MIT 6.875

Foundations of Cryptography Lecture 16

Interaction is Necessary for ZK

Theorem: If a language L has a non-interactive (onemessage) ZK proof system, then L can be solved in probabilistic polynomial time.

That seems like the end of the road for noninteractive ZK (?)

Two Roads to Non-Interactive ZK (NIZK)

1. Random Oracle Model \& Fiat-Shamir Transform.

2. Common Random String Model.

The Common Random String Model

CRS 010111000101010010

V

NIZK for a language L in the CRS Model

CRS 010111000101010010

Graph G

π

1. Completeness: For every $x \in \mathrm{~L}, \mathrm{~V}$ accepts P's proof.
2. Soundness: Given a CRS, the probability that a cheating prover P^{*} can produce $x^{*} \notin \mathrm{~L}$ and "proof" π^{*}, such that $V\left(C R S, x^{*}, \pi^{*}\right)$ accepts is $\leq \operatorname{neg}(n)$

NIZK for a language L in the CRS Model

CRS 010111000101010010

π

v

3. Zero Knowledge: There is a PPT simulator S such that for every $x \in \mathrm{~L}$ and witness $w, \mathrm{~S}$ simulates the view of the verifier V .

$$
S(x) \approx(C R S \leftarrow \text { Unif }, \pi \leftarrow P(C R S, x, w))
$$

HOW TO CONSTRUCT NIZK IN THE CRS MODEL

2. Feige-Lapidot-Shamir'90 (factoring)
3. Groth-Ostrovsky-Sahai'06 (bilinear maps)
4. Canetti-Chen-Holmgren-Lombardi-Rothblum²-Wichs'19 and Peikert-Shiehian'19 (learning with errors)

HOW TO CONSTRUCT NIZK IN THE CRS MODEL

Step 1. Review our number theory hammers \& polish them.

Step 2. Construct NIZK for a special NP language, namely quadratic non-residuosity.

Step 3. Bootstrap to NIZK for 3SAT, an NP-complete language.

Jacobi Symbol

Let $N=p q$ be a product of two large primes.

Jacobi Symbol

Fact: For any odd \mathbf{N}, Jac divides Z_{N}^{*} evenly unless \mathbf{N} is a perfect square. (If N is a perfect square, all of Z_{N}^{*} has Jacobi symbol +1.)

Jacobi Symbol

Surprising fact: For any N, Jacobi symbol $\binom{x}{N}$ is computable in poly time without knowing the prime factorization of N.

Quadratic Residues / Squares

Let $N=p q$ be a product of two large primes.

$$
\begin{aligned}
\text { So: } Q R_{N} & =\left\{x:\binom{x}{p}=\binom{x}{q}=+1\right\} \\
Q N R_{N} & =\left\{x:\binom{x}{p}=\binom{x}{q}=-1\right\}
\end{aligned}
$$

$Q R_{N}$ is the set of squares $\bmod N$ and $Q N R_{N}$ is the set of non-squares $\bmod N$ with Jacobi symbol +1 .

Quadratic Residues / Squares

Fact: For an odd $N=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, the fraction of Z_{N}^{*} that are a square $\bmod \mathrm{N}$ is 2^{-k}.

$$
\begin{aligned}
& \text { So: } Q R_{N}=\left\{x:\binom{x}{p}=\binom{x}{q}=+1\right\} \\
& Q N R_{N}=\left\{x:\binom{x}{p}=\binom{x}{q}=-1\right\}
\end{aligned}
$$

$Q R_{N}$ is the set of squares $\bmod N$ and $Q N R_{N}$ is the set of non-squares $\bmod N$ with Jacobi symbol +1 .

Quadratic Residues

Call an odd integer \mathbf{N} good if

- exactly half of Z_{N}^{*} have Jacobi symbol +1 , and
- exactly half of them are quadratic residues.

$Q R_{N}$ is the set of squares $\bmod N$ and $Q N R_{N}$ is the set of non-squares $\bmod N$ with Jacobi symbol +1 .

Quadratic Residues

Fact: An odd N is good iff

$$
N=p^{i} q^{j}, \text { and } i, j \geq 1, \text { not both even. }
$$

Quadratic Residues

Fact: An odd N is good iff

$$
N=p^{i} q^{j}, \text { and } i, j \geq 1, \text { not both even. }
$$

IMPORTANT PROPERTY: If y_{1} and y_{2} are both in $Q N R$, then their product $y_{1} y_{2}$ is in $Q R$.

Quadratic Residues

The fraction of residues smaller if N has three or more prime factors!

IMPORTANT PROPERTV: If $y 1$ and y_{2} are both in $Q N R$, then their product $y_{1} y_{2}$ is in $Q R$.

Quadratic Residuosity

Let $N=p q$ be a product of two large primes.
Quadratic Residuosity Assumption (QRA)
No PPT algorithm can distinguish between a random element of $Q R_{N}$ from a random element of $Q N R_{N}$ given only N.

HOW TO CONSTRUCT NIZK IN THE CRS MODEL

Step 1. Review our number theory hammers
\& polish them.

Step 2. Construct NIZK for a special NP language, namely quadratic non-residuosity.

Step 3. Bootstrap to NIZK for 3SAT, an NP-complete language.

NIZK for Quadratic Non-Residuosity

Define the NP language GOOD with instances $(\boldsymbol{N}, \boldsymbol{y})$ where

- N is good; and
- $y \in Q N R_{N}$ (that is, y has Jacobi symbol +1 but is not a square $\bmod N$)

NIZK for Quadratic Non-Residuosity

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{m}\right) \leftarrow\left(J a c_{N}^{+1}\right)^{m}
$$

Fact: If all these pass, then at most half of $J a c_{N}^{+1}$ are squares.

Check:

- N is odd
- N is not a prime power,
- N is not a perfect square;

NIZK for Quadratic Non-Residuosity

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{m}\right) \leftarrow\left(J a c_{N}^{+1}\right)^{m}
$$

(N, y)
(N, y)

If N is good and $y \in Q N R_{N}$: either r_{i} is in $Q R_{N}$ or $y r_{i}$ is in $Q R_{N}$ so I can compute $\sqrt{r_{i}}$ or $\sqrt{y r_{i}}$.

If not ... l'll be stuck!

NIZK for Quadratic Non-Residuosity

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{m}\right) \leftarrow\left(J a c_{N}^{+1}\right)^{m}
$$

(N, y)
(N, y)

$\forall i: \sqrt{r_{i}} \mathrm{OR} \sqrt{y r_{i}}$

Check:

- N is odd
- N is not a prime power,
- $\quad N$ is not a perfect square; and
- I received either a mod-N square root of r_{i} or $y r_{i}$

NIZK for Quadratic Non-Residuosity

$$
\text { CRS }=\left(r_{1}, r_{2}, \ldots, r_{m}\right) \leftarrow\left(J a c_{N}^{+1}\right)^{m}
$$

Soundness (what if N has more than 2 prime factors)
No matter what y is, for half the r_{i}, both r_{i} and $y r_{i}$ are not quadratic residues.

NIZK for Quadratic Non-Residuosity

$$
\text { CRS }=\left(r_{1}, r_{2}, \ldots, r_{m}\right) \leftarrow\left(J a c_{N}^{+1}\right)^{m}
$$

Soundness (what if N has more than 2 prime factors)
No matter what y is, for half the r_{i}, both r_{i} and $y r_{i}$ are not quadratic residues.

NIZK for Quadratic Non-Residuosity

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{m}\right) \leftarrow\left(\operatorname{Jac}_{N}^{+1}\right)^{m}
$$

Soundness (what if y is a residue)
Then, if r_{i} happens to be a non-residue, both r_{i} and $y r_{i}$ are not quadratic residues.

NIZK for Quadratic Non-Residuosity

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{m}\right) \leftarrow\left(J a c_{N}^{+1}\right)^{m}
$$

$$
\xrightarrow[\square]{(N, y)} \xrightarrow{\forall i: \pi_{i}=\sqrt{r_{i}} \mathrm{OR} \sqrt{y r_{i}}}
$$

(Perfect) Zero Knowledge Simulator S:
First pick the proof π_{i} to be random in Z_{N}^{*}.
Then, reverse-engineer the CRS, letting $r_{i}=\pi_{i}^{2}$ or $r_{i}=$ π_{i}^{2} / y randomly.

NIZK for Quadratic Non-Residuosity

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{m}\right) \leftarrow\left(J a c_{N}^{+1}\right)^{m}
$$

(N, y)
(N, y)
P
V

CRS depends on the instance N. Not good.
Soln: Let CRS be random numbers. Interpret them as elements of Z_{N}^{*} and both the prover and verifier filter out $J a c_{N}^{-1}$.

NEXT LECTURE

Step 1. Review our number theory hammers \& polish them.

Step 2. Construct NIZK for a special NP language, namely quadratic non-residuosity.

Step 3. Bootstrap to NIZK for 3SAT, an NP-complete language.

3SAT

Boolean Variables: x_{i} can be either true (1) or false (0)
A Literal is either x_{i} or $\overline{x_{i}}$.
A Clause is a disjunction of literals.

$$
\text { E.g. } x_{1} \vee x_{2} \vee \overline{x_{5}}
$$

A Clause is true if any one of the literals is true.

3SAT

Boolean Variables: x_{i} can be either true (1) or false (0)
A Literal is either x_{i} or $\overline{x_{i}}$.
A Clause is a disjunction of literals.
E.g. $x_{1} \vee x_{2} \vee \overline{x_{5}}$ is true as long as:

$$
\left(x_{1}, x_{2}, x_{5}\right) \neq(0,0,1)
$$

3SAT

Boolean Variables: x_{i} can be either true (1) or false (0)
A Literal is either x_{i} or $\overline{x_{i}}$.
A 3-Clause is a disjunction of 3 -literals.
A 3-SAT formula is a conjunction of many 3-clauses.
E.g. $\boldsymbol{\Psi}=\left(x_{1} \vee x_{2} \vee \overline{x_{5}}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right)\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{5}}\right)$

A $\underline{\text { 3-SAT formula }} \boldsymbol{\Psi}$ is satisfiable if there is an assignment of values to the variables x_{i} that makes all its clauses true.

3SAT

Cook-Levin Theorem: It is NP-complete to decide whether a 3-SAT formula $\boldsymbol{\Psi}$ is satisfiable.

A 3-SAT formula is a conjunction of many 3-clauses.
E.g. $\boldsymbol{\Psi}=\left(x_{1} \vee x_{2} \vee \overline{x_{5}}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right)\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{5}}\right)$

A $\underline{\text { 3-SAT formula }} \boldsymbol{\Psi}$ is satisfiable if there is an assignment of values to the variables x_{i} that makes all its clauses true.

NIZK for 3SAT: Recall...

We saw a way to show that a pair $(\boldsymbol{N}, \boldsymbol{y})$ is GOOD. That is:

- the following is the picture of Z_{N}^{*} and
- for every $r \in J a c_{+1}$, either r or $r y$ is a quadratic residue.

NIZK for 3SAT

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{\text {large number }}\right) \leftarrow\left(\mathrm{Jac}_{N}^{+1}\right)^{\text {large number }}
$$

$\boldsymbol{\Psi}$

$\underset{\substack{\text { Satisfying assignment } \\\left(w_{1}, w_{2}, \ldots, w_{n}\right)}}{(N, y, \pi)} \longrightarrow$ T

1. Prover picks an (N, y) and proves that it is GOOD.

Input: $\boldsymbol{\Psi}=\left(x_{1} \vee x_{2} \vee \overline{x_{5}}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right)\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{5}}\right)$ n variables, m clauses.

NIZK for 3SAT

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{\text {large number }}\right) \leftarrow\left(J a c_{N}^{+1}\right)^{\text {large number }}
$$

Ψ

2. Prover encodes the satisfying assignment

$$
\begin{aligned}
& y_{i} \leftarrow Q R_{N} \text { if } x_{i} \text { is false } \\
& y_{i} \leftarrow Q N R_{N} \text { if } x_{i} \text { is true }
\end{aligned}
$$

NIZK for 3SAT

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{\text {large number }}\right) \leftarrow\left(J a c_{N}^{+1}\right)^{\text {large number }}
$$

Ψ

(N, y, π)

2. Prover encodes the satisfying assignment $\& \therefore$ the literals

$$
\operatorname{Enc}\left(x_{i}\right)=y_{i}, \text { then } \operatorname{Enc}\left(\bar{x}_{i}\right)=y y_{i}
$$

\therefore exactly one of $\operatorname{Enc}\left(x_{i}\right)$ or $\operatorname{Enc}\left(\bar{x}_{i}\right)$ is a non-residue.

NIZK for 3SAT

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{\text {large number }}\right) \leftarrow\left(\mathrm{Jac}_{N}^{+1}\right)^{\text {large number }}
$$

| $\substack{\boldsymbol{\Psi} \\$ atisfying assignment $\\ \left(w_{1}, w_{2}, \ldots, w_{n}\right)$$}$ | (N, y, π)
 Encode vars: $\left(y_{1}, \ldots, y_{n}\right)$ | $\boldsymbol{\Psi}$ |
| :--- | :---: | :---: | :---: |

2. Prover encodes the satisfying assignment $\& \therefore$ the literals

$$
\operatorname{Enc}\left(x_{i}\right)=y_{i}, \text { then } \operatorname{Enc}\left(\bar{x}_{i}\right)=y y_{i}
$$

\therefore exactly one of $\operatorname{Enc}\left(x_{i}\right)$ or $\operatorname{Enc}\left(\bar{x}_{i}\right)$ is a non-residue.

NIZK for 3SAT

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{\text {large number }}\right) \leftarrow\left(\mathrm{Jac}_{N}^{+1}\right)^{\text {large number }}
$$

Satisfying assignment
$\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}\right)$
(N, y, π)
Encode vars: $\left(y_{1}, \ldots, y_{n}\right)$

3. Prove that (encoded) assignment satisfies each clause.

For each clause, say $x_{1} \vee x_{2} \vee \overline{\overline{x_{5}}}$, let $\left(a_{1}=y_{1}, b_{1}=\right.$ let, $\left(q_{1}=b_{i 1}, y_{9}\right)$ denote the encoded variables.

So, each of them is either y_{i} (if the literal is a var) or $y y_{i}$ (if the literal is a negated var).

NIZK for 3SAT

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{\text {large number }}\right) \leftarrow\left(\mathrm{Jac}_{N}^{+1}\right)^{\text {large number }}
$$

3. Prove that (encoded) assignment satisfies each clause.

For each clause, say $x_{1} \vee x_{2} \vee \overline{x_{5}}$, let (a_{1}, b_{1}, c_{1}) denote the encoded variables.

WANT to SHOW: $x_{1} O R x_{2} O R \overline{x_{5}}$ is true.

NIZK for 3SAT

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{\text {large number }}\right) \leftarrow\left(\mathrm{Jac}_{N}^{+1}\right)^{\text {large number }}
$$

$\substack{\text { Satisfying assignment } \\ \left(w_{1}, w_{2}, \ldots, w_{n}\right)}$	$\boldsymbol{\Psi}$	(N, y, π)	$\boldsymbol{\Psi}$

3. Prove that (encoded) assignment satisfies each

For each clause, say $x_{1} \vee x_{2} \vee \overline{x_{5}}$, let (a_{1}, b_{1}, c_{1}) denote the encoded variables.

WANT to SHOW: $a_{1} O R b_{1} O R c_{1}$ is a non-residue.

NIZK for 3SAT

Prove that (encoded) assignment satisfies each clause.
WANT to SHOW: $a_{1} O R b_{1} O R c_{1}$ is a non-residue.
Equiv: The "pattern" of (a_{1}, b_{1}, c_{1}) is NOT (QR, QR, QR).
CLEVER IDEA: Generate seven additional triples

NIZK for 3SAT

CLEVER IDEA: Generate seven additional triples
\(\left.\begin{array}{ll}original triple \& \left(a_{1}, b_{1}, c_{1}\right)

show this is a QR:

reveal the square roots \& \left(a_{2}, b_{2}, c_{2}\right)

\& \left(a_{3}, b_{3}, c_{3}\right)

\left(a_{4}, b_{4}, c_{4}\right)

\left(a_{5}, b_{5}, c_{5}\right)

\left(a_{6}, b_{6}, c_{6}\right)

\left(a_{7}, b_{7}, c_{7}\right)

\left(a_{8}, b_{8}, c_{8}\right)\end{array}\right]\)| "Proof of Coverage": |
| :--- |
| show that the 8 triples span |
| all possible QR signatures |

Proof of Coverage: For each of poly many triples (r, s, t) from CRS, show one of the 8 triples has the same signature.

That is, there is a triple $\left(a_{i}, b_{i}, c_{i}\right)$ s.t. $\left(r a_{i}, s b_{i}, t c_{i}\right)$ is $(Q R, Q R, Q R)$.

NIZK for 3SAT

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{\text {large number }}\right) \leftarrow\left(J a c_{N}^{+1}\right)^{\text {large number }}
$$

3. Prove that (encoded) assignment satisfies each clause.

For each clause, construct the proof $\rho=(7$ additional triples, square root of the second triples, proof of coverage).

NIZK for 3SAT

$$
C R S=\left(r_{1}, r_{2}, \ldots, r_{\text {large number }}\right) \leftarrow\left(J a c_{N}^{+1}\right)^{\text {large number }}
$$

Completeness \& Soundness: Exercise.
Zero Knowledge: Simulator picks (N, y) where y is a quadratic residue.
Now, encodings of ALL the literals can be set to TRUE!!

