MIT 6.875

Foundations of Cryptography Lecture 16

Interaction is Necessary for ZK

Theorem: If a language L has a non-interactive (onemessage) ZK proof system, then L can be solved in probabilistic polynomial time.

That seems like the end of the road for noninteractive ZK (?)

Two Roads to Non-Interactive ZK (NIZK)

1. Random Oracle Model & Fiat-Shamir Transform.

2. Common Random String Model.

1. Completeness: For every $x \in L$, V accepts P's proof.

2. Soundness: Given a CRS, the probability that a cheating prover P^* can produce $x^* \notin L$ and "proof" π^* , such that $V(CRS, x^*, \pi^*)$ accepts is $\leq neg(n)$

NIZK for a language L in the CRS Model

3. Zero Knowledge: There is a PPT simulator S such that for every $x \in L$ and witness w, S *simulates the view* of the verifier V.

 $S(x) \approx (CRS \leftarrow Unif, \pi \leftarrow P(CRS, x, w))$

HOW TO CONSTRUCT NIZK IN THE CRS MODEL

1. Blum-Feldman-Micalli 888 (quadratic esidoosity)

- 2. Feige-Lapidot-Shamir'90 (factoring)
- 3. Groth-Ostrovsky-Sahai'06 (bilinear maps)
- 4. Canetti-Chen-Holmgren-Lombardi-Rothblum²-Wichs'19 and Peikert-Shiehian'19 *(learning with errors)*

HOW TO CONSTRUCT NIZK IN THE CRS MODEL

Step 1. **Review** our number theory hammers & polish them.

Step 2. **Construct** NIZK for a special NP language, namely quadratic *non*-residuosity.

Step 3. **Bootstrap** to NIZK for 3SAT, an NP-complete language.

Jacobi Symbol

Let N = pq be a product of two large primes.

Jacobi Symbol

Fact: For any odd N, Jac divides Z_N^* evenly unless N is a perfect square. (If N is a perfect square, all of Z_N^* has Jacobi symbol +1.)

Jacobi Symbol

Surprising fact: For any N, Jacobi symbol $\binom{x}{N}$ is computable in poly time without knowing the prime factorization of N.

Quadratic Residues / Squares

Let N = pq be a product of two large primes.

So:
$$QR_N = \{x: \begin{pmatrix} x \\ p \end{pmatrix} = \begin{pmatrix} x \\ q \end{pmatrix} = +1\}$$

 QR_N
 $QNR_N = \{x: \begin{pmatrix} x \\ p \end{pmatrix} = \begin{pmatrix} x \\ q \end{pmatrix} = -1\}$
 QNR_N

 QR_N is the set of squares mod N and QNR_N is the set of non-squares mod N with Jacobi symbol +1.

Quadratic Residues / Squares

Fact: For an odd $N = \prod_{i=1}^{k} p_i^{\alpha_i}$, the fraction of Z_N^* that are a square mod N is 2^{-k} .

So:
$$QR_N = \{x: \begin{pmatrix} x \\ p \end{pmatrix} = \begin{pmatrix} x \\ q \end{pmatrix} = +1\}$$

 QR_N
 $QNR_N = \{x: \begin{pmatrix} x \\ p \end{pmatrix} = \begin{pmatrix} x \\ q \end{pmatrix} = -1\}$
 QNR_N

 QR_N is the set of squares mod N and QNR_N is the set of non-squares mod N with Jacobi symbol +1.

Call an odd integer N good if

- exactly half of Z_N^* have Jacobi symbol +1, and
- exactly half of them are quadratic residues.

 QR_N is the set of squares mod N and QNR_N is the set of non-squares mod N with Jacobi symbol +1.

Fact: An odd N is good iff $N = p^i q^j$, and $i, j \ge 1$, not both even.

Fact: An odd N is good iff $N = p^i q^j$, and $i, j \ge 1$, not both even.

IMPORTANT PROPERTY: If y_1 and y_2 are both in QNR, then their product y_1y_2 is in QR.

The fraction of residues smaller if *N* has three or more prime factors!

Quadratic Residuosity

Let N = pq be a product of two large primes.

Quadratic Residuosity Assumption (QRA)

No PPT algorithm can distinguish between a random element of QR_N from a random element of QNR_N given only N.

HOW TO CONSTRUCT NIZK IN THE CRS MODEL

Step 1. **Review** our number theory hammers & polish them.

Step 2. **Construct** NIZK for a special NP language, namely quadratic *non*-residuosity.

Step 3. **Bootstrap** to NIZK for 3SAT, an NP-complete language.

Define the NP language GOOD with instances (N, y) where

- *N* is <u>good</u>; and
- $y \in QNR_N$ (that is, y has Jacobi symbol +1 but is not a square mod N)

 $CRS = (r_1, r_2, \dots, r_m) \leftarrow (Jac_N^{+1})^m$

Fact: If all these pass, then at most half of Jac_N^{+1} are squares.

 (N, γ)

Check:

- *N* is odd
- *N* is not a prime power,
- *N* is not a perfect square;

 (N, γ)

$$CRS = (r_1, r_2, \dots, r_m) \leftarrow (Jac_N^{+1})^m$$

If N is good and $y \in QNR_N$: either r_i is in QR_N or yr_i is in QR_N so I can compute $\sqrt{r_i}$ or $\sqrt{yr_i}$.

If not ... I'll be stuck!

 $CRS = (r_1, r_2, \dots, r_m) \leftarrow (Jac_N^{+1})^m$

Check:

- N is odd
- *N* is not a prime power,
- *N* is not a perfect square; and
- I received either a mod-N square root of r_i or yr_i

$$CRS = (r_1, r_2, \dots, r_m) \leftarrow (Jac_N^{+1})^m$$

Soundness (what if *N* has more than 2 prime factors)

No matter what y is, for half the r_i , both r_i and yr_i are **not** quadratic residues.

$$CRS = (r_1, r_2, \dots, r_m) \leftarrow (Jac_N^{+1})^m$$

Soundness (what if *N* has more than 2 prime factors)

No matter what y is, **for half the** r_i , both r_i and yr_i are **not** quadratic residues.

$$CRS = (r_1, r_2, \dots, r_m) \leftarrow (Jac_N^{+1})^m$$

Soundness (what if y is a residue)

Then, if r_i happens to be a non-residue, both r_i and yr_i are **not** quadratic residues.

$$CRS = (r_1, r_2, \dots, r_m) \leftarrow (Jac_N^{+1})^m$$

$$(N, y) \qquad (N, y)$$

$$\forall i: \pi_i = \sqrt{r_i} \text{ OR } \sqrt{yr_i} \qquad \mathbf{V}$$

(Perfect) Zero Knowledge Simulator S:

First pick the proof π_i to be random in Z_N^* .

Then, reverse-engineer the CRS, letting $r_i = \pi_i^2$ or $r_i = \pi_i^2/y$ randomly.

$$CRS = (r_1, r_2, \dots, r_m) \leftarrow (Jac_N^{+1})^m$$

CRS depends on the instance N. Not good.

Soln: Let CRS be random numbers. Interpret them as elements of Z_N^* and both the prover and verifier filter out Jac_N^{-1} .

NEXT LECTURE

Step 1. **Review** our number theory hammers & polish them.

Step 2. **Construct** NIZK for a special NP language, namely quadratic *non*-residuosity.

Step 3. **Bootstrap** to NIZK for 3SAT, an NP-complete language.

3SAT

<u>Boolean Variables</u>: x_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or $\overline{x_i}$.

A <u>Clause</u> is a *disjunction* of literals.

E.g. $x_1 \vee x_2 \vee \overline{x_5}$

A <u>Clause</u> is true if any one of the literals is true.

3SAT

<u>Boolean Variables</u>: x_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or $\overline{x_i}$.

A <u>Clause</u> is a *disjunction* of literals.

E.g. $x_1 \vee x_2 \vee \overline{x_5}$ is true as long as: $(x_1, x_2, x_5) \neq (0,0,1)$

3SAT

<u>Boolean Variables</u>: x_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or $\overline{x_i}$.

A <u>3-Clause</u> is a *disjunction* of 3-literals.

A <u>3-SAT formula</u> is a *conjunction* of many 3-clauses.

E.g. $\Psi = (x_1 \lor x_2 \lor \overline{x_5}) \land (x_1 \lor x_3 \lor x_4) (\overline{x_2} \lor x_3 \lor \overline{x_5})$

A <u>3-SAT formula</u> Ψ is **satisfiable** if there is an assignment of values to the variables x_i that makes all its clauses true.

Cook-Levin Theorem: It is NP-complete to decide whether a <u>3-SAT formula</u> Ψ is satisfiable.

A <u>3-SAT formula</u> is a *conjunction* of many 3-clauses.

E.g. $\Psi = (x_1 \lor x_2 \lor \overline{x_5}) \land (x_1 \lor x_3 \lor x_4) (\overline{x_2} \lor x_3 \lor \overline{x_5})$

A <u>3-SAT formula</u> Ψ is **satisfiable** if there is an assignment of values to the variables x_i that makes all its clauses true.

NIZK for 3SAT: Recall...

We saw a way to show that a pair (N, y) is GOOD. That is:

- the following is the picture of Z_N^* and
- for every $r \in Jac_{+1}$, either r or ry is a quadratic residue.

1. Prover picks an (N, y) and proves that it is GOOD.

Input: $\Psi = (x_1 \lor x_2 \lor \overline{x_5}) \land (x_1 \lor x_3 \lor x_4) (\overline{x_2} \lor x_3 \lor \overline{x_5})$ *n variables, m clauses.*

2. Prover encodes the satisfying assignment $y_i \leftarrow QR_N$ if x_i is false $y_i \leftarrow QNR_N$ if x_i is true

2. Prover encodes the satisfying assignment & \therefore the literals $Enc(x_i) = y_i$, then $Enc(\overline{x_i}) = yy_i$

 \therefore exactly one of $Enc(x_i)$ or $Enc(\overline{x_i})$ is a non-residue.

2. Prover encodes the satisfying assignment & \therefore the literals $Enc(x_i) = y_i$, then $Enc(\overline{x_i}) = yy_i$

 \therefore exactly one of $Enc(x_i)$ or $Enc(\overline{x_i})$ is a non-residue.

3. Prove that (encoded) assignment satisfies each clause.

For each clause, say $x_1 \vee x_2 \vee \overline{x_5}$, let $(a_1 = y_1, b_1 =$

So, each of them is either y_i (if the literal is a var) or yy_i (if the literal is a negated var).

3. Prove that (encoded) assignment satisfies each clause.

For each clause, say $x_1 \vee x_2 \vee \overline{x_5}$, let (a_1, b_1, c_1) denote the encoded variables.

WANT to SHOW: $x_1 OR x_2 OR \overline{x_5}$ is true.

3. Prove that (encoded) assignment satisfies each For each clause, say $x_1 \vee x_2 \vee \overline{x_5}$, let (a_1, b_1, c_1) denote the encoded variables.

WANT to SHOW: $a_1 OR b_1 OR c_1$ is a non-residue.

Prove that (encoded) assignment satisfies each clause.

WANT to SHOW: $a_1 OR b_1 OR c_1$ is a non-residue.

Equiv: The "pattern" of (a_1, b_1, c_1) is **NOT** (QR, QR, QR).

CLEVER IDEA: Generate seven *additional* triples

"Proof of Coverage": show that the 8 triples span all possible QR patterns

CLEVER IDEA: Generate seven *additional* triples

original triple

show this is a QR: reveal the square roots

 (a_1, b_1, c_1) (a_2, b_2, c_2) (a_3, b_3, c_3) (a_4, b_4, c_4) (a_5, b_5, c_5) (a_6, b_6, c_6) (a_7, b_7, c_7) (a_8, b_8, c_8)

"Proof of Coverage": show that the 8 triples span all possible QR signatures

<u>Proof of Coverage</u>: For each of poly many triples (r, s, t) from CRS, show one of the 8 triples has the same signature. That is, there is a triple (a_i, b_i, c_i) s.t. (ra_i, sb_i, tc_i) is (QR, QR, QR).

 Prove that (encoded) assignment satisfies each clause.
 For each clause, construct the proof ρ = (7 additional triples, square root of the second triples, proof of coverage).

Completeness & Soundness: Exercise.

Zero Knowledge: Simulator picks (N, y) where y is a quadratic **residue**.

Now, encodings of ALL the literals can be set to TRUE!!