
MIT 6.875

Lecture 17
Foundations of Cryptography

An Application of NIZK:

Non-malleable and Chosen Ciphertext
Secure Encryption Schemes

Non-Malleability

c ← Enc(pk,m)
sk

Bob pk

m ← Dec(sk,c)

Public-key directory

Active Attacks 1: Malleability

c ← Enc(pk,$100)
sk

ATTACK: Adversary could modify (“maul”) an encryption
of m into an encryption of a related message m’.

c’ =Enc(pk,$101)

Active Attacks 2: Chosen-Ciphertext Attack

c* ← Enc(pk,m)
sk

ATTACK: Adversary may have access to a decryption
“oracle” and can use it to break security of a ”target”
ciphertext c* or even extract the secret key!

In fact, Bleichenbacher showed how to extract the entire
secret key given only a “ciphertext verification” oracle.

http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf

IND-CCA Security
EveChallenger

!", $" ← &'(1*
!"

+ ← 0,1 ; -∗ ← /(-(!",12
∗)

+′

Eve wins if +5 = +.
IND-CCA secure if no
PPT Eve can win with
prob. > 7

8
+ negl(().

>∗
$. @. 1A

∗ = |17
∗|1A

∗,17
∗

CD>(EF, >G)

>G

CD>(EF, >G)

>G

CD>(EF, >G)

>G ≠ >∗

Constructing CCA-Secure Encryption

NIZK Proofs of Knowledge should help!

Idea: The encrypting party attaches an NIZK proof of
knowledge of the underlying message to the
ciphertext.

!: (c = CPAEnc +; - , proof π 4ℎ64 “8 9:;< + 6:= -”)

This idea will turn out to be useful, but NIZK proofs
themselves can be malleable!

(Intuition)

Constructing CCA-Secure Encryption

OUR GOAL: Hard to modify an encryption of m into
an encryption of a related message, say m+1.
OUR GOAL: Hard to modify an encryption of m into
an encryption of a related message, say m+1.

Digital Signatures should help!

(Intuition)

Constructing CCA-Secure Encryption

!: (c = CPAEnc +,,.; 0 , 1234567 8 , 9,)!: (c = CPAEnc +,,.; 0 , 1234 8)

Let’s start with Digital Signatures.

where the encryptor produces a signing / verification key pair
by running ;3,, 9, ← 1234. >?4(1A)

Is this CCA-secure/non-malleable?

If the adversary changes 9,,
all bets are off!
Lesson: NEED to “tie” the ciphertext c
to 9, in a “meaningful” way.

Observation:
IND-CPA ⟹ “Different-Key Non-malleability”

Different-Key NM: Given "#, "#%, CPAEnc "#,,; . ,
can an adversary produce CPAEnc "#′,, + 1; . ?

NO! Suppose she could. Then, I can come up with a
reduction that breaks the IND-CPA security of
CPAEnc "#,,; . .

Observation:
IND-CPA ⟹ “Different-Key Non-malleability”

Different-Key NM: Given "#, "#%, CPAEnc "#,,; . ,
can an adversary produce CPAEnc "#′,, + 1; . ?

Diff-Key NM
adversary

"#, "#′

345678("#,,)

;<=>?@(AB%,C + D)

Reduction = CPA adversary

"#

345678("#,,)

Pick (AB%, EB%)

Decrypt and
subtract 1.

C

Putting it together

CCA Public Key: !" public keys of the CPA scheme
(where # = |&'|))'*,,

)'*,*
)'-,,
)'-,*

)'.,,
)'.,*…

CCA Encryption:

01*,234 01-,235 01.,236…
First, pick a sign/ver key pair (89', &')
:; =

Output (:;, &', < = =>9#(89', :;)).

where 01?,@ ← :BCD#0()'?,@, E)

Putting it together

CCA Encryption:

!"#,%&' !"(,%&) !"*,%&+…
First, pick a sign/ver key pair (./0, 10)
34 =

Output (34, 10, 6 = 78/9(./0, 34)).

where !":,; ← 3=>?9!(@0:,;, A)

Non-malleability rationale: Either
• Adversary keeps 10 the same (in which case she

has to break the signature scheme); or
• She changes the 10 in which case she breaks the

diff-NM game, and therefore CPA security.

Call it a day?

CCA Encryption:

!"#,%&' !"(,%&) !"*,%&+…
First, pick a sign/ver key pair (./0, 10)
34 =

Output (34, 10, 6 = 78/9(./0, 34)).

where !":,; ← 3=>?9!(@0:,;, A)

We are not done!! Adversary could create ill-formed
ciphertexts (e.g. the different !"s encrypt different
messages) and uses it for a Bleichenbacher-like attack.

NIZK Proofs to the Rescue…

CCA Encryption:

!"#,%&' !"(,%&) !"*,%&+…
First, pick a sign/ver key pair (./0, 10)

34 =

where !"6,7 ← 39:;<!(=06,7, >; @6,7)

CCA Public Key: AB public keys of the CPA scheme
=0#,C
=0#,#

=0(,C
=0(,#

=0*,C
=0*,#

…

π =	NIZK proof that “CT is well-formed”

NP statement: “there exist
>, @6,7 such that each !"6,7 =
39:;<!(=06,7, >; @6,7)”

, FGH

Output (34, 10, I = JK/<(./0, 34)).Output (34, π, 10, I = JK/<(./0, FL, π)).

Are there other attacks?
Did we miss anything else?

Turns out NO. We can prove that this is CCA-secure.

The Encryption Scheme

CCA Encryption:

!"#,%&' !"(,%&) !"*,%&+…
First, pick a sign/ver key pair (./0, 10)
34 =

where !"6,7 ← 39:;<!(=06,7, >; @6,7)

CCA Keys:
=0#,A
=0#,#

=0(,A
=0(,#

=0*,A
=0*,#…

π =	NIZK proof that “CT is well-formed”

, 3DE

Output (34, π, 10, F = EG/<(./0, 34, π)).

PK= SK=
.0#,A
.0#,#

The Encryption Scheme
CCA Encryption:

!"#,%&' !"(,%&) !"*,%&+…
First, pick a sign/ver key pair (./0, 10)
34 =

where !"6,7 ← 39:;<!(=06,7, >; @6,7)
π =	NIZK proof that “CT is well-formed”
Output (34, π, 10, C = DE/<(./0, 34, π)).

CCA Decryption:
Check the signature.
Check the NIZK proof.
Decrypt with .0#,%&'.

Proof Sketch
Let’s play the CCA game with the adversary.
We will use her to break either the NIZK soundness/ZK,
the signature scheme or the CPA-secure scheme.

Proof Sketch
Let’s play the CCA game with the adversary.
Hybrid 0: Play the CCA game as prescribed.

Hybrid 1: Observe that !"# ≠ !"∗.
(Otherwise break signature)

Observe that this means each query ciphertext-tuple
involves a different public-key from the challenge
ciphertext. Use the “different private-key” to decrypt.
(If the adv sees a difference, she broke NIZK soundness)

Hybrid 2: Now change the CRS/π into simulated CRS/π!
(OK by ZK)

If the Adv wins in this hybrid, she breaks IND-CPA!

New Topic:
Secure Computation

Secure Computation

Bob

Input: !

Output: #$ %, '
Alice

Input: (

Output: #) %, '

Secure Two-Party Computation

Bob

Input: !

Output: #$ %, '

• Alice should not learn anything more than % and #$ %, ' .

Alice

Input:)

• Bob should not learn anything more than ' and #* %, ' .

Semi-honest Security:Security:

Output: #* %, '

Secure Two-Party Computation

Bob

Input: !

Output: #$ %, '

• No (PPT) Alice* can learn anything more than %∗ and #$ %∗, ' .

Alice

Input: *

• No (PPT) Bob* can learn anything more than '∗ and #+ %, '∗ .

Malicious Security:

Output: #+ %, '

Tool 1: Secret Sharing

Secret Sharingsecret b

share !" share !# share !$ share !% share !&

'" '# '$ '% '&Dealer

o Threshold (or t-out-of-n) SS [Shamir’79, Blakley’79]:

q Any “authorized” subset of players can recover b.

q No other subset of players has any info about b.

“authorized” subset = has size ≥ t.

…

!-out-of-! Secret Sharing
secret b ∈ #$

share %&: random

share %(: random

share %): random

share %*: random

share %+ = - − (%& + %(+ ⋯+ %+2&) mod p

4& 4(4) 4* 4+Dealer

…

…

!-out-of-" Secret Sharing
secret b ∈ $%

share &' = b
share &* = b
share &+ = b
share &, = b

share &- = .

/' /* /+ /, /-Dealer

…

…

!-out-of-" Secret Sharing?
secret b ∈ $%

Here is a solution.

Repeat for every two-person subset {&', &)}:
• Generate a 2-out-of-2 secret sharing (-', -)) of b.
• Give -' to &' and -) to &)

&/ &0 &1 &2 &3Dealer

…

What is the size of shares each party gets?

How does this scale to t-out-of-n?

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

Shamir’s 2-out-of-n Secret Sharing

!" !#

!$
secret %

(1,)*)
(2,)-)

(3,)/)

Each share)0 is truly
random (independent of

secret b)
Any two shares uniquely
determine b.

random line through (0,b)

Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose
constant term is the secret !.

$ = &$ + ! where & is uniformly random mod (
2. Compute the shares:

*+ = # 1 , *. = # 2 ,… , *1 = # 2 , … , *3 = # 4

Correctness: can recover secret from any two shares.

Proof: Parties 2 and 5, given shares *1 = &2 + ! and *6 = &5 +
! can solve for ! (= 689:18;

6:1).

Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose
constant term is the secret !.

$ = &$ + ! where & is uniformly random mod (
2. Compute the shares:

*+ = # 1 , *. = # 2 ,… , *1 = # 2 , … , *3 = # 4

Security: any single party has no information about the secret.

Proof: Party 2’s share *1 = & ∗ 2 + ! is uniformly random,
independent of !, as & is random and so is & ∗ 2.

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1)
polynomial (mod p) whose constant term is the secret !.

$ = &'()$'() + ⋯+ &)$ + !
where &, are uniformly random mod -

2. Compute the shares:
/) = # 1 , /2 = # 2 ,… , /, = # 5 , … , /6 = # 7

Correctness: can recover secret from any 8 shares.

Security: the distribution of &79 8 − 1 shares is
independent of the secret.

Note: need p to be larger than the number of parties n.

!"
!#
!$
…
!&

=

1 1 1 … 1
1 2 2# … 2&*"
1 3 3# … 3&*"
1 … … … …
1 , ,# … ,&*"

-
."
.#
…
.&*"

(mod 3)

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

5 6 = .&*"6&*" + ⋯+ ."6 + -
where .9 are uniformly random mod 3

!" = 5 1 , !# = 5 2 ,… , !9 = 5 ; , … , !< = 5 =

Correctness: via Vandermonde matrices.

Let’s look at shares of parties >", >#, … , >&.

,-by-, Vandermonde matrix which is invertible

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

! " = $%&'"%&' + ⋯+ $'" + *
where $+ are uniformly random mod ,

-' = ! 1 , -0 = ! 2 ,… , -+ = ! 3 , … , -4 = ! 5

Correctness: Alternatively, Lagrange interpolation gives
an explicit formula that recovers b.

* = ! 0 =7
+8'

%
!(3) ;

'<=<%,=>+

−"=
"+ − "=

!"
!#
!$
…
!&'"

=

1 1 1 … 1
1 2 2# … 2&'"
1 3 3# … 3&'"
1 … … … …
1 , − 1 (, − 1)# … (, − 1)&'"

0
1"
1#
…
1&'"

(mod 5)

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

6 7 = 1&'"7&'" + ⋯+ 1"7 + 0
where 1: are uniformly random mod 5

!" = 6 1 , !# = 6 2 ,… , !: = 6 < , … , != = 6 >

Security:

Let’s look at shares of parties ?", ?#, … , ?&'".

(, − 1)-by-, Vandermonde matrix

!"
!#
!$
…
!&'"

=

1 1 1 … 1
1 2 2# … 2&'"
1 3 3# … 3&'"
1 … … … …
1 , − 1 (, − 1)# … (, − 1)&'"

0
1"
1#
…
1&'"

(mod 5)

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

6 7 = 1&'"7&'" + ⋯+ 1"7 + 0
where 1: are uniformly random mod 5

!" = 6 1 , !# = 6 2 ,… , !: = 6 < , … , != = 6 >

Security: For every value of 0 there is a unique polynomial
with constant term 0 and shares !", !#, … , !&'".

(, − 1)-by-, Vandermonde matrix

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

! " = $%&'"%&' + ⋯+ $'" + *
where $+ are uniformly random mod ,

-' = ! 1 , -0 = ! 2 ,… , -+ = ! 3 , … , -4 = ! 5

Security: For every value of * there is a unique polynomial
with constant term * and shares -', -0, … , -%&'.

Corollary: for every value of the secret * is equally likely
given the shares -', -0, … , -%&'. In other words, the secret * is
perfectly hidden given 7 − 1 shares.

Tool 2: Oblivious Transfer

Oblivious Transfer (OT)

Receiver

Choice bit: !
"#
"$

• Sender holds two bits/strings "# and "$.
• Receiver holds a choice bit %.

• Receiver should learn "&, sender should learn nothing.
(We will consider honest-but-curious adversaries; formal
definition in a little bit…)

Sender

Why OT? The Dating Problem
! ∈ {0,1} (∈ {0,1}Alice and Bob want to

compute the AND ! ∧ (.

Why OT? The Dating Problem
! ∈ {0,1} (∈ {0,1}Alice and Bob want to

compute the AND ! ∧ (.

*+ = 0
*- = !

Choice bit . = (
Run an OT protocol

Bob gets ! if (=1, and 0 if (=0

Here is a way to write the OT selection function: /01 + /3 0 − 1
which, in this case is = !(.

The Billionaires’ Problem
Net worth:

$X
Net worth:

$Y

Who is richer?

The Billionaires’ Problem

! "

#(!, ") = 1
if and only if ! > "

Unit Vector *+ = 1 in the !,-
location and 0 elsewhere

10 0 0 ……

Vector 01 = 1 from the (" + 1),-
location onwards

10 1 1… 1 1 1

3 4, 5 = 64, 75 =8
9:;

<
64 9 ∧ 75[9]

Compute each AND individually and sum it up?

Detour: OT ⇒ Secret-Shared-AND
" ∈ {0,1}) ∈ {0,1}Alice gets random *, Bob gets

random + s.t. * ⨁+ = ").

./ = *
.0 = "⨁ *

Choice bit 1 =)
Run an OT protocol

Bob gets 234 + 26 3⨁4

Output: * Output: +

= (23 ⨁ 26)4 + 26 = ")⨁* ≔ +
Alice outputs *.

The Billionaires’ Problem
!(#, %) = 1

if and only if # > %

Unit Vector *+
10 0 0 ……

Vector ./
10 1 1… 1 1 1

0 1, 2 = 31, 42 =5
678

9
31 6 ∧ 42[6]

1. Alice and Bob run many OTs to get (=>, ?>) s.t.

=>⨁?> = 31 6 ∧ 42[6]
2. Alice computes = = ⨁> => and Bob computes ? = ⨁> ?>.

Check (correctness): =⨁? = 31, 42 = 0 1, 2 .
3. Alice reveals = and Bob reveals ?.

The Billionaires’ Problem
!(#, %) = 1

if and only if # > %

Unit Vector *+
10 0 0 ……

Vector ./
10 1 1… 1 1 1

0 1, 2 = 31, 42 =5
678

9
31 6 ∧ 42[6]

1. Alice and Bob run many OTs to get (=>, ?>) s.t.

=>⨁?> = 31 6 ∧ 42[6]
2. Alice computes = = ⨁> => and Bob computes ? = ⨁> ?>.

Check (privacy): Alice & Bob get a bunch of random bits.

“OT is Complete”

Theorem (lec18-19): OT can solve not just love and
money, but any two-party (and multi-party) problem
efficiently.

Defining Security:
The Ideal/Real Paradigm

OT Definition

Receiver

Choice bit: !
"#
"$

Receiver Security: Sender should not learn b.

Sender

Define Sender’s view %&'()("#, "$, ,) = her random coins
and the protocol messages.

OT Definition

Receiver

Choice bit: !
"#
"$

Receiver Security: Sender should not learn b.

Sender

There exists a PPT simulator %&'(such that for any
"#,"$ and):

%&'(("#, "$) ≅ ./01(("#, "$,))

OT Definition

Receiver

Choice bit: !
"#
"$

Sender Security: Receiver should not learn "$%&.

Sender

Define Receiver’s view '()*+("#, "$, .) = his random coins
and the protocol messages.

OT Definition

Receiver

Choice bit: !
"#
"$

Sender Security: Receiver should not learn "$%&.

Sender

There exists a PPT simulator '()* such that for any
"#,"$ and +:

'()*(+, "&) ≅ 0123*("#, "$, +)

OT Protocols

OT Protocol 1: Trapdoor Permutations

Pick ! = #$ and
RSA exponent %.

!, %

Choose random () and
set *) = ()+ mod !

For concreteness, let’s use the RSA trapdoor permutation.

Choice bit: /Input bits: (12, 13)

Choose random *35)
*2, *3

12⨁789 (2
Compute (2, (3 and
one-time pad 12, 13
using hardcore bits 13⨁789 (3

Bob can recover 1)
but not 135)

OT Protocol 1: Trapdoor Permutations
!, #

Choice bit: $Input bits: (&', &()
*', *(

&'⨁,-. /'

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

&(⨁,-. /(

Alice’s view is *', *(one of which is chosen randomly
from 01∗ and the other by raising a random number to
the #-th power. They look exactly the same!

OT Protocol 1: Trapdoor Permutations
!, #

Choice bit: $Input bits: (&', &()
*', *(

&'⨁,-. /'

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

&(⨁,-. /(

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations
!, #

Choice bit: $Input bits: (&', &()
*', *(

&'⨁,-. /'

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

&(⨁,-. /(

Assuming Bob is semi-honest, he chose *(01 uniformly
at random, so the hardcore bit of *(01 = /(013 is
computationally hidden from him.

OT from Trapdoor Permutations
!, #

Choice bit: $Input bits: (&', &()
*', *(

&'⨁,-. /'

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

&(⨁,-. /(

Exercise: Show how to construct the simulator.

OT Protocol 2: Additive HE

Encrypt choice bit b

Choice bit: !Input bits: (#$, #&)

(⟵ Enc(-., !)

(/ = Eval(45678,79(!), ()

Homomorphically
evaluate the
selection function

(

:;<=>,=? @ =
(=? ⨁ =>)@ + => Decrypt to get #C

Bob’s security: computational, from CPA-security of Enc.
Alice’s security: statistical, from function-privacy of Eval.

Many More Constructions of OT

Theorem: OT protocols can be constructed based
on the hardness of the Diffie-Hellman problem,
factoring, quadratic residuosity, LWE, elliptic curve
isogeny problem etc. etc.

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any two-party computation problem.

