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Interaction is Necessary for ZK

Theorem: If a language L has a non-interactive (one-
message) ZK proof system, then L can be solved in 
probabilistic polynomial time.

That seems like the end of the road for non-
interactive ZK (?)



Two Roads to Non-Interactive ZK (NIZK)
1. Random Oracle Model & Fiat-Shamir Transform.

2. Common Random String Model.
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The Common Random String Model
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NIZK for a language L in the CRS Model
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1. Completeness: For every " ∈ L, V accepts P’s proof. 

2. Soundness: Given a CRS, the probability that a cheating 
prover $∗ can produce "∗ ∉ L and “proof” !∗, such that 
'()*+, "∗, !∗) accepts is ≤ neg(2)



!
Graph G Graph G

010111000101010010CRS

3. Zero Knowledge: There is a PPT simulator S such that for every 
" ∈ L and witness %, S simulates the view of the verifier V.

&(") ≈ (*+& ← -./0, ! ← 2(*+&, ", %))

NIZK for a language L in the CRS Model



HOW TO CONSTRUCT NIZK
IN THE CRS MODEL 

1. Blum-Feldman-Micali’88 (quadratic residuosity)

2. Feige-Lapidot-Shamir’90 (factoring)

3. Groth-Ostrovsky-Sahai’06 (bilinear maps)

4. Canetti-Chen-Holmgren-Lombardi-Rothblum"-Wichs’19
and Peikert-Shiehian’19    (learning with errors)

1. Blum-Feldman-Micali’88 (quadratic residuosity)



HOW TO CONSTRUCT NIZK
IN THE CRS MODEL 

Step 1. Review our number theory hammers 
& polish them.

Step 2. Construct NIZK for a special NP language, namely 
quadratic non-residuosity.

Step 3. Bootstrap to NIZK for 3SAT, an NP-complete 
language.



Jacobi Symbol

!"#$% !"#&%
'(∗

{+: +
- = −1} {+: +

- = +1}

Let - = 34 be a product of two large primes.



Jacobi Symbol

!"#$% !"#&%
'(∗

{+: +
- = −1} {+: +

- = +1}

Fact: For any odd N, 345 divides 67∗ evenly unless N 
is a perfect square. (If N is a perfect square, all of '(∗
has Jacobi symbol +1.)



Jacobi Symbol

!"#$% !"#&%
'(∗

{+: +
- = −1} {+: +

- = +1}

Surprising fact: For any N, Jacobi symbol 3
( is 

computable in poly time without knowing the prime 
factorization of 4.  



Quadratic Residues / Squares

Let ! = #$ be a product of two large primes.

%&'()

*+, is the set of squares mod ! and *!+, is the set 
of non-squares mod ! with Jacobi symbol +1.

*+,

*!+,

So: *+, = {.: 0
1 = 0

2 = +1}

*!+, = {.: 0
1 = 0

2 = −1}



Quadratic Residues / Squares
Fact: For an odd ! = ∏$%&

' ($
)* , the fraction of ,-∗

that are a square mod N is 20'.

1234&

56- is the set of squares mod ! and 5!6- is the set 
of non-squares mod ! with Jacobi symbol +1.

56-

5!6-

So: 56- = {8: :
; = :

< = +1}

5!6- = {8: :
; = :

< = −1}



Quadratic Residues

!"#$%

&'( is the set of squares mod ) and &)'( is the set 
of non-squares mod ) with Jacobi symbol +1.

&'(

&)'(

Call an odd integer N good if 
• exactly half of *+∗ have Jacobi symbol +1, and 
• exactly half of them are quadratic residues.



Quadratic Residues

!"#$%
&'(

&)'(

Fact: An odd N is good iff
) = +,-., "01 2, 3 ≥ 1, not both even.



Quadratic Residues

!"#$%

IMPORTANT PROPERTY:  If &% and &' are both in 
()*, then their product &%&' is in (*.

(*+

(,*+

Fact: An odd N is good iff
, = ./01, "34 5, 6 ≥ 1, not both even.



Quadratic Residues

!"#$%&'(

&)'(

The fraction of residues smaller if 
* has three or more prime factors!

IMPORTANT PROPERTY:  If +% and +, are both in 
&*', then their product +%+, is in &'.



Quadratic Residuosity

Let ! = #$ be a product of two large primes.

Quadratic Residuosity Assumption (QRA)

No PPT algorithm can distinguish between a random 
element of %&' from a random element of %!&'
given only !.



HOW TO CONSTRUCT NIZK
IN THE CRS MODEL 

Step 1. Review our number theory hammers 
& polish them.

Step 2. Construct NIZK for a special NP language, namely 
quadratic non-residuosity.

Step 3. Bootstrap to NIZK for 3SAT, an NP-complete 
language.



NIZK for Quadratic Non-Residuosity

Define the NP language !""# with instances (%, ') where
• ) is	good;  and
• 0 ∈ 2)34 (that is, 0 has Jacobi symbol +1 

but is not a square mod ))

56789 567:9

;4∗
234

2)34



NIZK for Quadratic Non-Residuosity

!"# = (&', &), … , &+) ← (./012')+

(3, 4) (3, 4)

Check:
• N is	odd
• 3 is	not	a	prime	power,	
• 3 is	not	a	perfect	square;

Fact: If all these 
pass, then at most 
half of ./012' are 
squares.



NIZK for Quadratic Non-Residuosity

!"# = (&', &), … , &+) ← (./012')+

(3, 4) (3, 4)

If 5 is good and 6 ∈ 8595:
either ;< is in 895 or 6;< is in 895
so I can compute ;< or 6;<.

If not … I’ll be stuck!



NIZK for Quadratic Non-Residuosity

!"# = (&', &), … , &+) ← (./01
2')+

(3, 4) (3, 4)
∀6: &8 OR 4&8

Check:
• N	is	odd

• 3 is	not	a	prime	power,	

• 3 is	not	a	perfect	square;	and	
• I received either a mod-N 

square root of &8 or 4&8



NIZK for Quadratic Non-Residuosity

!"# = (&', &), … , &+) ← (./012')+

(3, 4) (3, 4)
∀6: &8 OR 4&8

Soundness (what if 3 has more than 2 prime factors)

No matter what 4 is, for half the &8, both &8 and 4&8 are 
not quadratic residues. 



NIZK for Quadratic Non-Residuosity

!"# = (&', &), … , &+) ← (./012')+

(3, 4) (3, 4)
∀6: &8 OR 4&8

Soundness (what if 3 has more than 2 prime factors)

No matter what 4 is, for half the &8, both &8 and 4&8 are 
not quadratic residues. 



NIZK for Quadratic Non-Residuosity

!"# = (&', &), … , &+) ← (./012')+

(3, 4) (3, 4)
∀6: &8 OR 4&8

Soundness (what if 4 is a residue)

Then, if &8 happens to be a non-residue, both &8 and 4&8
are not quadratic residues. 



NIZK for Quadratic Non-Residuosity

!"# = (&', &), … , &+) ← (./012')+

(3, 4) (3, 4)
∀6: 89 = &9 OR 4&9

(Perfect) Zero Knowledge Simulator S:

First pick the proof 89 to be random in :1∗ .
Then, reverse-engineer the CRS, letting &9 = 89) or &9 =
89)/4 randomly.



NIZK for Quadratic Non-Residuosity

!"# = (&', &), … , &+) ← (./012')+

(3, 4) (3, 4)

CRS depends on the instance N. Not good.
Soln: Let CRS be random numbers. 
Interpret them as elements of 51∗ and both 
the prover and verifier filter out ./017'. 



NEXT LECTURE

Step 1. Review our number theory hammers 
& polish them.

Step 2. Construct NIZK for a special NP language, namely 
quadratic non-residuosity.

Step 3. Bootstrap to NIZK for 3SAT, an NP-complete 
language.



3SAT

Boolean Variables: !" can be either true (1) or false (0) 

A Literal is either !" or #!".
A Clause is a disjunction of literals.

E.g. !$ ∨ !& ∨ !'
A Clause is true if any one of the literals is true.



3SAT

Boolean Variables: !" can be either true (1) or false (0) 

A Literal is either !" or #!".
A Clause is a disjunction of literals.

E.g. !$ ∨ !& ∨ !' is true as long as:

(!$, !&, !' ) ≠ (0,0,1)



3SAT

Boolean Variables: !" can be either true (1) or false (0) 

A Literal is either !" or #!".
A 3-Clause is a disjunction of 3-literals.

A 3-SAT formula is a conjunction of many 3-clauses.

E.g. $ = (!% ∨ !' ∨ !() ∧ (!% ∨ !+ ∨ !,) (!' ∨ !+ ∨ !()

A 3-SAT formula $ is satisfiable if there is an assignment 
of values to the variables !" that makes all its clauses true. 



3SAT

A 3-SAT formula is a conjunction of many 3-clauses.

E.g. ! = ("# ∨ "% ∨ "&) ∧ ("# ∨ ") ∨ "*) ("% ∨ ") ∨ "&)

A 3-SAT formula ! is satisfiable if there is an assignment 
of values to the variables "+ that makes all its clauses true. 

Cook-Levin Theorem: It is NP-complete to decide 
whether a 3-SAT formula ! is satisfiable.



NIZK for 3SAT: Recall…

!"#$% !"#&%

'(∗
*+(

*,+(

We saw a way to show that a pair (., 0) is GOOD. That is: 
• the following is the picture of '(∗ and 
• for every 2 ∈ !"#&%, either 2 or 24 is a quadratic residue.



NIZK for 3SAT

! !

Input: ! = ("# ∨ "% ∨ "&) ∧ ("# ∨ ") ∨ "*) ("% ∨ ") ∨ "&)

Satisfying assignment 
(w#,w%,… ,w/)

1. Prover picks an (0, 1) and proves that it is GOOD.  

(0, 1, 2)

345 = (7#, 7%, … , 789:;< =>?@<:) ← (BCDEF#)89:;< =>?@<:

n variables, m clauses.



NIZK for 3SAT

! !
Satisfying assignment 
(w$,w&,… ,w()

2. Prover encodes the satisfying assignment

(*, +, ,)

-./ = (1$, 1&, … , 123456 789:64) ← (<=>?@$)23456 789:64

+A ← B.? if CA is false
+A ← B*.? if CA is true



NIZK for 3SAT

! !
Satisfying assignment 
(w$,w&,… ,w()

2. Prover encodes the satisfying assignment & ∴ the literals

(+, ,, -)

./0 = (2$, 2&, … , 234567 89:;75) ← (=>?@A$)34567 89:;75

BC? DE = ,E, then BC? FDE = ,,E
∴ exactly one of BC? DE G2 BC? FDE is a non-residue. 



NIZK for 3SAT

! !
Satisfying assignment 
(w$,w&,… ,w()

2. Prover encodes the satisfying assignment & ∴ the literals

(+, ,, -)

./0 = (2$, 2&, … , 234567 89:;75) ← (=>?@A$)34567 89:;75

BC? DE = ,E, then BC? FDE = ,,E
∴ exactly one of BC? DE G2 BC? FDE is a non-residue. 

Encode vars: (,$, … , ,8)



NIZK for 3SAT

! !
Satisfying assignment 
(w$,w&,… ,w()

3. Prove that (encoded) assignment satisfies each clause.

(*, +, ,)

-./ = (1$, 1&, … , 123456 789:64) ← (<=>?@$)23456 789:64

Encode vars: (+$, … , +7)

For each clause, say A$ ∨ A& ∨ AC, 
let (=$, D$, >$) denote the encoded variables. 

So, each of them is either +E (if the literal is a var) or 
++E (if the literal is a negated var).   

For each clause, say A$ ∨ A& ∨ AC, let (=$ = +$, D$ =
+&, >$ = ++C) denote the encoded variables. 



NIZK for 3SAT

! !
Satisfying assignment 
(w$,w&,… ,w()

3. Prove that (encoded) assignment satisfies each clause.

(*, +, ,)

-./ = (1$, 1&, … , 123456 789:64) ← (<=>?@$)23456 789:64

Encode vars: (+$, … , +7)

For each clause, say A$ ∨ A& ∨ AC, 
let (=$, D$, >$) denote the encoded variables. 

WANT to SHOW: A$ E. A& E. AC is true.



NIZK for 3SAT

! !
Satisfying assignment 
(w$,w&,… ,w()

3. Prove that (encoded) assignment satisfies each clause.

(*, +, ,)

-./ = (1$, 1&, … , 123456 789:64) ← (<=>?@$)23456 789:64

Encode vars: (+$, … , +7)

For each clause, say A$ ∨ A& ∨ AC, 
let (=$, D$, >$) denote the encoded variables. 

WANT to SHOW: =$ E. D$ E. >$ is a non-residue.



NIZK for 3SAT

Prove that (encoded) assignment satisfies each clause.

WANT to SHOW: !" #$ %" #$ &" is a non-residue.

Equiv: The “pattern” of  (!", %", &") is NOT (QR, QR, QR).

CLEVER IDEA: Generate seven additional triples
(!", %", &")
(!), %), &))
(!*, %*, &*)
(!+, %+, &+)
(!,, %,, &,)
(!-, %-, &-)
(!., %., &.)
(!/, %/, &/)

original triple

show this is a QR: 
reveal the square roots

“Proof of Coverage”: 
show that the 8 triples span 
all possible QR patterns



NIZK for 3SAT
CLEVER IDEA: Generate seven additional triples

(!", $", %")
(!', $', %')
(!(, $(, %()
(!), $), %))
(!*, $*, %*)
(!+, $+, %+)
(!,, $,, %,)
(!-, $-, %-)

original triple

show this is a QR: 
reveal the square roots

“Proof of Coverage”: 
show that the 8 triples span 
all possible QR signatures

Proof of Coverage: For each of poly many triples (/, 0, 1)
from CRS, show one of the 8 triples has the same signature.
That is, there is a triple (!2, $2, %2) s.t. (/!2, 0$2, 1%2) is 
34, 34, 34 .



NIZK for 3SAT

! !
Satisfying assignment 
(w$,w&,… ,w()

3. Prove that (encoded) assignment satisfies each clause.

(*, +, ,)

-./ = (1$, 1&, … , 123456 789:64) ← (<=>?@$)23456 789:64

Encode vars: (+$, … , +7)

For each clause, construct the proof ρ = (7 
additional triples, square root of the second triples, 
proof of coverage).

For each clause B: CD



NIZK for 3SAT

! !
Satisfying assignment 
(w$,w&,… ,w()

Completeness & Soundness: Exercise.

(*, +, ,)

-./ = (1$, 1&, … , 123456 789:64) ← (<=>?@$)23456 789:64

Encode vars: (+$, … , +7)

Zero Knowledge:  Simulator picks (*, +) where + is a 
quadratic residue. 
Now, encodings of ALL the literals can be set to TRUE!!

For each clause A: BC


