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Lecture 18
Foundations of Cryptography



New Topic: 
Secure Computation



Secure Two-Party Computation

Bob

Input: 𝒚

Output: 	𝐹! 𝑥, 𝑦

Alice

Input: 𝒙

Output: 	𝐹" 𝑥, 𝑦



Secure Two-Party Computation

Bob

Input: 𝒚

Output: 	𝐹! 𝑥, 𝑦

• Alice should not learn anything more than 𝑥 and 𝐹! 𝑥, 𝑦 .  

Alice

Input: 𝒙

• Bob should not learn anything more than 𝑦 and 𝐹" 𝑥, 𝑦 .  

Semi-honest Security:Security:

Output: 	𝐹" 𝑥, 𝑦



Secure Two-Party Computation

Bob

Input: 𝒚

Output: 	𝐹! 𝑥, 𝑦

• No (PPT) Alice* can learn anything more than 𝑥∗ and 𝐹! 𝑥∗, 𝑦 .  

Alice

Input: 𝒙

• No (PPT) Bob* can learn anything more than 𝑦∗ and 𝐹" 𝑥, 𝑦∗ .  

Malicious Security:

Output: 	𝐹" 𝑥, 𝑦



Tool 1: Secret Sharing



Secret Sharing
secret b

share 𝑠! share 𝑠" share 𝑠# share 𝑠$ share 𝑠%

𝑃! 𝑃" 𝑃# 𝑃$ 𝑃%Dealer

o Threshold (or t-out-of-n) SS [Shamir’79, Blakley’79]: 

q  Any “authorized” subset of players can recover b.

q  No other subset of players has any info about b.

“authorized” subset = has size ≥	t. 

…



𝟐-out-of-𝒏 Secret Sharing?
secret b	∈ 𝑍&

Here is a solution.

Repeat for every two-person subset {𝑃$, 𝑃%}:	
• Generate a 2-out-of-2 secret sharing (𝑠$, 𝑠%) of b. 
• Give 𝑠$ to 𝑃$ and 𝑠% to 𝑃%

𝑃! 𝑃" 𝑃# 𝑃$ 𝑃%Dealer

…

What is the size of shares each party gets?

How does this scale to t-out-of-n?



Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!



Shamir’s 2-out-of-n Secret Sharing

𝒔𝟏 𝒔𝟐

𝒔𝟑
secret 𝑏

(1, 𝑠!)
(2, 𝑠")

(3, 𝑠#)

Each share 𝑠$ is truly 
random (independent of 

secret b) 
Any two shares uniquely
determine b.

random line through (0,b)



Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose 
constant term is the secret 𝑏.

𝑓 𝑥 = 𝑎𝑥 + 𝑏 where 𝑎 is uniformly random mod 𝑝 

2.   Compute the shares: 
𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Correctness: can recover secret from any two shares. 

Proof: Parties 𝑖 and 𝑗, given shares 𝑠$ = 𝑎𝑖 + 𝑏 and 𝑠% =
𝑎𝑗 + 𝑏 can solve for 𝑏	(= %,!-$,"

%-$ ).



Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose 
constant term is the secret 𝑏.

𝑓 𝑥 = 𝑎𝑥 + 𝑏 where 𝑎 is uniformly random mod 𝑝 

2.   Compute the shares: 
𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Security: any single party has no information about the secret.  

Proof: Party 𝑖’s share 𝑠$ = 𝑎 ∗ 𝑖 + 𝑏 is uniformly random, 
independent of 𝑏, as 𝑎 is random and so is 𝑎 ∗ 𝑖.



Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) 
polynomial (mod p) whose constant term is the secret 𝑏.

𝑓 𝑥 = 𝑎.-)𝑥.-) +⋯+ 𝑎)𝑥 + 𝑏 
 where 𝑎$ are uniformly random mod 𝑝 

2.   Compute the shares: 
𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Correctness: can recover secret from any 𝑡 shares. 

Security: the distribution of 𝑎𝑛𝑦	𝑡 − 1 shares is 
independent of the secret.

Note: need p to be larger than the number of parties n. 



𝑠)
𝑠*
𝑠/
…
𝑠.

=

1 1 1 … 1
1 2 2* … 2.-)
1 3 3* … 3.-)
1 … … … …
1 𝑡 𝑡* … 𝑡.-)

𝑏
𝑎)
𝑎*
…
𝑎.-)

(mod	𝑝)

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎.-)𝑥.-) +⋯+ 𝑎)𝑥 + 𝑏 
 where 𝑎$ are uniformly random mod 𝑝 

𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Correctness: via Vandermonde matrices.

Let’s look at shares of parties 𝑃), 𝑃*, … , 𝑃..

𝑡-by-𝑡 Vandermonde matrix which is invertible



Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎.-)𝑥.-) +⋯+ 𝑎)𝑥 + 𝑏 
 where 𝑎$ are uniformly random mod 𝑝 

𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Correctness: Alternatively, Lagrange interpolation gives 
an explicit formula that recovers b. 

𝑏 = 𝑓 0 =F
$0)

.

𝑓(𝑖) G
)1%1.,%3$

−𝑥%
𝑥$ − 𝑥%



𝑠)
𝑠*
𝑠/
…
𝑠.-)

=

1 1 1 … 1
1 2 2* … 2.-)
1 3 3* … 3.-)
1 … … … …
1 𝑡 − 1 (𝑡 − 1)* … (𝑡 − 1).-)

𝑏
𝑎)
𝑎*
…
𝑎.-)

(mod	𝑝)

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎.-)𝑥.-) +⋯+ 𝑎)𝑥 + 𝑏 
 where 𝑎$ are uniformly random mod 𝑝 

𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Security:

Let’s look at shares of parties 𝑃), 𝑃*, … , 𝑃.-).

(𝑡 − 1)-by-𝑡 Vandermonde matrix



𝑠)
𝑠*
𝑠/
…
𝑠.-)

=

1 1 1 … 1
1 2 2* … 2.-)
1 3 3* … 3.-)
1 … … … …
1 𝑡 − 1 (𝑡 − 1)* … (𝑡 − 1).-)

𝑏
𝑎)
𝑎*
…
𝑎.-)

(mod	𝑝)

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎.-)𝑥.-) +⋯+ 𝑎)𝑥 + 𝑏 
 where 𝑎$ are uniformly random mod 𝑝 

𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Security: For every value of 𝑏 there is a unique polynomial 
with constant term 𝑏 and shares 𝑠), 𝑠*, … , 𝑠.-). 

(𝑡 − 1)-by-𝑡 Vandermonde matrix



Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎.-)𝑥.-) +⋯+ 𝑎)𝑥 + 𝑏 
 where 𝑎$ are uniformly random mod 𝑝 

𝑠) = 𝑓 1 , 𝑠* = 𝑓 2 ,… , 𝑠$ = 𝑓 𝑖 , … , 𝑠+ = 𝑓 𝑛

Security: For every value of 𝑏 there is a unique polynomial 
with constant term 𝑏 and shares 𝑠), 𝑠*, … , 𝑠.-). 

Corollary: for every value of the secret 𝑏	is equally likely 
given the shares 𝑠), 𝑠*, … , 𝑠.-). In other words, the secret 𝑏	is 
perfectly hidden given 𝑡 − 1 shares.



Tool 2: Oblivious Transfer



Oblivious Transfer (OT)

Receiver

Choice bit: 𝒃
𝑥4
𝑥)

•  Sender holds two bits/strings 𝑥4 and 𝑥).

•  Receiver holds a choice bit 𝑏.

• Receiver should learn 𝑥5, sender should learn nothing. 
(We will consider honest-but-curious adversaries; formal 
definition in a little bit…)

Sender



Why OT? The Dating Problem
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice and Bob want to 

compute the AND 𝛼 ∧ 𝛽.



Why OT? The Dating Problem
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice and Bob want to 

compute the AND 𝛼 ∧ 𝛽.

𝑥4 = 0
𝑥) = 𝛼

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets 𝛼 if 𝛽=1, and 0 if 𝛽=0 

Here is a way to write the OT selection function: 𝒙𝟏𝒃 +	𝒙𝟎 𝟏 − 𝒃
which, in this case is = 𝛼𝛽. 



The Billionaires’ Problem
Net worth: 

$X
Net worth: 

$Y

Who is richer?



The Billionaires’ Problem

𝑋 𝑌

𝑓(𝑋, 𝑌) = 1 
if and only if 𝑋 > 𝑌

Unit Vector 𝑢> = 1 in the 𝑋.? 
location and 0 elsewhere

10 0 0 ……

Vector 𝑣@ = 1 from the (𝑌 + 1).? 
location onwards

10 1 1… 1 1 1

𝒇 𝑿, 𝒀 = 𝒖𝑿, 𝒗𝒀 =F
𝒊0𝟏

𝑼

𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

Compute each AND individually and sum it up? 



Detour: OT ⇒ Secret-Shared-AND
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice gets random 𝛾, Bob gets 

random 𝛿 s.t. 𝛾	⨁𝛿 = 𝛼𝛽.

𝑥4 = 𝛾
𝑥) = 𝛼⨁ 𝛾

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets 𝒙𝟏𝒃 +	𝒙𝟎 𝟏⨁𝒃

Output: 𝛾 Output: 𝛿

= (𝒙𝟏 ⨁	𝒙𝟎)𝒃 + 𝒙𝟎 = 𝛼𝛽⨁𝛾 ≔ 𝛿

Alice outputs 𝛾.



The Billionaires’ Problem
𝑓(𝑋, 𝑌) = 1 

if and only if 𝑋 > 𝑌

Unit Vector 𝑢>

10 0 0 ……

Vector 𝑣@

10 1 1… 1 1 1

𝒇 𝑿, 𝒀 = 𝒖𝑿, 𝒗𝒀 =F
𝒊0𝟏

𝑼

𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

1. Alice and Bob run many OTs to get (𝛾$, 𝛿$) s.t.

𝛾$⨁𝛿$ = 	𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

2. Alice computes 𝛾 = 	⨁$	𝛾$ and Bob computes 𝛿 = 	⨁$	𝛿$. 

Check (correctness): 𝛾⨁𝛿 = 𝒖𝑿, 𝒗𝒀 = 𝒇 𝑿, 𝒀 .
3. Alice reveals 𝛾 and Bob reveals 𝛿.



The Billionaires’ Problem
𝑓(𝑋, 𝑌) = 1 

if and only if 𝑋 > 𝑌

Unit Vector 𝑢>

10 0 0 ……

Vector 𝑣@

10 1 1… 1 1 1

𝒇 𝑿, 𝒀 = 𝒖𝑿, 𝒗𝒀 =F
𝒊0𝟏

𝑼

𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

1. Alice and Bob run many OTs to get (𝛾$, 𝛿$) s.t.

𝛾$⨁𝛿$ = 	𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

2. Alice computes 𝛾 = 	⨁$	𝛾$ and Bob computes 𝛿 = 	⨁$	𝛿$. 

Check (privacy): Alice & Bob get a bunch of random bits.



“OT is Complete”

Theorem (lec18-19): OT can solve not just love and 
money, but any two-party (and multi-party) problem 
efficiently. 



Defining Security:
The Ideal/Real Paradigm



Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙REAL 
WORLD:

IDEAL 
WORLD: 𝒙

𝒚

𝑭(𝒙
, 𝒚) 𝑭(𝒙, 𝒚)

≈



Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀! such that for any 𝑥 
and 𝑦: 

𝑆𝐼𝑀1(𝑥, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤1(𝑥, 𝑦)



Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀" such that for any 𝑥 
and 𝑦: 

𝑆𝐼𝑀2(𝑦, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤2(𝑥, 𝑦)



OT Definition

Receiver

Choice bit: 𝒃
𝑥4
𝑥)

Receiver Security: Sender should not learn b.

Sender

Define Sender’s view 𝑉𝑖𝑒𝑤E(𝑥4, 𝑥), 𝑏) = her random coins 
and the protocol messages.



OT Definition

Receiver

Choice bit: 𝒃
𝑥4
𝑥)

Receiver Security: Sender should not learn b.

Sender

There exists a PPT simulator 𝑆𝐼𝑀E such that for any 
𝑥4,𝑥) and 𝑏: 

𝑆𝐼𝑀3(𝑥4, 𝑥5) ≅ 𝑉𝑖𝑒𝑤3(𝑥4, 𝑥5, 𝑏)



OT Definition

Receiver

Choice bit: 𝒃
𝑥4
𝑥)

Sender Security: Receiver should not learn 𝑥)-5.

Sender

Define Receiver’s view 𝑉𝑖𝑒𝑤F(𝑥4, 𝑥), 𝑏) = his random coins 
and the protocol messages.



OT Definition

Receiver

Choice bit: 𝒃
𝑥4
𝑥)

Sender Security: Receiver should not learn 𝑥)-5.

Sender

There exists a PPT simulator 𝑆𝐼𝑀F such that for any 
𝑥4,𝑥) and 𝑏: 

𝑆𝐼𝑀6(𝑏, 𝑥7) ≅ 𝑉𝑖𝑒𝑤6(𝑥4, 𝑥5, 𝑏)



OT Protocols



OT Protocol 1: Trapdoor Permutations

Pick 𝑁 = 𝑃𝑄 and 
RSA exponent 𝑒. 

𝑁, 𝑒

Choose random 𝑟5 and  
set 𝑠5 = 𝑟5G	mod	𝑁

For concreteness, let’s use the RSA trapdoor permutation.

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

Choose random 𝑠)-5
𝑠4, 𝑠)

𝑥4⨁𝐻𝐶𝐵 𝑟4
Compute 𝑟4, 𝑟) and 
one-time pad 𝑥4, 𝑥) 
using hardcore bits 𝑥)⨁𝐻𝐶𝐵 𝑟)

Bob can recover 𝑥5 
but not 𝑥)-5  



OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

𝑠4, 𝑠)

𝑥4⨁𝐻𝐶𝐵 𝑟4

How about Bob’s security 
(a.k.a. Why does Alice not learn Bob’s choice bit)?

𝑥)⨁𝐻𝐶𝐵 𝑟)

Alice’s view is 𝑠4, 𝑠) one of which is chosen randomly 
from 𝑍H∗  and the other by raising a random number to 
the 𝑒-th power. They look exactly the same!



OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

𝑠4, 𝑠)

𝑥4⨁𝐻𝐶𝐵 𝑟4

How about Bob’s security 
(a.k.a. Why does Alice not learn Bob’s choice bit)?

𝑥)⨁𝐻𝐶𝐵 𝑟)

Exercise: Show how to construct the simulator.



OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

𝑠4, 𝑠)

𝑥4⨁𝐻𝐶𝐵 𝑟4

How about Alice’s security 
(a.k.a. Why does Bob not learn both of Alice’s bits)?

𝑥)⨁𝐻𝐶𝐵 𝑟)

Assuming Bob is semi-honest, he chose 𝑠)-5 uniformly 
at random, so the hardcore bit of 𝑠)-5 = 𝑟)-5I  is 
computationally hidden from him.



𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

𝑠4, 𝑠)

𝑥4⨁𝐻𝐶𝐵 𝑟4

How about Alice’s security 
(a.k.a. Why does Bob not learn both of Alice’s bits)?

𝑥)⨁𝐻𝐶𝐵 𝑟)

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations



OT Protocol 2: from Oblivious PKE

A public-key encryption scheme (PKE) where there is 
an oblivious public-key generation algorithm that outputs 
a random public key “without knowing” the secret key.

    𝑝𝑘 ← OblivGen(1+; 𝑟)

Security: IND-CPA holds even given the randomness 
used by OblivGen.

Example: for El Gamal encryption where the public key is 
a pair 𝑔, ℎ = 𝑔J  and the private key is 𝑥, OblivGen 
simply outputs two random elements from the group.



OT Protocol 2: from Oblivious PKE

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

𝑝𝑘4, 𝑝𝑘)
Generate random 𝑝𝑘5 
with 𝑠𝑘5 by running 
Gen. and 𝑝𝑘)-5 by 
running OblivGen 

𝑐4 ← 𝐸𝑛𝑐(𝑝𝑘4, 𝑥4)

𝑐) ← 	𝐸𝑛𝑐(𝑝𝑘), 𝑥))

Decrypt 𝑐5 using 𝑠𝑘5 



OT Protocol 3: Additive HE

Encrypt choice bit b

Choice bit: 𝑏Input bits: (𝑥', 𝑥!)

𝑐 ⟵ Enc(𝑠𝑘, 𝑏)

𝑐K = Eval(𝑆𝐸𝐿J#,J$(𝑏), 𝑐)

Homomorphically 
evaluate the 
selection function

𝑐

𝑺𝑬𝑳𝒙𝟎,𝒙𝟏 𝒃 =
(𝒙𝟏 ⨁	𝒙𝟎)𝒃	⨁	𝒙𝟎

Decrypt to get 𝑥5

Bob’s security: computational, from CPA-security of Enc.
Alice’s security: statistical, from function-privacy of Eval.



Many More Constructions of OT

Theorem: OT protocols can be constructed based 
on the hardness of the Diffie-Hellman problem, 
factoring, quadratic residuosity, LWE, elliptic curve 
isogeny problem etc. etc.



Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]: 
OT can solve any two-party computation problem. 



How to Compute Arbitrary Functions

+X

X

For us, programs = functions = Boolean circuits with XOR 
(+	𝑚𝑜𝑑	2) and AND (×	𝑚𝑜𝑑	2) gates.

Want: If you can compute XOR and AND in the appropriate 
sense, you can compute everything.

𝑎 𝑏 𝑎′ 𝑏′

𝑎𝑏(𝑎′ + 𝑏′)

𝑎𝑏 𝑎K + 𝑏′



Recap: OT ⇒ Secret-Shared-AND
𝑎 ∈ {0,1} 𝑏 ∈ {0,1}Alice gets random 𝛾, Bob gets 

random 𝛿 s.t. 𝛾	⨁𝛿 = ab.

𝑥4 = 𝛾
𝑥) = 𝑎	⨁ 𝛾

Choice bit 𝑏
Run an OT protocol

Bob gets 𝒙𝟏𝒃 +	𝒙𝟎 𝟏⨁𝒃

Output: 𝛾 Output: 𝛿

= (𝒙𝟏 ⨁	𝒙𝟎)𝒃 + 𝒙𝟎 = 𝑎𝑏⨁𝛾

Alice outputs 𝛾.

≔ 𝛿



+X

X

How to Compute Arbitrary Functions
Secret-sharing Invariant: For each wire of the circuit, Alice 
and Bob each have a bit whose XOR is the value at the wire.

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Base Case: Input wires

XOR gate: 
Locally XOR the shares

𝑎′
𝑏′

⊕
⊕

AND gate?? 



Recap: XOR gate
Alice has 𝛼 and Bob has 𝛽 s.t. 

+

𝑥 𝑥′

𝑥 ⊕ 𝑥′

𝛼 ⊕ 𝛽 = 𝑥

Alice has 𝛼′ and Bob has 𝛽′ s.t. 
𝛼′ ⊕ 𝛽′ = 𝑥′

Alice computes 𝜶⊕𝜶′ and Bob computes 𝜷⊕𝜷@.

So, we have: (𝛼 ⊕ 𝛼′ ) ⊕ 𝛽 ⊕ 𝛽@
	 	 = 𝛼 ⊕ 𝛽 ⊕ 𝛼@⊕𝛽@ = x⊕ x′



AND gate
Alice has 𝛼 and Bob has 𝛽 s.t. 

X

𝑥 𝑥′

𝑥𝑥′

𝛼 ⊕ 𝛽 = 𝑥

Alice has 𝛼′ and Bob has 𝛽′ s.t. 
𝛼′ ⊕ 𝛽′ = 𝑥′

Desired output (to maintain invariant):  
Alice wants 𝜶′′ and Bob wants 𝜷′′ s.t. 𝜶@@⊕𝜷@@ = 𝑥𝑥′



AND gate

X

𝑥 𝑥′

𝑥𝑥′
𝑥𝑥@ = (𝛼 ⊕ 𝛽)(𝛼′ ⊕ 𝛽′)

= 𝛼𝛼′ ⊕ 𝛽𝛼′ ⊕ 𝛼𝛽′ ⊕ 𝛽𝛽′

𝛽𝛼′
ss-AND

𝛾7𝛾A

𝛾A
⊕
𝛾7

𝛽′𝛼
ss-AND

𝛿7𝛿A

𝛿A
⊕
𝛿7

𝛼@@ = 𝛼𝛼′ ⊕ 𝛾A ⊕𝛿A 𝛽@@ = 𝛽𝛽′ ⊕ 𝛾7 ⊕𝛿7
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How to Compute Arbitrary Functions
Secret-sharing Invariant: For each wire of the circuit, Alice 
and Bob each have a bit whose XOR is the value at the wire.

𝑎 𝑏 𝑎′ 𝑏′

Finally, Alice and Bob exchange the shares at the output 
wire, and XOR the shares together to obtain the output.

𝛼

𝛽
𝛼 ⊕ 𝛽 = 𝑎𝑏(𝑎K⊕𝑏K)



Security by Composition
Theorem: 
If protocol Π securely realizes a function 𝑔 in the 
“𝑓-hybrid model” and  protocol Π′ securely 
realizes 𝑓, then Π ∘ Π′ securely realizes 𝑔. 

𝑓-angel 

Protocol for 𝑔 in the 𝑓-hybrid model Protocol for 𝑓

+



Security: Intuition (ss-AND hybrid model)
Imagine that the parties have access to an ss-AND angel.

𝒂
𝒃

𝛾 𝛿

𝛾	⨁𝛿 = ab



Imagine that the parties have access to an ss-AND angel.

+X

X

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Simulator for Alice’s view:

𝑎′
𝑏′

Input wires: can be 
simulated given Alice’s input

XOR gate: simulate given 
Alice’s input shares 

Security: Intuition (ss-AND hybrid model)
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X

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Simulator for Alice’s view:

𝑎′
𝑏′

AND gate: simulate given Alice’s input shares & 
outputs from the ss-AND angel.

Alice’s share 
= 𝑎 � 0
+ 𝑠𝑠𝑎𝑛𝑑 𝑎, 𝑏
+ 𝑠𝑠𝑎𝑛𝑑(0,0)
𝛾ABCDE
𝛿ABCDE

𝛾ABCDE  and 𝛿ABCDE  are 
random, independent of 𝑏 

Security: Intuition (ss-AND hybrid model)
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X

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Simulator for Alice’s view:

𝑎′
𝑏′

Output wire: need to know both Alice and Bob’s output 
shares.

Bob’s output share = Alice’s 
output share ⊕ function output

Simulator knows the 
function output, and 
can compute Bob’s 
output share given 
Alice’s output share. 

Security: Intuition (ss-AND hybrid model)



Secret-Shared AND protocol

Pick 𝑁 = 𝑃𝑄 and 
RSA exponent 𝑒. 

𝑁, 𝑒

Choose random 𝑟5 and  
set 𝑠5 = 𝑟5G	mod	𝑁

Using the RSA trapdoor permutation.

Input bit: 𝑏Input bit: a

Choose random 𝑠)-5
𝑠4, 𝑠)

𝑥4⨁𝐻𝐶𝐵 𝑟4
Compute 𝑟4, 𝑟) and 
one-time pad 𝑥4, 𝑥) 
using hardcore bits 𝑥)⨁𝐻𝐶𝐵 𝑟)

Let 𝑥4 be random 
and 𝑥) = 𝑥4⨁a.

Alice outputs 𝑥4 Bob outputs 𝑥5 



Secret-Shared AND protocol
Using the RSA trapdoor permutation.

Input bit: 𝑏Input bit: a

Exercise: Construct simulators for Alice and Bob.



In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]: 
Assuming OT exists, there is a protocol that 
solves any two-party computation problem 
against semi-honest adversaries. 



In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson’87]: 
Assuming OT exists, there is a protocol that 
solves any multi-party computation problem 
against semi-honest adversaries. 



MPC Outline
Secret-sharing Invariant: For each wire of the circuit, the n 
parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares 𝛼5, … , 𝛼G  s.t. ⊕CH5
G 𝛼C = 𝑎 

and 𝛽5, … , 𝛽G  s.t. ⊕CH5
G 𝛽C = 𝑏, compute the shares of the 

output of the XOR gate:  
𝛼5 + 𝛽5, … , 𝛼G + 𝛽G

AND gate: given input shares as above, compute the shares 
of the output of the XOR gate:  

𝑜5, … , 𝑜G 	s. t ⊕CH5
G 𝑜C = 𝑎𝑏 Exercise!


