MIT 6.875

Foundations of Cryptography Lecture 17

An Application of NIZK:

Non-malleable and Chosen Ciphertext Secure Encryption Schemes

Non-Malleability

$$c \leftarrow Enc(\mathbf{pk}, m)$$

≯

Public-key directory

Active Attacks 1: Malleability

ATTACK: Adversary could modify ("maul") an encryption of m into an encryption of a related message m'.

Active Attacks 2: Chosen-Ciphertext Attack

ATTACK: Adversary may have access to a decryption In fact, <u>Bleichenbacher</u> showed how to extract the entire "oracle" and can use it to break security of a "target" secret key given only a "ciphertext verification" oracle. Ciphertext & or even extract the secret key!

Constructing CCA-Secure Encryption (Intuition)

NIZK Proofs of Knowledge should help!

Idea: The encrypting party attaches an NIZK proof of knowledge of the underlying message to the ciphertext.

C: (c = CPAEnc(*m*; *r*), proof π that "*I* know *m* and *r*")

This idea will turn out to be useful, but NIZK proofs themselves can be malleable!

Constructing CCA-Secure Encryption (Intuition)

Digital Signatures should help!

OUR GOAL: Hard to modify am emcryption off rm imto an encryption of a related message, say m+1.

Constructing CCA-Secure Encryption

Let's start with **Digital Signatures**.

C: (c = CPAEnc(pk, m; r), Sign(g)(c), vk)

where the encryptor produces a signing / verification key pair by running $(sgk, vk) \leftarrow Sign. Gen(1^n)$

Is this CCA-secure/non-malleable?

If the adversary changes vk, all bets are off!

Lesson: NEED to "tie" the ciphertext c **to** vk **in a "meaningful" way.**

Observation: IND-CPA ⇒ "Different-Key Non-malleability"

Different-Key NM: Given pk, pk', CPAEnc(pk, m; r), **can an adversary produce** CPAEnc(pk', m + 1; r)?

NO! Suppose she could. Then, I can come up with a reduction that breaks the IND-CPA security of CPAEnc(pk,m;r).

Observation:

IND-CPA ⇒ "Different-Key Non-malleability"

Different-Key NM: Given pk, pk', CPAEnc(pk, m; r), **can an adversary produce** CPAEnc(pk', m + 1; r)?

Putting it together

CCA Public Key: 2n public keys of the CPA scheme

 $\begin{bmatrix} pk_{1,0} & pk_{2,0} & & pk_{n,0} \\ pk_{1,1} & pk_{2,1} & & pk_{n,1} \end{bmatrix}$

(where
$$n = |vk|$$
)

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,\nu k_1} ct_{2,\nu k_2} & \cdots & ct_{n,\nu k_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j},m)$ Output $(CT, vk, \sigma = Sign(sgk, CT))$.

Dutting it together

Non-malleability rationale: Either

- Adversary keeps vk the same (in which case she has to break the signature scheme); or
- She changes the vk in which case she breaks the diff-NM game, and therefore CPA security.

CCA Encryption:

First, pick a sign/ver key pair (*sgk*, *vk*)

$$CT = \begin{bmatrix} ct_{1,\nu k_1} ct_{2,\nu k_2} & \cdots & ct_{n,\nu k_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j},m)$ Output $(CT, vk, \sigma = Sign(sgk, CT))$.

Call it a day?

We are not done!! Adversary could create ill-formed ciphertexts (e.g. the different *ct*s encrypt different messages) and uses it for a Bleichenbacher-like attack.

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk) $CT = \begin{bmatrix} ct_{1,vk_1} ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$ where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m)$ Output $(CT, vk, \sigma = Sign(sgk, CT))$.

NIZK Proofs to the Rescue...

CCA Public Key: 2n public keys of the CPA scheme

NP statement: "there exist $m, r_{i,i}$ such that each $ct_{i,i} =$ key pair (sgk, vk) $CPAEnc(pk_{i,i}, m; r_{i,i})''$ \cdots ct_{n,vk_n} where $ct_{i,j}$, $PAEnc(pk_{i,j}, m; r_{i,j})$ $\pi = NIZK$ proof that "CT is well-formed" Output $(CT, \pi kyk, \sigma Sign(\pi kgkT()))$.

Are there other attacks?

Did we miss anything else?

Turns out NO. We can prove that this is CCA-secure.

The Encryption Scheme

CCA Keys:

$$\mathbf{PK} = \begin{bmatrix} pk_{1,0} & pk_{2,0} & & pk_{n,0} \\ pk_{1,1} & pk_{2,1} & & pk_{n,1} \end{bmatrix}, CRS \quad \mathbf{SK} = \begin{bmatrix} sk_{1,0} \\ sk_{1,1} \end{bmatrix}$$

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk) $CT = \begin{bmatrix} ct_{1,vk_1} ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$ where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m; r_{i,j})$ $\pi = \text{NIZK}$ proof that "CT is well-formed" Output $(CT, \pi, vk, \sigma = Sign(sgk, (CT, \pi))).$

The Encryption Scheme

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,\nu k_1} ct_{2,\nu k_2} & \cdots & ct_{n,\nu k_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m; r_{i,j})$

 $\pi=\text{NIZK}$ proof that "CT is well-formed"

Output $(CT, \pi, \nu k, \sigma = Sign(sgk, (CT, \pi)))$.

CCA Decryption:

Check the signature. Check the NIZK proof. Decrypt with $sk_{1,\nu k_1}$.

Proof Sketch

Let's play the CCA game with the adversary.

We will use her to break either the NIZK soundness/ZK, the signature scheme or the CPA-secure scheme.

Proof Sketch

Let's play the CCA game with the adversary.

Hybrid 0: Play the CCA game as prescribed.

Hybrid 1: Observe that $vk_i \neq vk^*$.

(Otherwise break signature)

Observe that this means each query ciphertext-tuple involves a different public-key from the challenge ciphertext. Use the "different private-key" to decrypt. (If the adv sees a difference, she broke NIZK soundness)

Hybrid 2: Now change the CRS/π into simulated CRS/π! (OK by ZK)

If the Adv wins in this hybrid, she breaks IND-CPA!

New Topic: Secure Computation

Secure Computation

Input: *x*

Input: y

Alice

Bob

Output: $F_A(x, y)$

Output: $F_B(x, y)$

Secure Two-Party Computation

Seminitynest Security:

- Alice should not learn anything more than x and $F_A(x, y)$.
- Bob should not learn anything more than y and $F_B(x, y)$.

Secure Two-Party Computation

Malicious Security:

- No (PPT) Alice* can learn anything more than x^* and $F_A(x^*, y)$.
- No (PPT) Bob* can learn anything more than y^* and $F_B(x, y^*)$.

Tool 1: Secret Sharing

- Any "authorized" subset of players can recover b.
- No other subset of players **has any info** about b.

Threshold (or t-out-of-n) SS [Shamir'79, Blakley'79]: Ο

"authorized" subset = has size \geq t.

share s_1 : random share s_2 : random share s_3 : random share s_4 : random

share
$$s_n = b - (s_1 + s_2 + \dots + s_{n-1}) \mod p$$

share $s_1 = b$ share $s_2 = b$ share $s_3 = b$ share $s_4 = b$...

share $s_n = b$

Here is a solution.

Repeat for every two-person subset $\{P_i, P_j\}$:

- Generate a 2-out-of-2 secret sharing (s_i, s_j) of b.
- Give s_i to P_i and s_j to P_j

What is the size of shares each party gets?

How does this scale to t-out-of-n?

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

Shamir's 2-out-of-n Secret Sharing

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose constant term is the secret *b*.

f(x) = ax + b where *a* is uniformly random mod *p*

2. Compute the shares: $s_1 = f(1), s_2 = f(2), ..., s_i = f(i), ..., s_n = f(n)$

Correctness: can recover secret from any two shares.

Proof: Parties *i* and *j*, given shares $s_i = ai + b$ and $s_j = aj + b$ can solve for $b \ (= \frac{js_i - is_j}{j-i})$.

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose constant term is the secret *b*.

f(x) = ax + b where *a* is uniformly random mod *p*

2. Compute the shares: $s_1 = f(1), s_2 = f(2), ..., s_i = f(i), ..., s_n = f(n)$

Security: any single party has no information about the secret.

Proof: Party *i*'s share $s_i = a * i + b$ is uniformly random, independent of *b*, as *a* is random and so is a * i.

Shamir's t-out-of-n Secret Sharing Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) polynomial (mod p) whose constant term is the secret *b*.

$$f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$$

where a_i are uniformly random mod p

2. Compute the shares: $s_1 = f(1), s_2 = f(2), ..., s_i = f(i), ..., s_n = f(n)$

Correctness: can recover secret from any *t* shares.

Security: the distribution of any t - 1 shares is independent of the secret.

Note: need p to be larger than the number of parties n.

Shamir's t-out-of-n Secret Sharing Key Idea: Polynomials are Amazing!

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

$$s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$$

Correctness: via Vandermonde matrices.

Let's look at shares of parties P_1, P_2, \dots, P_t .

$$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \dots \\ s_t \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 2^2 & \dots & 2^{t-1} \\ 1 & 3 & 3^2 & \dots & 3^{t-1} \\ 1 & \dots & \dots & \dots & \dots \\ 1 & t & t^2 & \dots & t^{t-1} \end{bmatrix} \begin{bmatrix} b \\ a_1 \\ a_2 \\ \dots \\ a_{t-1} \end{bmatrix} (\text{mod } p)$$

t-by-t Vandermonde matrix which is **invertible**

Shamir's t-out-of-n Secret Sharing Key Idea: Polynomials are Amazing!

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

$$s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$$

Correctness: Alternatively, *Lagrange interpolation* gives an explicit formula that recovers b.

$$b = f(0) = \sum_{i=1}^{t} f(i) \left(\prod_{1 \le j \le t, j \ne i} \frac{-x_j}{x_i - x_j} \right)$$

Shamir's t-out-of-n Secret Sharing Key Idea: Polynomials are Amazing!

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

$$s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$$

Security:

Let's look at shares of parties P_1, P_2, \dots, P_{t-1} .

$$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \dots \\ s_{t-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 2^2 & \dots & 2^{t-1} \\ 1 & 3 & 3^2 & \dots & 3^{t-1} \\ 1 & \dots & \dots & \dots & \dots \\ 1 & t-1 & (t-1)^2 & \dots & (t-1)^{t-1} \end{bmatrix} \begin{bmatrix} b \\ a_1 \\ a_2 \\ \dots \\ a_{t-1} \end{bmatrix} (\text{mod } p)$$

(t-1)-by-t Vandermonde matrix

Shamir's t-out-of-n Secret Sharing Key Idea: Polynomials are Amazing!

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

$$s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$$

Security: For every value of *b* there is a unique polynomial with constant term *b* and shares $s_1, s_2, ..., s_{t-1}$.

$$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \dots \\ s_{t-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 2^2 & \dots & 2^{t-1} \\ 1 & 3 & 3^2 & \dots & 3^{t-1} \\ 1 & \dots & \dots & \dots & \dots \\ 1 & t-1 & (t-1)^2 & \dots & (t-1)^{t-1} \end{bmatrix} \begin{bmatrix} b \\ a_1 \\ a_2 \\ \dots \\ a_{t-1} \end{bmatrix} (\text{mod } p)$$

(t-1)-by-t Vandermonde matrix

Shamir's t-out-of-n Secret Sharing Key Idea: Polynomials are Amazing!

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

 $s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$

Security: For every value of *b* there is a unique polynomial with constant term *b* and shares $s_1, s_2, ..., s_{t-1}$.

Corollary: for every value of the secret *b* is equally likely given the shares $s_1, s_2, ..., s_{t-1}$. In other words, the secret *b* is perfectly hidden given t - 1 shares.

Tool 2: Oblivious Transfer

Oblivious Transfer (OT)

- Sender holds two bits/strings x_0 and x_1 .
- Receiver holds a choice bit *b*.
- Receiver should learn x_b, sender should learn nothing.
 (We will consider honest-but-curious adversaries; formal definition in a little bit...)

Why OT? The Dating Problem

Alice and Bob want to compute the AND $\alpha \wedge \beta$.

Why OT? The Dating Problem Alice and Bob want to $\beta \in \{0,1\}$ $\alpha \in \{0,1\}$ compute the AND $\alpha \wedge \beta$. Run an OT protocol $\frac{x_0 = 0}{x_1 = \alpha}$ Choice bit $b = \beta$

Bob gets α if β =1, and 0 if β =0

Here is a way to write the OT selection function: $x_1b + x_0(1 - b)$ which, in this case is $= \alpha\beta$.

The Billionaires' Problem

Who is richer?

location and 0 elsewhere

location onwards

$$f(X,Y) = \langle u_X, v_Y \rangle = \sum_{i=1}^{o} u_X[i] \wedge v_Y[i]$$

TT

Comput

Detour: OT \Rightarrow **Secret-Shared-AND**

Alice outputs γ .

Bob gets $x_1b + x_0(1 \oplus b) = (x_1 \oplus x_0)b + x_0 = \alpha \beta \oplus \gamma \coloneqq \delta$

1. Alice and Bob run many OTs to get (γ_i, δ_i) s.t.

 $\gamma_i \oplus \delta_i = \boldsymbol{u}_{\boldsymbol{X}}[\boldsymbol{i}] \wedge \boldsymbol{v}_{\boldsymbol{Y}}[\boldsymbol{i}]$

2. Alice computes $\gamma = \bigoplus_i \gamma_i$ and Bob computes $\delta = \bigoplus_i \delta_i$.

3. Alice reveals γ and Bob reveals δ .

Check (correctness): $\gamma \oplus \delta = \langle u_X, v_Y \rangle = f(X, Y)$.

1. Alice and Bob run many OTs to get (γ_i, δ_i) s.t.

 $\gamma_i \oplus \delta_i = \boldsymbol{u}_{\boldsymbol{X}}[\boldsymbol{i}] \wedge \boldsymbol{v}_{\boldsymbol{Y}}[\boldsymbol{i}]$

2. Alice computes $\gamma = \bigoplus_i \gamma_i$ and Bob computes $\delta = \bigoplus_i \delta_i$.

Check (privacy): Alice & Bob get a bunch of random bits.

"OT is Complete"

Theorem (*lec18-19*): OT can solve not just love and money, but **any** two-party (and multi-party) problem efficiently.

Defining Security: The Ideal/Real Paradigm

Receiver Security: Sender should not learn b.

Define Sender's view $View_S(x_0, x_1, b)$ = her random coins and the protocol messages.

Receiver Security: Sender should not learn b.

There exists a PPT simulator SIM_S such that for any x_0, x_1 and b:

$$SIM_S(x_0, x_1) \cong View_S(x_0, x_1, b)$$

Sender Security: Receiver should not learn x_{1-b} .

Define Receiver's view $View_R(x_0, x_1, b)$ = his random coins and the protocol messages.

Sender Security: Receiver should not learn x_{1-b} .

There exists a PPT simulator SIM_R such that for any x_0, x_1 and b:

$$SIM_R(b, x_b) \cong View_R(x_0, x_1, b)$$

OT Protocols

OT Protocol 1: Trapdoor Permutations

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Alice's view is s_0 , s_1 one of which is chosen randomly from Z_N^* and the other by raising a random number to the *e*-th power. They look exactly the same!

OT Protocol 1: Trapdoor Permutations

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations

How about Alice's security

(a.k.a. Why does Bob not learn both of Alice's bits)?

Assuming Bob is semi-honest, he chose s_{1-b} uniformly at random, so the hardcore bit of $s_{1-b} = r_{1-b}^d$ is computationally hidden from him.

OT from Trapdoor Permutations

How about Alice's security (a.k.a. Why does Bob not learn both of Alice's bits)?

Exercise: Show how to construct the simulator.

OT Protocol 2: Additive HE

С

Input bits: (x_0, x_1)

Encrypt choice bit b

 $c \leftarrow \operatorname{Enc}(sk, b)$

Homomorphically evaluate the selection function

 $SEL_{x_0,x_1}(b) =$

 $(x_1 \oplus x_0)b + x_0$

$$c' = \text{Eval}(SEL_{x_0,x_1}(b), c)$$

Decrypt to get x_b

Bob's security: computational, from CPA-security of Enc. *Alice's security*: statistical, from function-privacy of Eval.

Many More Constructions of OT

Theorem: OT protocols can be constructed based on the hardness of the Diffie-Hellman problem, factoring, quadratic residuosity, LWE, elliptic curve isogeny problem etc. etc.

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: OT can solve *any* two-party computation problem.

