

Bob

IDEAL WORLD:

Secure Two-Party Computation

Input: x

Alice

Input: y

Bob

There exists a PPT simulator $S I M A_{A}$ such that for any x and y :

$$
\operatorname{SIM}_{A}(x, F(x, y)) \cong \operatorname{View}_{A}(x, y)
$$

Secure Two-Party Computation

Input: x

Alice

Input: y

Bob

There exists a PPT simulator $S I M_{B}$ such that for any x and y :

$$
\operatorname{SIM}_{B}(y, F(x, y)) \cong \operatorname{View}_{B}(x, y)
$$

OT Definition

Choice bit: b

Sender

Receiver Security: Sender should not learn b.
Define Sender's view $\operatorname{View}_{S}\left(x_{0}, x_{1}, b\right)=$ her random coins and the protocol messages.

OT Definition

Choice bit: b

Sender

Receiver Security: Sender should not learn b.
There exists a PPT simulator $S I M_{S}$ such that for any x_{0}, x_{1} and b :

$$
\operatorname{SIM}_{S}\left(x_{0}, x_{1}\right) \cong \operatorname{View}_{S}\left(x_{0}, x_{1}, b\right)
$$

OT Definition

Choice bit: b

Sender

Sender Security: Receiver should not learn x_{1-b}.
Define Receiver's view $\operatorname{View}_{R}\left(x_{0}, x_{1}, b\right)=$ his random coins and the protocol messages.

OT Definition

Choice bit: b

Sender

Receiver

Sender Security: Receiver should not learn x_{1-b}.
There exists a PPT simulator $S I M_{R}$ such that for any x_{0}, x_{1} and b :

$$
\operatorname{SIM}_{R}\left(b, x_{b}\right) \cong \operatorname{View}_{R}\left(x_{0}, x_{1}, b\right)
$$

OT Protocols

OT Protocol 1: Trapdoor Permutations

For concreteness, let's use the RSA trapdoor permutation.

Input bits: $\left(x_{0}, x_{1}\right)$

Choice bit: b

Pick $N=P Q$ and RSA exponent e.

Choose random r_{b} and set $s_{b}=r_{b}^{e} \bmod N$
Choose random s_{1-b}

Compute r_{0}, r_{1} and one-time pad x_{0}, x_{1} using hardcore bits

OT Protocol 1: Trapdoor Permutations

How about Bob's security
(a.k.a. Why does Alice not learn Bob's choice bit)?

Alice's view is s_{0}, s_{1} one of which is chosen randomly from Z_{N}^{*} and the other by raising a random number to the e-th power. They look exactly the same!

OT Protocol 1: Trapdoor Permutations

How about Bob's security
(a.k.a. Why does Alice not learn Bob's choice bit)?

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations

How about Alice's security
(a.k.a. Why does Bob not learn both of Alice's bits)?

Assuming Bob is semi-honest, he chose s_{1-b} uniformly at random, so the hardcore bit of $s_{1-b}=r_{1-b}^{d}$ is computationally hidden from him.

OT Protocol 1: Trapdoor Permutations

How about Alice's security
(a.k.a. Why does Bob not learn both of Alice's bits)?

Exercise: Show how to construct the simulator.

OT Protocol 2: from Oblivious PKE

A public-key encryption scheme (PKE) where there is an oblivious public-key generation algorithm that outputs a random public key "without knowing" the secret key.

$$
p k \leftarrow \operatorname{OblivGen}\left(1^{n} ; r\right)
$$

Security: IND-CPA holds even given the randomness used by OblivGen.

Example: for El Gamal encryption where the public key is a pair $\left(g, h=g^{x}\right)$ and the private key is x, OblivGen simply outputs two random elements from the group.

OT Protocol 2: from Oblivious PKE

Input bits: $\left(x_{0}, x_{1}\right)$

Choice bit: b

Generate random $p k_{b}$ with $s k_{b}$ by running
Gen. and $p k_{1-b}$ by running OblivGen

$$
\frac{c_{0} \leftarrow \operatorname{Enc}\left(p k_{0}, x_{0}\right)}{c_{1} \leftarrow \operatorname{Enc}\left(p k_{1}, x_{1}\right)}
$$

Decrypt c_{b} using $s k_{b}$

OT Protocol 3: Additive HE

Input bits: $\left(x_{0}, x_{1}\right)$

Choice bit: b
Encrypt choice bit b
$c \leftarrow \operatorname{Enc}(s k, b)$
$c^{\prime}=\operatorname{Eval}\left(S E L_{x_{0}, x_{1}}(b), c\right)$
Decrypt to get x_{b}

Homomorphically
evaluate the selection function

$$
\begin{gathered}
S E L_{x_{0}, x_{1}}(b)= \\
\left(x_{1} \oplus x_{0}\right) b \oplus x_{0}
\end{gathered}
$$

Bob's security: computational, from CPA-security of Enc. Alice's security: statistical, from function-privacy of Eval.

Many More Constructions of OT

Theorem: OT protocols can be constructed based on the hardness of the Diffie-Hellman problem, factoring, quadratic residuosity, LWE, elliptic curve isogeny problem etc. etc.

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]:
OT can solve any two-party computation problem.

How to Compute Arbitrary Functions

For us, programs $=$ functions $=$ Boolean circuits with XOR $(+\bmod 2)$ and AND $(\times \bmod 2)$ gates.

Want: If you can compute XOR and AND in the appropriate sense, you can compute everything.

Recap: OT \Rightarrow Secret-Shared-AND

Alice gets random γ, Bob gets
random δ s.t. $\gamma \oplus \delta=\mathrm{ab}$.

Output: γ

$$
\begin{gathered}
x_{0}=\gamma \\
\hline x_{1}=a \oplus \gamma \\
\hline
\end{gathered}
$$

Choice bit b

Alice outputs γ.
Bob gets $x_{\mathbf{1}} \boldsymbol{b}+\boldsymbol{x}_{\mathbf{0}}(\mathbf{1} \oplus \boldsymbol{b})=\left(\boldsymbol{x}_{\mathbf{1}} \oplus \boldsymbol{x}_{\mathbf{0}}\right) \boldsymbol{b}+\boldsymbol{x}_{\mathbf{0}}=a b \oplus \gamma:=\delta$

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

AND gate??
XOR gate:

Base Case: Input wires

Recap: XOR gate

Alice has α and Bob has β s.t.

$$
\alpha \oplus \beta=x
$$

Alice has α^{\prime} and Bob has β^{\prime} s.t.

$$
\alpha^{\prime} \oplus \beta^{\prime}=x^{\prime}
$$

Alice computes $\boldsymbol{\alpha} \oplus \boldsymbol{\alpha}^{\prime}$ and Bob computes $\boldsymbol{\beta} \oplus \boldsymbol{\beta}^{\prime}$.
So, we have: $\left(\alpha \oplus \alpha^{\prime}\right) \oplus\left(\beta \oplus \beta^{\prime}\right)$

$$
=(\alpha \oplus \beta) \oplus\left(\alpha^{\prime} \oplus \beta^{\prime}\right)=\mathrm{x} \oplus \mathrm{x}^{\prime}
$$

AND gate

Alice has α and Bob has β s.t.

$$
\alpha \oplus \beta=x
$$

Alice has α^{\prime} and Bob has β^{\prime} s.t.

$$
\alpha^{\prime} \oplus \beta^{\prime}=x^{\prime}
$$

Desired output (to maintain invariant): Alice wants $\boldsymbol{\alpha}^{\prime \prime}$ and Bob wants $\boldsymbol{\beta}^{\prime \prime}$ s.t. $\boldsymbol{\alpha}^{\prime \prime} \oplus \boldsymbol{\beta}^{\prime \prime}=x x^{\prime}$

AND gate

$$
\begin{aligned}
& x x^{\prime}=(\alpha \oplus \beta)\left(\alpha^{\prime} \oplus \beta^{\prime}\right) \\
& =\alpha \alpha^{\prime} \oplus \gamma_{a} \oplus \delta_{a} \oplus \beta \beta^{\prime} \\
& \Omega \\
& \begin{array}{cc}
\oplus & \oplus \\
\gamma_{b} & \stackrel{\oplus}{\delta_{b}}
\end{array}
\end{aligned}
$$

$$
\alpha^{\prime \prime}=\alpha \alpha^{\prime} \oplus \gamma_{a} \oplus \delta_{a} \quad \beta^{\prime \prime}=\beta \beta^{\prime} \oplus \gamma_{b} \oplus \delta_{b}
$$

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output wire, and XOR the shares together to obtain the output.

Security by Composition

Theorem:

If protocol Π securely realizes a function g in the " f-hybrid model" and protocol Π ' securely realizes f, then $\Pi \circ \Pi^{\prime}$ securely realizes g.

Security: Intuition (ss-AND hybrid model)

 Imagine that the parties have access to an ss-AND angel.

$$
\gamma \oplus \delta=\mathrm{ab}
$$

Security: Intuition (ss-AND hybrid model)

 Imagine that the parties have access to an ss-AND angel.Simulator for Alice's view:
XOR gate: simulate given
Alice's input shares

Input wires: can be
simulated given Alice's input

Security: Intuition (ss-AND hybrid model)

Simulator for Alice's view:

AND gate: simulate given Alice's input shares \& outputs from the ss-AND angel.

Alice's share

$$
\begin{aligned}
& =a \cdot 0 \\
& +\gamma_{\text {alice }} \\
& +\delta_{\text {alice }}
\end{aligned}
$$

$\gamma_{\text {alice }}$ and $\delta_{\text {alice }}$ are random, independent of b

Security: Intuition (ss-AND hybrid model)

Simulator for Alice's view:

Output wire: need to know both Alice and Bob's output shares.

Bob's output share = Alice's output share \bigoplus function output

Simulator knows the function output, and can compute Bob's output share given Alice's output share.

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

12Input bit: a

Pick $N=P Q$ and RSA exponent e.

Let x_{0} be random and $x_{1}=x_{0} \oplus \mathrm{a}$.

$$
s_{0}, s_{1}
$$

Choose random r_{b} and set $s_{b}=r_{b}^{e} \bmod N$

Choose random s_{1-b}

Compute r_{0}, r_{1} and one-time pad x_{0}, x_{1} using hardcore bits

Alice outputs x_{0}

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

Exercise: Construct simulators for Alice and Bob.

In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves any two-party computation problem against semi-honest adversaries.

In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves any multi-party computation problem against semi-honest adversaries.

MPC Outline

Secret-sharing Invariant: For each wire of the circuit, the n parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.
XOR gate: given input shares $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ s.t. $\oplus_{i=1}^{n} \alpha_{i}=a$ and $\left(\beta_{1}, \ldots, \beta_{n}\right)$ s.t. $\bigoplus_{i=1}^{n} \beta_{i}=b$, compute the shares of the output of the XOR gate:

$$
\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{n}+\beta_{n}\right)
$$

AND gate: given input shares as above, compute the shares of the output of the XOR gate:

$$
\left(o_{1}, \ldots, o_{n}\right) \text { s.t } \oplus_{i=1}^{n} o_{i}=a b
$$

