MIT 6.875

Foundations of Cryptography Lecture 17

An Application of NIZK:

Non-malleable and Chosen Ciphertext Secure Encryption Schemes

Non-Malleability

$$
\mathrm{m} \leftarrow \operatorname{Dec}(\mathbf{s k}, \mathrm{c})
$$

Public-key directory

Bob	$\mathbf{p l k}$

Active Attacks 1: Malleability

ATTACK: Adversary could modify ("maul") an encryption of m into an encryption of a related message m^{\prime}.

Active Attacks 2: Chosen-Ciphertext Attack

ATTACK: Adversary may have access to a decryption In fact, Bleichenbacher showed how to extract the entire searet key giyen only a "ciphertext verification" oracle. ciphertext or oven extract the secret key?

IND-CCA Security

Challenger

$$
(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)
$$

$$
b \leftarrow\{0,1\} ; c^{*} \leftarrow \operatorname{Enc}\left(p k, m_{b}^{*}\right)
$$

Eve wins if $b^{\prime}=b$. IND-CCA secure if no PPT Eve can win with prob. $>\frac{1}{2}+\operatorname{negl}(n)$.

Constructing CCA-Secure Encryption (Intuition)

NIZK Proofs of Knowledge should help!

Idea: The encrypting party attaches an NIZK proof of knowledge of the underlying message to the ciphertext.
$C:(\mathrm{c}=\operatorname{CPAEnc}(m ; r)$, proof π that "I know m and r " $)$

This idea will turn out to be useful, but NIZK proofs themselves can be malleable!

Constructing CCA-Secure Encryption (Intuition)

Digital Signatures should help!

OUR GOAL: Hard to modifify amm emcrnyptiiøm off imm iimit凶 an encryption of a related message, say $m+1$.

Constructing CCA-Secure Encryption

Let's start with Digital Signatures.

$C:\left(\mathbf{c}=\operatorname{CPAEmc}\left(\left(p / k, m_{n}, T\right)\right)_{n} \operatorname{Sigmm}(g)(c), v k\right)$
where the encryptor produces a signing / verification key pair by running ($s g k, v k$) $\leftarrow \operatorname{Sign.Gen(} 1^{n}$)

Is this CCA-secure/non-malleable?

If the adversary changes $v k$, all bets are off!

Lesson: NEED to "tie" the ciphertext c to $v k$ in a "meaningful" way.

Observation:
 IND-CPA \Longrightarrow "Different-Key Non-malleability"

Different-Key NM: Given $p k, p k^{\prime}, \operatorname{CPAEnc}(p k, m ; r)$, can an adversary produce $\operatorname{CPAEnc}\left(p k^{\prime}, m+1 ; r\right)$?

NO! Suppose she could. Then, I can come up with a reduction that breaks the IND-CPA security of CPAEnc $(p k, m ; r)$.

Observation: IND-CPA \Longrightarrow "Different-Key Non-malleability"

Different-Key NM: Given $p k, p k^{\prime}, \operatorname{CPAEnc}(p k, m ; r)$, can an adversary produce $\operatorname{CPAEnc}\left(p k^{\prime}, m+1 ; r\right)$?

Reduction = CPA adversary			
$p k$	Pick ($\boldsymbol{p k} \mathrm{k}^{\prime}, s k^{\prime}$)	$p k, p k^{\prime}$	
$\operatorname{CPAEnc}(p k, m)$		CPAEnc ($p k, m$)	4
m	Decrypt and subtract 1.	$\operatorname{CPAEnc}\left(p k^{\prime}, m+1\right)$	Diff-Key NM adversary

Putting it together

CCA Public Key: $2 n$ public keys of the CPA scheme

$$
\left.\left[\begin{array}{llll}
p k_{1,0} & p k_{2,0} & & p k_{n, 0} \\
p k_{1,1} & p k_{2,1} & \ldots & p k_{n, 1}
\end{array}\right] \quad \text { (where } n=|v k|\right)
$$

CCA Encryption:
First, pick a sign/ver key pair (sgk,vk)

$$
\begin{gathered}
C T=\left[\begin{array}{lll}
c t_{1, v k_{1}} c t_{2, v k_{2}} & \cdots & c t_{n, v k_{n}}
\end{array}\right] \\
\text { where } c t_{i, j} \leftarrow \operatorname{CPAEnc}\left(p k_{i, j}, m\right) \\
\text { Output }(C T, v k, \sigma=\operatorname{Sign}(\operatorname{sgk}, C T)) .
\end{gathered}
$$

Duttingit tnenthor

Non-malleability rationale: Either

- Adversary keeps $v k$ the same (in which case she has to break the signature scheme); or
- She changes the $v k$ in which case she breaks the diff-NM game, and therefore CPA security.

CCA Encryption:
First, pick a sign/ver key pair (sgk,vk)
$C T=\left[\begin{array}{lll}c t_{1, v k_{1}} c t_{2, v k_{2}} & \cdots & c t_{n, v k_{n}}\end{array}\right]$
where $c t_{i, j} \leftarrow \operatorname{CPAEnc}\left(p k_{i, j}, m\right)$
Output $(C T, v k, \sigma=\operatorname{Sign}(s g k, C T))$.

Call it a day?

We are not done!! Adversary could create ill-formed ciphertexts (e.g. the different cts encrypt different messages) and uses it for a Bleichenbacher-like attack.

CCA Encryption:
First, pick a sign/ver key pair (sgk,vk)

$$
C T=\left[\begin{array}{lll}
c t_{1, v k_{1}} c t_{2, v k_{2}} & \cdots & c t_{n, v k_{n}}
\end{array}\right]
$$

where $c t_{i, j} \leftarrow \operatorname{CPAEnc}\left(p k_{i, j}, m\right)$
Output $(C T, v k, \sigma=\operatorname{Sign}(\operatorname{sgk}, C T))$.

NIZK Proofs to the Rescue...

CCA Public Key: $2 n$ public keys of the CPA scheme

$$
\left.\begin{array}{llll}
p k_{1,0} & p k_{2,0} & & p k_{n, 0} \\
p k_{1,1} & p k_{2,1} & \ldots & p k_{n, 1}
\end{array}\right], \boldsymbol{C R S}
$$

NP statement: "there exist $m, r_{i, j}$ such that each $c t_{i, j}=$ key pair $(s g k, v k)$ $\operatorname{CPAEnc}\left(p k_{i, j}, m ; r_{i, j}\right)^{\prime \prime}$

$$
\begin{array}{ll}
\ldots & c t_{n, v k_{n}}
\end{array}
$$

where $c t_{i, j} \operatorname{PAEnc}\left(p k_{i, j}, m ; r_{i, j}\right)$
$\pi=$ NIZK proof that "CT is well-formed"

Are there other attacks?

Did we miss anything else?

Turns out NO. We can prove that this is CCA-secure.

The Encryption Scheme

CCA Keys:

$\mathbf{P K}=\left[\begin{array}{llll}p k_{1,0} & p k_{2,0} & & p k_{n, 0} \\ p k_{1,1} & p k_{2,1} & \ldots & p k_{n, 1}\end{array}\right], C R S \quad \mathbf{S K}=\left[\begin{array}{l}s k_{1,0} \\ s k_{1,1}\end{array}\right]$
CCA Encryption:
First, pick a sign/ver key pair (sgk,vk)

$$
\begin{aligned}
C T & =\left[\begin{array}{lll}
c t_{1, v k_{1}} c t_{2, v k_{2}} & \cdots & c t_{n, v k_{n}}
\end{array}\right] \\
\quad \text { where } c t_{i, j} & \leftarrow \operatorname{CPAEnc}\left(p k_{i, j}, m ; r_{i, j}\right)
\end{aligned}
$$

$\pi=$ NIZK proof that "CT is well-formed"
Output $(C T, \pi, v k, \sigma=\operatorname{Sign}(\operatorname{sgk},(C T, \pi)))$.

The Encryption Scheme

CCA Encryption:

First, pick a sign/ver key pair (sgk,vk)

$$
\begin{gathered}
C T=\left[\begin{array}{lll}
c t_{1, v k_{1}} c t_{2, v k_{2}} & \cdots & c t_{n, v k_{n}}
\end{array}\right] \\
\text { where } c t_{i, j} \leftarrow C P A E n c\left(p k_{i, j}, m ; r_{i, j}\right) \\
\pi=\operatorname{NIZK} \text { proof that "CT is well-formed" } \\
\text { Output }(C T, \pi, v k, \sigma=\operatorname{Sign}(\operatorname{sg} k,(C T, \pi))) .
\end{gathered}
$$

CCA Decryption:

Check the signature.
Check the NIZK proof.
Decrypt with $s k_{1, v k_{1}}$.

Proof Sketch

Let's play the CCA game with the adversary.
We will use her to break either the NIZK soundness/ZK, the signature scheme or the CPA-secure scheme.

Proof Sketch

Let's play the CCA game with the adversary.
Hybrid 0: Play the CCA game as prescribed.
Hybrid 1: Observe that $\boldsymbol{v} \boldsymbol{k}_{\boldsymbol{i}} \neq \boldsymbol{v} \boldsymbol{k}^{*}$.
(Otherwise break signature)
Observe that this means each query ciphertext-tuple involves a different public-key from the challenge ciphertext. Use the "different private-key" to decrypt. (If the adv sees a difference, she broke NIZK soundness)

Hybrid 2: Now change the CRS/ π into simulated CRS/ π !
(OK by ZK)
If the Adv wins in this hybrid, she breaks IND-CPA!

New Topic:

Secure Computation

Secure Computation

Input: x

Alice

Output: $F_{A}(x, y)$

Input: \boldsymbol{y}

Bob

Output: $F_{B}(x, y)$

Secure Two-Party Computation

Input: x

Alice
Output: $F_{A}(x, y)$

Input: y

Bob

Output: $F_{B}(x, y)$

Semifftornest Security:

- Alice should not learn anything more than x and $F_{A}(x, y)$.
- Bob should not learn anything more than y and $F_{B}(x, y)$.

Secure Two-Party Computation

Input: x

Alice
Output: $F_{A}(x, y)$

Input: y

Bob

Output: $F_{B}(x, y)$

Malicious Security:

- No (PPT) Alice* can learn anything more than x^{*} and $F_{A}\left(x^{*}, y\right)$.
- No (PPT) Bob* can learn anything more than y^{*} and $F_{B}\left(x, y^{*}\right)$.

Tool 1: Secret Sharing

Secret Sharing

I Any "authorized" subset of players can recover b.
I No other subset of players has any info about b.

- Threshold (or t-out-of-n) SS [Shamir'79, Blakley'79]: "authorized" subset $=$ has size \geq t.

n-out-of-n Secret Sharing

Dealer

P_{2}

P_{3}

P_{n}
share s_{1} : random
share s_{2} : random
share s_{3} : random
share s_{4} : random

share $s_{n}=b-\left(s_{1}+s_{2}+\cdots+s_{n-1}\right) \bmod p$

secret $\mathrm{b} \in Z_{p}$

1-out-of-n Secret Sharing

Dealer

P_{2}

P_{3}

P_{n}
share $s_{1}=\mathrm{b}$
share $s_{2}=\mathrm{b}$
share $s_{3}=\mathrm{b}$
share $s_{4}=\mathrm{b}$

share $s_{n}=b$

2-out-of-n Secret Sharing?

Dealer

P_{2}

P_{3}

P_{n}

Here is a solution.

Repeat for every two-person subset $\left\{P_{i}, P_{j}\right\}$:

- Generate a 2-out-of-2 secret sharing $\left(s_{i}, s_{j}\right)$ of b .
- Give s_{i} to P_{i} and s_{j} to P_{j}

What is the size of shares each party gets?
How does this scale to t-out-of-n?

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

Shamir's 2-out-of-n Secret Sharing

Each share s_{i} is truly random (independent of secret b)
Any two shares uniquely determine b .

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line $(\bmod p)$ whose constant term is the secret b.

$$
f(x)=a x+b \text { where } a \text { is uniformly random } \bmod p
$$

2. Compute the shares:

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Correctness: can recover secret from any two shares.
Proof: Parties i and j, given shares $s_{i}=a i+b$ and $s_{j}=a j+$ b can solve for $b\left(=\frac{j s_{i}-i s_{j}}{j-i}\right)$.

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line $(\bmod p)$ whose constant term is the secret b.

$$
f(x)=a x+b \text { where } a \text { is uniformly random } \bmod p
$$

2. Compute the shares:

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Security: any single party has no information about the secret.
Proof: Party i 's share $s_{i}=a * i+b$ is uniformly random, independent of b, as a is random and so is $a * i$.

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) polynomial $(\bmod \mathbf{p})$ whose constant term is the secret b.

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p
\end{aligned}
$$

2. Compute the shares:

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Correctness: can recover secret from any t shares.
Security: the distribution of any $t-1$ shares is independent of the secret.

Note: need p to be larger than the number of parties n.

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p
\end{aligned}
$$

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Correctness: via Vandermonde matrices.
Let's look at shares of parties $P_{1}, P_{2}, \ldots, P_{t}$.

$$
\left[\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
\ldots \\
s_{t}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2^{2} & \ldots & 2^{t-1} \\
1 & 3 & 3^{2} & \ldots & 3^{t-1} \\
1 & \ldots & \ldots & \ldots & \ldots \\
1 & t & t^{2} & \ldots & t^{t-1}
\end{array}\right]\left[\begin{array}{c}
b \\
a_{1} \\
a_{2} \\
\ldots \\
a_{t-1}
\end{array}\right](\bmod p)
$$

t-by-t Vandermonde matrix which is invertible

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
& f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \quad \text { where } a_{i} \text { are uniformly random } \bmod p \\
& s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Correctness: Alternatively, Lagrange interpolation gives an explicit formula that recovers b.

$$
b=f(0)=\sum_{i=1}^{t} f(i)\left(\prod_{1 \leq j \leq t, j \neq i} \frac{-x_{j}}{x_{i}-x_{j}}\right)
$$

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p
\end{aligned}
$$

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Security:

Let's look at shares of parties $P_{1}, P_{2}, \ldots, P_{t-1}$.

$$
\left[\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
\cdots \\
s_{t-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2^{2} & \ldots & 2^{t-1} \\
1 & 3 & 3^{2} & \cdots & 3^{t-1} \\
1 & \ldots & \ldots & \cdots & \ldots \\
1 & t-1 & (t-1)^{2} & \cdots & (t-1)^{t-1}
\end{array}\right]\left[\begin{array}{c}
b \\
a_{1} \\
a_{2} \\
\ldots \\
a_{t-1}
\end{array}\right](\bmod p)
$$

> (t - 1)-by-t Vandermonde matrix

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
& f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \quad \text { where } a_{i} \text { are uniformly random } \bmod p \\
& s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Security: For every value of b there is a unique polynomial with constant term b and shares $s_{1}, s_{2}, \ldots, s_{t-1}$.

$$
\left[\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
\cdots \\
s_{t-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2^{2} & \ldots & 2^{t-1} \\
1 & 3 & 3^{2} & \cdots & 3^{t-1} \\
1 & \cdots & \ldots & \cdots & \ldots \\
1 & t-1 & (t-1)^{2} & \cdots & (t-1)^{t-1}
\end{array}\right]\left[\begin{array}{c}
b \\
a_{1} \\
a_{2} \\
\cdots \\
a_{t-1}
\end{array}\right](\bmod p)
$$

$$
(t-1) \text {-by-t Vandermonde matrix }
$$

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
& f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \quad \text { where } a_{i} \text { are uniformly random } \bmod p \\
& s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Security: For every value of b there is a unique polynomial with constant term b and shares $s_{1}, s_{2}, \ldots, s_{t-1}$.

Corollary: for every value of the secret b is equally likely given the shares $s_{1}, s_{2}, \ldots, s_{t-1}$. In other words, the secret b is perfectly hidden given $t-1$ shares.

Tool 2: Oblivious Transfer

Oblivious Transfer (OT)

Choice bit: b

Sender

- Sender holds two bits/strings x_{0} and x_{1}.
- Receiver holds a choice bit b.
- Receiver should learn x_{b}, sender should learn nothing.
(We will consider honest-but-curious adversaries; formal definition in a little bit...)

Why OT? The Dating Problem

Alice and Bob want to compute the AND $\alpha \wedge \beta$.

Why OT? The Dating Problem

$x_{0}=0$
$x_{1}=\alpha$

Alice and Bob want to compute the AND $\alpha \wedge \beta$.

Choice bit $b=\beta$

Bob gets α if $\beta=1$, and 0 if $\beta=0$
Here is a way to write the OT selection function: $x_{1} b+x_{0}(\mathbf{1}-\boldsymbol{b})$ which, in this case is $=\alpha \beta$.

The Billionaires' Problem

Who is richer?

The Billionaires' Problem

$$
f(X, Y)=1
$$

if and only if $X>Y$

Unit Vector $u_{X}=1$ in the $X^{t h}$ location and 0 elsewhere

Vector $v_{Y}=1$ from the $(Y+1)^{\text {th }}$ location onwards

$$
f(X, Y)=\left\langle u_{X}, v_{Y}\right\rangle=\sum_{i=1}^{U} u_{X}[i] \wedge v_{Y}[i]
$$

Detour: OT \Rightarrow Secret-Shared-AND

Alice gets random γ, Bob gets

Output: γ

$$
\begin{gathered}
x_{0}=\gamma \\
x_{1}=\alpha \oplus \gamma \\
\hline
\end{gathered}
$$

random δ s.t. $\gamma \oplus \delta=\alpha \beta$.

Output: δ
Run an OT protocol
Choice bit $b=\beta$

Alice outputs γ.
Bob gets $x_{\mathbf{1}} \boldsymbol{b}+\boldsymbol{x}_{\mathbf{0}}(\mathbf{1} \oplus \boldsymbol{b})=\left(\boldsymbol{x}_{\mathbf{1}} \oplus \boldsymbol{x}_{\mathbf{0}}\right) \boldsymbol{b}+\boldsymbol{x}_{\mathbf{0}}=\alpha \beta \oplus \gamma:=\delta$

The Billionaires' Problem

1. Alice and Bob run many OTs to get $\left(\gamma_{i}, \delta_{i}\right)$ s.t.

$$
\gamma_{i} \oplus \delta_{i}=\boldsymbol{u}_{X}[\boldsymbol{i}] \wedge \boldsymbol{v}_{\boldsymbol{Y}}[\boldsymbol{i}]
$$

2. Alice computes $\gamma=\oplus_{i} \gamma_{i}$ and Bob computes $\delta=\oplus_{i} \delta_{i}$.
3. Alice reveals γ and Bob reveals δ.

Check (correctness): $\gamma \oplus \delta=\left\langle u_{X}, v_{Y}\right\rangle=\boldsymbol{f}(X, Y)$.

The Billionaires' Problem

1. Alice and Bob run many OTs to get $\left(\gamma_{i}, \delta_{i}\right)$ s.t.

$$
\gamma_{i} \oplus \delta_{i}=\boldsymbol{u}_{X}[\boldsymbol{i}] \wedge \boldsymbol{v}_{\boldsymbol{Y}}[\boldsymbol{i}]
$$

2. Alice computes $\gamma=\oplus_{i} \gamma_{i}$ and Bob computes $\delta=\oplus_{i} \delta_{i}$.

Check (privacy): Alice \& Bob get a bunch of random bits.

"OT is Complete"

Theorem (lec18-19): OT can solve not just love and money, but any two-party (and multi-party) problem efficiently.

Defining Security: The Ideal/Real Paradigm

OT Definition

Choice bit: b

Sender

Receiver Security: Sender should not learn b.
Define Sender's view $\operatorname{View}_{S}\left(x_{0}, x_{1}, b\right)=$ her random coins and the protocol messages.

OT Definition

Choice bit: b

Sender

Receiver Security: Sender should not learn b.
There exists a PPT simulator $S I M_{S}$ such that for any x_{0}, x_{1} and b :

$$
\operatorname{SIM}_{S}\left(x_{0}, x_{1}\right) \cong \operatorname{View}_{S}\left(x_{0}, x_{1}, b\right)
$$

OT Definition

Choice bit: b

Sender

Sender Security: Receiver should not learn x_{1-b}.
Define Receiver's view $\operatorname{View}_{R}\left(x_{0}, x_{1}, b\right)=$ his random coins and the protocol messages.

OT Definition

Choice bit: b

Sender

Receiver

Sender Security: Receiver should not learn x_{1-b}.
There exists a PPT simulator $S I M_{R}$ such that for any x_{0}, x_{1} and b :

$$
\operatorname{SIM}_{R}\left(b, x_{b}\right) \cong \operatorname{View}_{R}\left(x_{0}, x_{1}, b\right)
$$

OT Protocols

OT Protocol 1: Trapdoor Permutations

For concreteness, let's use the RSA trapdoor permutation.

Input bits: $\left(x_{0}, x_{1}\right)$

Choice bit: b

Pick $N=P Q$ and RSA exponent e.

Choose random r_{b} and set $s_{b}=r_{b}^{e} \bmod N$
Choose random s_{1-b}
Compute r_{0}, r_{1} and one-time pad x_{0}, x_{1} using hardcore bits

OT Protocol 1: Trapdoor Permutations

How about Bob's security
(a.k.a. Why does Alice not learn Bob's choice bit)?

Alice's view is s_{0}, s_{1} one of which is chosen randomly from Z_{N}^{*} and the other by raising a random number to the e-th power. They look exactly the same!

OT Protocol 1: Trapdoor Permutations

How about Bob's security
(a.k.a. Why does Alice not learn Bob's choice bit)?

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations

How about Alice's security
(a.k.a. Why does Bob not learn both of Alice's bits)?

Assuming Bob is semi-honest, he chose s_{1-b} uniformly at random, so the hardcore bit of $s_{1-b}=r_{1-b}^{d}$ is computationally hidden from him.

OT from Trapdoor Permutations

How about Alice's security
(a.k.a. Why does Bob not learn both of Alice's bits)?

Exercise: Show how to construct the simulator.

OT Protocol 2: Additive HE

Input bits: $\left(x_{0}, x_{1}\right)$

Choice bit: b
Encrypt choice bit b
$c \leftarrow \operatorname{Enc}(s k, b)$
Homomorphically
evaluate the selection function

$$
\begin{array}{cc}
\boldsymbol{S E} \boldsymbol{L}_{x_{0}, x_{1}}(\boldsymbol{b})= \\
\left(\boldsymbol{x}_{\mathbf{1}} \oplus \boldsymbol{x}_{\mathbf{0}}\right) \boldsymbol{b}+\boldsymbol{x}_{\mathbf{0}}
\end{array} \quad \boldsymbol{c}^{\prime}=\operatorname{Eval}\left(S E L_{x_{0}, x_{1}}(b), c\right) \quad \text { Decrypt to get } x_{b}
$$

Bob's security: computational, from CPA-security of Enc. Alice's security: statistical, from function-privacy of Eval.

Many More Constructions of OT

Theorem: OT protocols can be constructed based on the hardness of the Diffie-Hellman problem, factoring, quadratic residuosity, LWE, elliptic curve isogeny problem etc. etc.

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]:
OT can solve any two-party computation problem.

