MIT 6.875

Foundations of Cryptography
Lecture 18

New Topic:
Secure Computation

Secure Two-Party Computation

Input: x

{) «—

Alice

Output: F,(x,y) Output: Fz(x,y)

Secure Two-Party Computation

Input: x Input: y
2\
o —
Alice Bob
Output: F,(x,y) Output: Fz(x,y)

Semitynest Security:

 Alice should not learn anything more than x and F,(x, y).

« Bob should not learn anything more than y and Fgz(x, y).

Secure Two-Party Computation

Input: x Input: y
2\
o —
Alice Bob
Output: F,(x,y) Output: Fz(x,y)

Malicious Security:

* No (PPT) Alice* can learn anything more than x* and F,(x*, y).

 No (PPT) Bob* can learn anything more than y* and Fg(x, y*).

Tool 1: Secret Sharing

secret b

shares; shares, shares; shares, shares,
& = 23 5.8
p P3 P, P,

P, 2

Secret Sharing

Dealer

U Any “authorized” subset of players can recover D.

J No other subset of players has any info about D.

o Threshold (or t-out-of-n) SS [Shamir’79, Blakley’79]:

“authorized” subset = has size > t.

secretb € 7

- '2-out-of-n Secret Sharing?

@ z2328¢

P,

Dealer

Here is a, solution.

Repeat for every two-person subset {F;, P;}:
* Generate a 2-out-of-2 secret sharing (s;, s;) of b.
* Give s; to P; and s; to P

What is the size of shares each party gets?

How does this scale to t-out-of-n%

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

Shamir’s 2-out-of-n Secret Sharing

-

1\\/ 2
4 -

secret b

\

Each share s; is truly
random (independent of
secret b)

Any two shares uniquely
determine b.

Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose
constant term is the secret b.

f(x) = ax + b where a is uniformly random mod p

2. Compute the shares:

s1=f(1),s2 = f(2), ., 50 = (D),)50 = f(0)

Correctness: can recover secret from any two shares.

Proof: Parties i and j, given shares s; = ai + b and s; =
aj + b can solve for b (=]S]i,:lisj).

Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose
constant term is the secret b.

f(x) = ax + b where a is uniformly random mod p

2. Compute the shares:

s1=f(1),s2 = f(2), ., 50 = (D),)50 = f(0)

Security: any single party has no information about the secret.

Proof: Party i's share s; = a *x i + b is uniformly random,
independent of b, as a is random and so is a *i.

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1)
polynomial (mod p) whose constant term is the secret b.

fxX)=ar_xt 1+ +ax+b
where a; are uniformly random mod p

2. Compute the shares:
s1=f),s, =f(2),..,s; =f(0),..,sp,=f(n)
Correctness: can recover secret from any t shares.

Security: the distribution of any t — 1 shares is
independent of the secret.

Note: need p to be larger than the number of parties n.

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f),s, =f(2),..,s; =f(i),..,sp,=f(n)
Correctness: via Vandermonde matrices.

Let’s look at shares of parties Py, P,, ..., P;.

S11 1 1 1 ... 131 b -
S2 1 2 22 .. 224 o4
ss{=11 3 3% .. 31| ay [(modp)
Lsed L1 ¢ 2 L ttHlap .

t-by-t Vandermonde matrix which is invertible

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f(1),s2 = f(2), .50 = (D),)80 = f(0)

Correctness: Alternatively, Lagrange interpolation gives
an explicit formula that recovers b.

b= £(0) =zt:f(i)<] +=5)
i=1 l

1<j<t,j#i

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f(1),s2 = f(2), .50 = (D),)80 = f(0)

Security:

Let’s look at shares of parties Py, P,, ..., Ps_1.

- S1 1 1 1 1 1r b

So 1 2 22 Zt_l aq

s3 |=|1 3 32 3t-1 a, |(modp)
seqd 1 t—1 -1 .. (t-D"la,_

(t — 1)-by-t Vandermonde matrix

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f(1),s2 = f(2), .50 = (D),)80 = f(0)

Security: For every value of b there is a unique polynomial
with constant term b and shares s4, s,, ..., S¢_1.

- S1 1 1 1 1 1r b

So 1 2 22 Zt_l aq

s3 |=|1 3 32 3t-1 a, |(modp)
seqd 1 t—1 -1 .. (t-D"la,_

(t — 1)-by-t Vandermonde matrix

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f(1),s2 = f(2), .50 = (D),)80 = f(0)

Security: For every value of b there is a unique polynomial
with constant term b and shares s4, s,, ..., S¢_1.

Corollary: for every value of the secret b is equally likely
given the shares s4, s, ..., S¢—1. In other words, the secret b is
perfectly hidden given t — 1 shares.

Tool 2: Oblivious Transfer

Oblivious Transfer (OT)

X0

{) «—

Sender

Choice bit: b

Receiver

« Sender holds two bits/strings x, and x;.

 Receiver holds a choice bit b.

* Receiver should learn x;, sender should learn nothing.

(We will consider honest-but-curious adversaries; formal

definition in a little bit...)

Why OT? The Dating Problem
e,

Why OT? The Dating Problem

Alice and Bob want to
compute the ANDa A L.

— 0 Run an OT protocol
X0 = Gy ChoiiCe bit b =

Bob gets a if =1, and 0 if =0

Here is a way to write the OT selection function: x1b + x¢(1 — b)

which, in this case is = af.

The Billionaires’ Problem

Net worth:

Who is richer?

The Billionaires’ Problem
FX,7) =1

ﬂ ifandonlyif X >Y

O0/1/0/0]| - - 071111 1]|1

Unit Vector uy = 1 in the X" Vector vy = 1 from the (Y + 1)"

location and 0 elsewhere location onwards
U

FOLY) = (ux,vy) =) uyli] Avyi]

i=1

Detour: OT = Secret-Shared-AND

Alice gets random y, Bob gets
random o s.t.y @06 = apf.

Output: y Output: &
— Run an OT protocol
X1 =ady

Alice outputs y.
Bob gets x1b + x0(169b) = (x1 D xo)b +Xx9 = af®y =90

The Billionaires’ Problem
FX,7) =1

ﬂ ifandonlyif X >Y
O/1/0 0 - - 1011 1
Unit Vector uy U Vector vy
FOLY) = (uy, vy) =) uxli] Avyli]
i=1

1. Alice and Bob run many OTs to get (y;, 6;) s.t.
Yi®d; = uxli] Avyli]

2. Alice computes y = @, y; and Bob computes § = &; ;.
3. Alice reveals y and Bob reveals 6.

Check (correctness): y &5 = (uy,vy) = f(X,Y).

The Billionaires’ Problem

fX,Y)=1
ﬂ ifandonlyif X >Y
O/1/0 0 - - 1011 111
Unit Vector uy U Vector vy
FOLY) = (uy, vy) =) uxli] Avyli]
i=1

1. Alice and Bob run many OTs to get (y;, 6;) s.t.
Yi®d; = uxli] Avyli]
2. Alice computes y = @, y; and Bob computes § = &; ;.

Check (privacy): Alice & Bob get a bunch of random bits.

llOT iS COmp|ete,,

Theorem (lec18-19): OT can solve not just love and
money, but any two-party (and multi-party) problem
efficiently.

Y

Defining Security:
The Ideal/Real Paradigm

Secure Two-Party Computation

REAL Input: x
WORLD:

Secure Two-Party Computation

Input: x

{) «—

Alice

There exists a PPT simulator SIM, such that for any x
and y:

SIM,(x, F(x,y)) = View,(x,y)

Secure Two-Party Computation

Input: x

{) «—

Alice

There exists a PPT simulator SIMg such that for any x
and y:

SIMg(y,F(x,y)) = Viewg(x,y)

OT Definition

X0
Choice bit: b
X1
L — @
Sender Receiver

Receiver Security: Sender should not learn b.

Define Sender’s view Views(x, x1, b) = her random coins
and the protocol messages.

OT Definition

Choice bit: b

Sender Receiver

Receiver Security: Sender should not learn b.

There exists a PPT simulator SIM¢ such that for any
Xg,X1 and b:

SIM¢(xg,x1) = Views(xg, X1, b)

OT Definition

Choice bit: b

Sender Receiver

Sender Security: Receiver should not learn x;_;.

Define Receiver’s view Viewg(xg, x1, b) = his random coins
and the protocol messages.

OT Definition

Choice bit: b

Sender Receiver

Sender Security: Receiver should not learn x;_;.

There exists a PPT simulator SIMgp such that for any
Xg,X1 and b:

SIMg (b, xp) = Viewg(xy,x1,b)

OT Protocols

OT Protocol 1: Trapdoor Permutations

For concreteness, let's use the RSA trapdoor permutation.

Input bits: (xg, x1) Choice bit: b

Pick N = PQ and N,e
RSA exponent e. >

Choose random r;, and
set s, = rf mod N

50,51
« Choose random s;_,
Compute ry, 4 and
one-time pad xg, x4 Xo@®HCB (1y) .
i - » Bob can recover x
using hardcore bits x,®HCB () b

but not x;_,

OT Protocol 1: Trapdoor Permutations

N, e

>
So, S1
Input bits: (xg, x;) Choice bit: b
xo®HCB (1)
>
x1@®HCB(ry)

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

Alice’s view is sy, s; one of which is chosen randomly
from Zy and the other by raising a random number to
the e-th power. They look exactly the same!

OT Protocol 1: Trapdoor Permutations

N, e
.
So, S1 /W\
Input bits: (xg, x;) Choice bit: b
xo®HCB (1)
>
X @HCB(ry)

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations

N, e

>
So, S1
Input bits: (xg, x;) Choice bit: b
xo®HCB (1)
>
x1@®HCB(ry)

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

Assuming Bob is semi-honest, he chose s;_; uniformly

at random, so the hardcore bit of s,_, = r , is
computationally hidden from him.

OT Protocol 1: Trapdoor Permutations

N, e
.
So, S1 /W\
Input bits: (xg, x;) Choice bit: b
xo®HCB (1)
>
X @HCB(ry)

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

Exercise: Show how to construct the simulator.

OT Protocol 2: from Oblivious PKE

A public-key encryption scheme (PKE) where there is
an oblivious public-key generation algorithm that outputs
a random public key “without knowing” the secret key.

pk < OblivGen(1"; 1)

Security: IND-CPA holds even given the randomness
used by OblivGen.

Example: for EIl Gamal encryption where the public key is
a pair (g, h = g*) and the private key is x, OblivGen
simply outputs two random elements from the group.

OT Protocol 2: from Oblivious PKE

x
0

Input bits: (xg, x1) Choice bit: b

Generate random pk,
pko, pkq with sk by running
< Gen. and pk,_, by
running OblivGen

co <« Enc(pky, xp)
>

c1 < Enc(pkq, xq)

Decrypt ¢, using sk,

OT Protocol 3: Additive HE

Input bits: (xg, x1) Choice bit: b

Encrypt choice bit b

Homomorphically c ¢ < Enc(sk, b)
evaluate the
selection function

SELy ., (b) = ¢’ = Eval(SEL,, . (b),c)
(x1 © x9)b ® x¢ >

Decrypt to get x,,

Bob’s security: computational, from CPA-security of Enc.

Alice’s security: statistical, from function-privacy of Eval.

Many More Constructions of OT

Theorem: OT protocols can be constructed based
on the hardness of the Diffie-Hellman problem,
factoring, quadratic residuosity, LWE, elliptic curve
isogeny problem etc. etc.

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any two-party computation problem.

Y

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR
(+ mod 2) and AND (X mod 2) gates.

ab(a'+b') £ 8
(Jﬁ
ab] a + b
()

|
{la b@ {) a b’@

Want: If you can compute XOR and AND in the appropriate
sense, you can compute everything.

Recap: OT = Secret-Shared-AND

Alice gets random y, Bob gets
random d s.t.y @ 6 = ab.

Output: y Output: &
— Run an OT protocol
x1=a®y

Alice outputs y.
Bob gets x1b + xo(1®b) = (x1 D x9)b + x9g = ab®Dy =6

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

XOR gate:

AND gate?? h Locally XOR the shares
X
al

Base Case: Input wires

Recap: XOR gate

Alice has a and Bob has f s.t. x D x
a@PDp=x | +

Alice has a’ and Bob has ' s.t.
al @ ﬁl — xl

Alice computes a @ a’ and Bob computes 8 @ B'.

So,we have: (a D a')D (B D B)
=(aDp) D@ D) =xBX

AND gate

Alice has a and Bob has f s.t. -
a@Dpf =x | X

Alice has a’ and Bob has ' s.t.
al @ ﬁl — xl

Desired output (to maintain invariant):
Alice wants a’’ and Bob wants B s.t. a'’ @ B”

= XX

AND gate

XX
xx' = (a @ B)(a D B) r)lh

=ad' @D va ® 5, ©LP 1
L o
Vb

il

a”:aa,@ya@ga ﬁ,’:ﬁﬁ’@yb@5b

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output
wire, and XOR the shares together to obtain the output.

ﬁ'“ a®p =ab(d ® b
X ® B

Security by Composition

Theorem:

If protocol II securely realizes a function g in the
“f-hybrid model” and protocol IT" securely
realizes f, then IT o I1' securely realizes g.

f-angel
~ @\\Q ™~
< > /W\

Protocol for g in the f-hybrid model

ﬂ :

Protocol for f

AV

Security: Intuition (ss-AND hybrid model)

Imagine that the parties have access to an ss-AND angel.

el

Security: Intuition (ss-AND hybrid model)
Imagine that the parties have access to an ss-AND angel.

Simulator for Alice’s view: XOR gate: simulate given
Alice’s input shares

g

Input wires: can be
simulated given Alice’s input

Security: Intuition (ss-AND hybrid model)
Simulator for Alice’s view:

AND gate: simulate given Alice’s input shares &
outputs from the ss-AND angel.

Alice’s share m ,
=a-(a ﬂ
T Yalice
|
6alice +

{1 a 0 a 0

Yalice and 5alice are
random, independent of b

Security: Intuition (ss-AND hybrid model)

Simulator for Alice’s view:

Output wire: need to know both Alice and Bob’s output
shares.

Bob’s output share = Alice’s
output share @ function output X a {)

Simulator knows the
function output, and +
can compute Bob’s [I

output share given dba O a 0
Alice’s output share.

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

il

Input bit: a

Pick N = PQ and
RSA exponent e.

Let x, be random
and x; = x,®a.

Compute ry, r; and
one-time pad x,, x4
using hardcore bits

Alice outputs x,

Input bit: b

N,e
>
Choose random r;, and
set s, =1, mod N
50,51
> Choose random s;_,
XO@HCB(T())
>
x1€9HCB(1"1)

Bob outputs x;

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

Input bit: a Input bit: b

Exercise: Construct simulators for Alice and Bob.

In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that

solves any two-party computation problem
against semi-honest adversaries.

In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that

solves any multi-party computation problem
against semi-honest adversaries.

MPC Outline

Secret-sharing Invariant: For each wire of the circuit, the n
parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares (aq, ...,a,) st. D, a; = a
and (B4, ..., Bn) s-t. @i, B; = b, compute the shares of the
output of the XOR gate:

(al + 1811 ey Up + :Bn)

AND gate: given input shares as above, compute the shares
of the output of the XOR gate:

(01, ...,0,) S. t DI, 0; = ab Exercise!

