MIT 6.875

Foundations of Cryptography
Lecture 17

An Application of NIZK:

Non-malleable and Chosen Ciphertext
Secure Encryption Schemes

il

Non-Malleability

¢ < Enc(pk,m)

Public-key directory

Bob

Pk

m < Dec(sk,c)

Active Attacks 1: Malleability

ATTACK: Adversary could modify (“maul”) an encryption
of m into an encryption of a related message m’.

Active Attacks 2: Chosen-Ciphertext Attack

ﬂ c* « Enc(pk,m)

AT}' dversar ay have a ss
ac]t ’ é:s

to
eichenba rshtc)) eocvl\J/rtl rag rgeg,ntlre

upﬁwrgFtlé?(gIve nexctll%c?tjfw XLueriy a ? "otacle.

ECFE lon

http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf

IND-CCA Security
AVA

Challenger Pk Eve
(pk,sk) < Gen(1™) >
Ci
—
Dec(sk,c;)
—
_ memi s.t |ml = fmil
b < {0,1}; c* « Enc(pk,my) c*
>
C; c’
_
c M Eve wins if b’ = b.
" IND-CCA secure if no
< PPT Eve can win with
prob. > % + negl(n).

Constructing CCA-Secure Encryption
(Intuition)

NIZK Proofs of Knowledge should help!

Idea: The encrypting party attaches an NIZK proof of
knowledge of the underlying message to the
ciphertext.

C: (c = CPAEnc(m;r), proof t that “I know m and r”)

This idea will turn out to be useful, but NIZK proofs
themselves can be malleable!

Constructing CCA-Secure Encryption
(Intuition)

Digital Signatures should help!

OUR GOAL: Hard to modifiy am emanyptiomn of m imto
an encryption of a related message, say m+1.

Constructing CCA-Secure Encryption
Let’s start with Digital Signatures.

C: (c = CPAEnc(pk, m;T), Sign(g)ic), vk)

where the encryptor produces a signing / verification key pair
by running (sgk,vk) < Sign.Gen(1™)

Is this CCA-secure/non-malleable?

If the adversary changes vk,
all bets are off!

Lesson: NEED to “tie” the ciphertext c '
to vk in a “meaningful” way.

Observation:
IND-CPA = “Different-Key Non-malleability”

Different-Key NM: Given pk, pk’, CPAEnc(pk, m; 1),
can an adversary produce CPAEnc(pk’,m + 1;r)?

NO! Suppose she could. Then, | can come up with a
reduction that breaks the IND-CPA security of
CPAEnc(pk, m;r).

Observation:
IND-CPA = “Different-Key Non-malleability”

Different-Key NM: Given pk, pk’, CPAEnc(pk, m;),
can an adversary produce CPAEnc(pk’,m + 1;r)?

pk

CPAEnc(pk,m)

>

>

Reduction = CPA adversary

Pick (pk', sk’

Decrypt and

subtract 1.

pk, pk’

CPAEnc(pk,m)

>

CPAEnc(pk’,m + 1)
<€

t

Diff-Key NM

adversary

Putting it together

CCA Public Key: 2n public keys of the CPA scheme
(where n = |vk]|)

Pk1,o pkz,o Pkn,o
Pk1,1 Pk2,1 pkn»l
CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)
CT = [Clyvk, Clopk, - Ctn,vkn:|
where ct; ; < CPAEnc(pk; ;, m)

Output (CT,vk,o = Sign(sgk,CT)).

Dy abd: + 3 rl

Non-malleability rationale: Either

* Adversary keeps vk the same (in which case she
has to break the signature scheme); or

* She changes the vk in which case she breaks the
diff-NM game, and therefore CPA security.

CCA Encryption:
First, pick a sign/ver key pair (sgk, vk)

CT = [Ctl,vkl Ctz,vkz Ctn,vkn:|

where ct; ; < CPAEnc(pk; ;, m)

Output (CT,vk,o = Sign(sgk,CT)).

Call it a day?

We are not done!! Adversary could create ill-formed
ciphertexts (e.g. the different cts encrypt different
messages) and uses it for a Bleichenbacher-like attack.

CCA Encryption:
First, pick a sign/ver key pair (sgk, vk)
CT = [Clyvk, Clopk, - Ctn,vkn:|
where ct; ; < CPAEnc(pk; ;, m)
Output (CT,vk,o = Sign(sgk,CT)).

NIZK Proofs to the Rescue...
CCA Public Key: 2n public keys of the CPA scheme

Pk1,o pkz,o
pkl,l Pk2,1

pkn,O

Pkn,1

NP statement: “there exist
m, 1; j such that each ct; ; =

CPAEnc(pk; ;, m;r; ;)"

[‘2
where ct; ;

AEnc(pk; j,m;1; ;)

,CRS

key pair (sgk, vk)

Ctn,vkn]

T = NIZK proof that “CT is well-formed”
Output (CT, mkyvk, = Sigudngkg&]T00T,))).

Are there other attacks?

Did we miss anything else?

Turns out NO. We can prove that this is CCA-secure.

The Encryption Scheme

CCA Keys:

PK=

pk1,o sz,o

pki1 Pka

CCA Encryption:

Pkn,o

pkn,l

,CRS SK=

First, pick a sign/ver key pair (sgk, vk)

CT = [Cl1vk, Ctovk,

where ct; ; « CPAEnc(pk; ;,m;1; ;)

Ctn,vknJ

L]’

T = NIZK proof that “CT is well-formed”
Output (CT, m, vk, o = Sign(sgk, (CT, m))).

SkLO

Skm

The Encryption Scheme

CCA Encryption:
First, pick a sign/ver key pair (sgk, vk)

CT = [Clivk, Cloyk, - Ctn,vkn]
where ct; ; « CPAEnc(pk;;, m;r; ;)
T = NIZK proof that “CT is well-formed”
Output (CT, m, vk, o = Sign(sgk, (CT, m))).
CCA Decryption:
Check the signature.

Check the NIZK proof.
Decrypt with sk .. .

Proof Sketch

Let’s play the CCA game with the adversary.

We will use her to break either the NIZK soundness/ZK,
the signature scheme or the CPA-secure scheme.

Proof Sketch

Let’s play the CCA game with the adversary.
Hybrid 0: Play the CCA game as prescribed.

Hybrid 1: Observe that vk; # vk".
(Otherwise break signature)

Observe that this means each query ciphertext-tuple
involves a different public-key from the challenge
ciphertext. Use the “different private-key” to decrypt.

(If the adv sees a difference, she broke NIZK soundness)

Hybrid 2: Now change the CRS/m into simulated CRS/t!
(OK by ZK)

If the Adv wins in this hybrid, she breaks IND-CPA!

New Topic:
Secure Computation

Secure Computation

Input: x

{) «—

Alice

Output: F,(x,y) Output: Fz(x,y)

Secure Two-Party Computation

Input: x
Alice
Output: F,(x,y) Output: Fz(x,y)

Semitynest Security:

 Alice should not learn anything more than x and F,(x, y).

« Bob should not learn anything more than y and Fgz(x, y).

Secure Two-Party Computation

Input: x
Alice
Output: F,(x,y) Output: Fz(x,y)

Malicious Security:

* No (PPT) Alice* can learn anything more than x* and F,(x*, y).

* No (PPT) Bob* can learn anything more than y* and Fg(x, y*).

Tool 1: Secret Sharing

secret b

shares; shares, shares; shares, shares,
& = 2 3 ¢ ¢
p P3 P, P,

P, 2

Secret Sharing

Dealer

U Any “authorized” subset of players can recover D.

J No other subset of players has any info about D.

o Threshold (or t-out-of-n) SS [Shamir’79, Blakley’79]:

“authorized” subset = has size > t.

secret b € Zp

ﬁ n-out-of-n Secret Sharing

Dealer

share s;: random
share s,: random
share s3: random

share s,: random

shares, =b—(s;+s,+-+5s,_1)modp

secret b € Zp

'ﬂ 1-out-of-n Secret Sharing

shares; =b
shares, =b
shares; =b

shares, =b

shares, =b

secret b € Zp

4 2-out-of-n Secret Sharing?

@ z231¢

P,

Dealer

Here is a, solution.

Repeat for every two-person subset {F;, P;}:
* Generate a 2-out-of-2 secret sharing (s;, s;) of b.
* Give s; to P; and s; to P

What is the size of shares each party gets?

How does this scale to t-out-of-n%

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

Shamir’s 2-out-of-n Secret Sharing

S
TN
Q) ;:

secret b

b

Each share s; is truly
random (independent of
secret b)

Any two shares uniquely
determine b.

Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose
constant term is the secret b.

f(x) = ax + b where a is uniformly random mod p

2. Compute the shares:

s1=f(1),s2 = f(2), ., 50 = (D),)50 = f(0)

Correctness: can recover secret from any two shares.

Proof: Parties i and j, given shares s; = ai + b and s; = aj +
jSi—iSj)

b can solve for b (= P

Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose
constant term is the secret b.

f(x) = ax + b where a is uniformly random mod p

2. Compute the shares:

s1=f(1),s2 = f(2), ., 50 = (D),)50 = f(0)

Security: any single party has no information about the secret.

Proof: Party i's share s; = a x i + b is uniformly random,
independent of b, as a is random and so is a * i.

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1)
polynomial (mod p) whose constant term is the secret b.

fxX)=ar_xt 1+ +ax+b
where a; are uniformly random mod p

2. Compute the shares:
s1=f),s, =f(2),..,s; =f(0),..,sp,=f(n)
Correctness: can recover secret from any t shares.

Security: the distribution of any t — 1 shares is
independent of the secret.

Note: need p to be larger than the number of parties n.

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f),s, =f(2),..,s; =f(i),..,sp,=f(n)
Correctness: via Vandermonde matrices.

Let’s look at shares of parties Py, P,, ..., P;.

S11 o1l 1 1 ... 1 1[b T
S7 1 2 22 .. 294 a4
ss{=11 3 3% .. 31| ay [(modp)
sed L1 ¢ 2 Lttt Hlap

t-by-t Vandermonde matrix which is invertible

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f(1),s2 = f(2), .50 = (D),)80 = f(0)

Correctness: Alternatively, Lagrange interpolation gives
an explicit formula that recovers b.

b= £(0) =Zt:f(i)< || +=5)
i=1 l

1<j<t,j#i

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f(1),s2 = f(2), .50 = (D),)80 = f(0)

Security:

Let’s look at shares of parties Py, P,, ..., Ps_1.

- 51 1 1 1 1 1r b

S9 1 2 22 Zt_l aq

s3 |=[1 3 32 3t-1 a, |(mod p)
seqd 11 t—1 -1 .. (-Dla_

(t — 1)-by-t Vandermonde matrix

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f(1),s2 = f(2), .50 = (D),)80 = f(0)

Security: For every value of b there is a unique polynomial
with constant term b and shares sy, s5, ..., S¢_1.

- 51 1 1 1 1 1r b

S9 1 2 22 Zt_l aq

s3 |=[1 3 32 3t-1 a, |(mod p)
seqd 11 t—1 -1 .. (-Dla_

(t — 1)-by-t Vandermonde matrix

Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f(1),s2 = f(2), .50 = (D),)80 = f(0)

Security: For every value of b there is a unique polynomial
with constant term b and shares sy, s5, ..., S¢_1.

Corollary: for every value of the secret b is equally likely
given the shares s4, s5, ..., S¢—1. In other words, the secret b is
perfectly hidden given t — 1 shares.

Tool 2: Oblivious Transfer

Oblivious Transfer (OT)

Choice bit: b

Sender Receiver

« Sender holds two bits/strings x, and x;.
« Receiver holds a choice bit b.

* Receiver should learn x;, sender should learn nothing.

(We will consider honest-but-curious adversaries; formal
definition in a little bit...)

Why OT? The Dating Problem
e,

Why OT? The Dating Problem

Alice and Bob want to
compute the ANDa A L.

— 0 Run an OT protocol
X0 = Gy ChoiCe bit b = B

Bob gets a if =1, and 0 if =0

Here is a way to write the OT selection function: x1b + x¢(1 — b)

which, in this case is = af.

The Billionaires’ Problem

Net worth:

Who is richer?

The Billionaires’ Problem

fX,Y)=1
ﬂ ifandonlyif X >Y
X
O/1(0/0]| - - 0111111
Unit Vector uy = 1 in the X" Vector vy = 1 from the (Y + 1)t"
location and 0 elsewhere location onwards
U

FOLY) = (ux,vy) =) uyli] Avyi]

i=1

Detour: OT = Secret-Shared-AND

Alice gets random y, Bob gets
random o s.t.y @06 = apf.

Output: y Output: &
— Run an OT protocol
X1 =ady

Alice outputs y.
Bob gets x1b + x0(169b) = (x1 D xo)b +Xx9 = af®y =90

The Billionaires’ Problem
FX,7) =1

ﬂ ifandonlyif X >Y
O/1/0, 0| - - 1011 1|1
Unit Vector uy U Vector vy
FXY) = (ux,vy) =) uyli] Avyi]
i=1

1. Alice and Bob run many OTs to get (y;, 6;) s.t.
Yi®d; = uxli] Avyli]

2. Alice computes y = @, y; and Bob computes § = &; ;.
3. Alice reveals y and Bob reveals 6.

Check (correctness): y &5 = (uy,vy) = f(X,Y).

The Billionaires’ Problem

fX,Y)=1
ﬂ ifandonlyif X >Y
0[1]0/]0 11
Unit Vector uy U
FOLY) = (uy, vy) =) uxli] Avyli]
i=1

1. Alice and Bob run many OTs to get (y;, 6;) s.t.
Yi®d; = uxli] Avyli]
2. Alice computes y = @, y; and Bob computes § = &; ;.

Check (privacy): Alice & Bob get a bunch of random bits.

“OT is Complete”

Theorem (lec18-19): OT can solve not just love and
money, but any two-party (and multi-party) problem
efficiently.

N

Y

Defining Security:
The Ideal/Real Paradigm

OT Definition

Choice bit: b

Sender Receiver

Receiver Security: Sender should not learn b.

Define Sender’s view Views(xg, x1, b) = her random coins
and the protocol messages.

OT Definition

Choice bit: b

Sender Receiver

Receiver Security: Sender should not learn b.

There exists a PPT simulator SIM¢ such that for any
Xg,X1 and b:

SIM¢(xg,x1) = Views(xg, X1, b)

OT Definition

Choice bit: b

Sender Receiver

Sender Security: Receiver should not learn x;_;.

Define Receiver’s view Viewg(xg, x1, b) = his random coins
and the protocol messages.

OT Definition

Choice bit: b

Sender Receiver

Sender Security: Receiver should not learn x;_;.

There exists a PPT simulator SIMgp such that for any
Xg,X1 and b:

SIMgp (b, xp) = Viewg(x9,Xx1,b)

OT Protocols

OT Protocol 1: Trapdoor Permutations

For concreteness, let's use the RSA trapdoor permutation.

Input bits: (xg, x1) Choice bit: b

Pick N = PQ and N,e
RSA exponent e. >

Choose random r;, and
sets, =15 mod N

50,51
« Choose random s;_,
Compute ry, 4 and
one-time pad xg, x4 Xo@HCB (ry) .
i - » Bob can recover x
using hardcore bits *,®HCB () b

but not x;_,

OT Protocol 1: Trapdoor Permutations

N, e

>
So, S1
Input bits: (xg, x1) Choice bit: b
xo®HCB (1)
>
x1@®HCB(ry)

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

Alice’s view is sy, s; one of which is chosen randomly
from Zy and the other by raising a random number to
the e-th power. They look exactly the same!

OT Protocol 1: Trapdoor Permutations

N, e
>
i .
Input bits: (xg, x1) Choice bit: b
xo®HCB (1)
X ®HCB(ry)

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations

N, e

>
So, S1
Input bits: (xg, x1) Choice bit: b
xo®HCB (1)
>
x1@®HCB(ry)

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

Assuming Bob is semi-honest, he chose s;_; uniformly

at random, so the hardcore bit of s,_, = r , is
computationally hidden from him.

OT from Trapdoor Permutations

N, e

>
So, S1
Input bits: (xg, x1) Choice bit: b
xo®HCB (1)
>
x1@®HCB(ry)

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

Exercise: Show how to construct the simulator.

OT Protocol 2: Additive HE

Input bits: (xg, x1) Choice bit: b

Encrypt choice bit b

Homomorphically c ¢ < Enc(sk, b)
evaluate the
selection function

SEL,, ., (b) = ¢" = Eval(SELy, x, (),)
(x1 @ x9)b + x9 >

Decrypt to get x,,

Bob’s security: computational, from CPA-security of Enc.

Alice’s security: statistical, from function-privacy of Eval.

Many More Constructions of OT

Theorem: OT protocols can be constructed based
on the hardness of the Diffie-Hellman problem,
factoring, quadratic residuosity, LWE, elliptic curve
isogeny problem etc. etc.

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any two-party computation problem.

N

Y

